While at high pressure, the classical Navier–Stokes equation is suitable for modeling squeeze-film damping, at low pressure, it needs some modification in order to consider fluid rarefaction. According to a common approach, fluid rarefaction can be included in this equation by substituting the standard fluid viscosity with a fictitious quantity, known as effective viscosity, for which different formulations were proposed. In order to identify which expression works better, the results obtained when either formulation is implemented inside the Navier–Stokes equation (that is then solved by both analytical and numerical means) are compared with already available experimental data. At the end, a novel expression is discussed, derived from a computer-assessed optimization procedure.

On the Effective Viscosity Expression for Modeling Squeeze-Film Damping at Low Pressure

PAGNOTTA, Leonardo;
2014-01-01

Abstract

While at high pressure, the classical Navier–Stokes equation is suitable for modeling squeeze-film damping, at low pressure, it needs some modification in order to consider fluid rarefaction. According to a common approach, fluid rarefaction can be included in this equation by substituting the standard fluid viscosity with a fictitious quantity, known as effective viscosity, for which different formulations were proposed. In order to identify which expression works better, the results obtained when either formulation is implemented inside the Navier–Stokes equation (that is then solved by both analytical and numerical means) are compared with already available experimental data. At the end, a novel expression is discussed, derived from a computer-assessed optimization procedure.
2014
MEMS; Squeeze film damping
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/148910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact