A crossed hollow fiber membrane bioreactor was developed to support the long-term maintenance and differentiation of human hepatocytes. The bioreactor consists of two types of hollow fiber (HF) membranes with different molecular weight cut-off (MWCO) and physico-chemical properties cross-assembled in alternating manner: modified polyetheretherketone (PEEK-WC) and polyethersulfone (PES), used for the medium inflow and outflow, respectively. The combination of these two fiber set produces an extracapillary network for the adhesion of cells and a high mass exchange through the cross-flow of culture medium. The transport of liver specific products such as albumin and urea together with the transport of drug such as diazepam was modelled and compared with the experimental metabolic data. The theoretical metabolite concentration differed 7.5% for albumin and 5% for urea with respect to experimental data. The optimised perfusion conditions of the bioreactor allowed the maintenance of liver functions in terms of urea synthesis, albumin secretion and diazepam biotransformation tip to 18 days of culture. In particular the good performance of the bioreactor was confirmed by the high rate of urea synthesis (28.7 mu g/h 10(6) cells) and diazepam biotransformation. In the bioreactor human hepatocytes expressed at high levels the individual cytochrome P450 isoenzymes involved in the diazepam metabolism. The results demonstrated that crossed HF membrane bioreactor is able to support the maintenance of primary human hepatocytes preserving their liver specific functions for all investigated period. This device may be a potential tool in the liver tissue engineering for drug metabolism/toxicity testing and study of disease pathogenesis alternatively to animal experimentation.

Human hepatocyte functions in a crossed hollow fiber membrane bioreactor

CURCIO, EFREM;
2009-01-01

Abstract

A crossed hollow fiber membrane bioreactor was developed to support the long-term maintenance and differentiation of human hepatocytes. The bioreactor consists of two types of hollow fiber (HF) membranes with different molecular weight cut-off (MWCO) and physico-chemical properties cross-assembled in alternating manner: modified polyetheretherketone (PEEK-WC) and polyethersulfone (PES), used for the medium inflow and outflow, respectively. The combination of these two fiber set produces an extracapillary network for the adhesion of cells and a high mass exchange through the cross-flow of culture medium. The transport of liver specific products such as albumin and urea together with the transport of drug such as diazepam was modelled and compared with the experimental metabolic data. The theoretical metabolite concentration differed 7.5% for albumin and 5% for urea with respect to experimental data. The optimised perfusion conditions of the bioreactor allowed the maintenance of liver functions in terms of urea synthesis, albumin secretion and diazepam biotransformation tip to 18 days of culture. In particular the good performance of the bioreactor was confirmed by the high rate of urea synthesis (28.7 mu g/h 10(6) cells) and diazepam biotransformation. In the bioreactor human hepatocytes expressed at high levels the individual cytochrome P450 isoenzymes involved in the diazepam metabolism. The results demonstrated that crossed HF membrane bioreactor is able to support the maintenance of primary human hepatocytes preserving their liver specific functions for all investigated period. This device may be a potential tool in the liver tissue engineering for drug metabolism/toxicity testing and study of disease pathogenesis alternatively to animal experimentation.
2009
Hollow fiber, Membrane bioreactor, Mass transport, Hepatocytes, Liver functions, Diazepam biotransformation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/152284
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 89
social impact