The search for simple, earth-abundant, cheap, and nontoxic metal catalysts able to perform industrial hydrogenations is a topic of interest, transversal to many catalytic processes. Here, we show that isolated FeIII-O sites on solids are able to dissociate and chemoselectively transfer H2 to acetylene in an industrial process. For that, a novel, robust, and highly crystalline metal-organic framework (MOF), embedding FeIII-OH2 single sites within its pores, was prepared in multigram scale and used as an efficient catalyst for the hydrogenation of 1% acetylene in ethylene streams under front-end conditions. Cutting-edge X-ray crystallography allowed the resolution of the crystal structure and snapshotted the single-atom nature of the catalytic FeIII-O site. Translation of the active site concept to even more robust and inexpensive titania and zirconia supports enabled the industrially relevant hydrogenation of acetylene with similar activity to the Pd-catalyzed process.

Isolated Fe(III)-O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions

CORMA CANOS, Avelino;Armentano, Donatella
;
2018-01-01

Abstract

The search for simple, earth-abundant, cheap, and nontoxic metal catalysts able to perform industrial hydrogenations is a topic of interest, transversal to many catalytic processes. Here, we show that isolated FeIII-O sites on solids are able to dissociate and chemoselectively transfer H2 to acetylene in an industrial process. For that, a novel, robust, and highly crystalline metal-organic framework (MOF), embedding FeIII-OH2 single sites within its pores, was prepared in multigram scale and used as an efficient catalyst for the hydrogenation of 1% acetylene in ethylene streams under front-end conditions. Cutting-edge X-ray crystallography allowed the resolution of the crystal structure and snapshotted the single-atom nature of the catalytic FeIII-O site. Translation of the active site concept to even more robust and inexpensive titania and zirconia supports enabled the industrially relevant hydrogenation of acetylene with similar activity to the Pd-catalyzed process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/284894
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 74
social impact