This paper analyses the performances of a Dish-Stirling concentrating solar system using a Stirling engine for the production of electrical and thermal energy. In particular, with focus on the receiver, its performance was evaluated considering two different plant solutions: “naked” receiver (without hot chamber) and receiver provided with hot chamber.The Dish-Stirling system under study includes a MICROGEN linear piston Stirling engine of 4 kW total rated power (3 kW thermal and 1 kW electric). The minimum engine starting temperature is 190 °C, while the maximum operating temperature is 565 °C. The analysis is developed through the setting up of a calculation model in MatLab, through which it is possible to predict the dynamic behaviour of the concentrator-receiver-Stirling engine system and quantify the energy productivity in various operating conditions. The simulations results show that the use of a hot chamber allows improvement of the system performance which, as regards the thermal power, is quantified in an increase of over 70%.

Analysis of the Performances of a dish Stirling System equipped with hot chamber

CUCUMO, Mario Antonio;FERRARO, VITTORIO;Kaliakatsos D;
2015-01-01

Abstract

This paper analyses the performances of a Dish-Stirling concentrating solar system using a Stirling engine for the production of electrical and thermal energy. In particular, with focus on the receiver, its performance was evaluated considering two different plant solutions: “naked” receiver (without hot chamber) and receiver provided with hot chamber.The Dish-Stirling system under study includes a MICROGEN linear piston Stirling engine of 4 kW total rated power (3 kW thermal and 1 kW electric). The minimum engine starting temperature is 190 °C, while the maximum operating temperature is 565 °C. The analysis is developed through the setting up of a calculation model in MatLab, through which it is possible to predict the dynamic behaviour of the concentrator-receiver-Stirling engine system and quantify the energy productivity in various operating conditions. The simulations results show that the use of a hot chamber allows improvement of the system performance which, as regards the thermal power, is quantified in an increase of over 70%.
2015
Dish-Stirling; Hot chamber; Thermal-electric performance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/144561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact