The article presents a model to support designers and stakeholders when selecting the best product concepts, from among those in the course of development, assessing them from the sustainability point of view. The main aim of the article is to give the designer a road map, by which to collect and organize data, perform environmental analysis and compare different design alternatives, before the embodiment phase is completed. The model integrates different approaches: the use of a simplified life-cycle assessment to assess concepts when the information is poor or rough, performing the evaluation according to a set of environmental indicators; the employment of an augmented version of a design structure matrix, used to manage product components and functionalities; the use of a multi-criteria decision-making method to compare the environmental characteristics of design alternatives and a Pareto approach to select the most promising concepts. Finally, the design alternatives are expressed in terms of three dimensionless coordinates related to material wastes (α), energy dissipation (β) and environmental characteristics (γ) of the concept and are positioned in a three-dimensional environmental efficiency space to allow designers to visualize the position of each concept solution. The employment of an aggregate objective function and its geometric interpretation in the environmental efficiency space allows the designer to have a deeper knowledge of the choices to be made and how these can be taken more consciously. Furthermore, this final step can help designers and stakeholders in their reasoning about the environmental potentialities and drawbacks of the products in the phase of development. The whole model is applied to a case study where a group of five concepts of orange juicers are analysed and all the steps of the model are described in detail and discussed.

An integrated model for the environmental assessment of industrial products during the design process

DE NAPOLI, Luigi;Rizzuti S;
2017-01-01

Abstract

The article presents a model to support designers and stakeholders when selecting the best product concepts, from among those in the course of development, assessing them from the sustainability point of view. The main aim of the article is to give the designer a road map, by which to collect and organize data, perform environmental analysis and compare different design alternatives, before the embodiment phase is completed. The model integrates different approaches: the use of a simplified life-cycle assessment to assess concepts when the information is poor or rough, performing the evaluation according to a set of environmental indicators; the employment of an augmented version of a design structure matrix, used to manage product components and functionalities; the use of a multi-criteria decision-making method to compare the environmental characteristics of design alternatives and a Pareto approach to select the most promising concepts. Finally, the design alternatives are expressed in terms of three dimensionless coordinates related to material wastes (α), energy dissipation (β) and environmental characteristics (γ) of the concept and are positioned in a three-dimensional environmental efficiency space to allow designers to visualize the position of each concept solution. The employment of an aggregate objective function and its geometric interpretation in the environmental efficiency space allows the designer to have a deeper knowledge of the choices to be made and how these can be taken more consciously. Furthermore, this final step can help designers and stakeholders in their reasoning about the environmental potentialities and drawbacks of the products in the phase of development. The whole model is applied to a case study where a group of five concepts of orange juicers are analysed and all the steps of the model are described in detail and discussed.
2017
environmental assessment; product design; environmental indicators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/137542
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact