We survey parallel programming models and languages using six criteria to assess their suitability for realistic portable parallel programming. We argue that an ideal model should be easy to program, should have a software development methodology, should be architecture-independent, should be easy to understand, should guarantee performance, and should provide accurate information about the cost of programs. These criteria reflect our belief that developments in parallelism must be driven by a parallel software industry based on portability and efficiency. We consider programming models in six categories, depending on the level of abstraction they provide. Those that are very abstract conceal even the presence of parallelism at the software level. Such models make software easy to build and port, but efficient and predictable performance is usually hard to achieve. At the other end of the spectrum, low-level models make all of the messy issues of parallel programming explicit (how many threads, how to place them, how to express communication, and how to schedule communication), so that software is hard to build and not very portable, but is usually efficient. Most recent models are near the center of this spectrum, exploring the best tradeoffs between expressiveness and performance. A few models have achieved both abstractness and efficiency. Both kinds of models raise the possibility of parallelism as part of the mainstream of computing.

Models and languages for parallel computation

TALIA, Domenico
1998-01-01

Abstract

We survey parallel programming models and languages using six criteria to assess their suitability for realistic portable parallel programming. We argue that an ideal model should be easy to program, should have a software development methodology, should be architecture-independent, should be easy to understand, should guarantee performance, and should provide accurate information about the cost of programs. These criteria reflect our belief that developments in parallelism must be driven by a parallel software industry based on portability and efficiency. We consider programming models in six categories, depending on the level of abstraction they provide. Those that are very abstract conceal even the presence of parallelism at the software level. Such models make software easy to build and port, but efficient and predictable performance is usually hard to achieve. At the other end of the spectrum, low-level models make all of the messy issues of parallel programming explicit (how many threads, how to place them, how to express communication, and how to schedule communication), so that software is hard to build and not very portable, but is usually efficient. Most recent models are near the center of this spectrum, exploring the best tradeoffs between expressiveness and performance. A few models have achieved both abstractness and efficiency. Both kinds of models raise the possibility of parallelism as part of the mainstream of computing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/159649
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 216
  • ???jsp.display-item.citation.isi??? 147
social impact