In a tunnelling experiment across a quantum dot it is possible to change the coupling between the dot and the contacts at will, by properly tuning the transparency of the barriers and the temperature. Gate voltages allow for changes of the relative position of the dot addition energies and the Fermi level of the leads. Here we discuss the two limiting cases: weak and strong coupling in the tunnelling Hamiltonian. In the latter case Kondo resonant conductance can emerge at low temperature in a Coulomb blockade valley. We give a pedagogical approach to the single-channelKondo physics at equilibrium and review the Nozi`eres scattering picture of the correlated fixed point. We emphasize the effect of an applied magnetic field and show how an orbital Kondo effect can take place in vertical quantum dots tuned both to an even and to an odd number of electrons at a level crossing. We extend the approach to the two-channel overscreened Kondo case and discuss recent proposals for detecting the non-Fermi liquid fixed point which could be reached at strong coupling.

Linear Kondo conductance in a quantum dot

GIULIANO, Domenico;
2004-01-01

Abstract

In a tunnelling experiment across a quantum dot it is possible to change the coupling between the dot and the contacts at will, by properly tuning the transparency of the barriers and the temperature. Gate voltages allow for changes of the relative position of the dot addition energies and the Fermi level of the leads. Here we discuss the two limiting cases: weak and strong coupling in the tunnelling Hamiltonian. In the latter case Kondo resonant conductance can emerge at low temperature in a Coulomb blockade valley. We give a pedagogical approach to the single-channelKondo physics at equilibrium and review the Nozi`eres scattering picture of the correlated fixed point. We emphasize the effect of an applied magnetic field and show how an orbital Kondo effect can take place in vertical quantum dots tuned both to an even and to an odd number of electrons at a level crossing. We extend the approach to the two-channel overscreened Kondo case and discuss recent proposals for detecting the non-Fermi liquid fixed point which could be reached at strong coupling.
2004
Quantum Dot; Quantum Conductance; Linear Response Theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/129471
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact