The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that coprecipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of highquality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10–11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 mg mg21 fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this method is likely to have wider applications for intra- and inter-specific studies on other brown algae.

A simple and effective method for high quality co-extraction of genomic DNA and total RNA from low biomass Ectocarpus siliculosus, the modelbrown alga

BITONTI, Maria Beatrice
2014-01-01

Abstract

The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that coprecipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of highquality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10–11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 mg mg21 fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this method is likely to have wider applications for intra- and inter-specific studies on other brown algae.
2014
Brown algae; Nucleic acid co-extraction; High quality and yeld
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/137948
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 41
social impact