The opto-mechanical control of the heat generated by an amorphous arrangement of homogenously distributed gold nanoparticles (AuNPs), excited by an external laser source, is investigated. Application of a macroscopic mechanical strain to the biocompatible elastomeric tape supporting the particles leads to a nanoscale modification of their mutual inter-distance. The resulting strong variation of the particles near-field coupling gives rise to a macroscopic variation of the photo-generated heat. A fine control of the amount of generated heat is thus possible by stretching the initially isotropic sample by only a few percent. Due to the anisotropy of the stretching procedure, the plasmon band shift and thus the heat generation becomes strongly polarization-dependent. A model of the system based on Mie theory is implemented by using a finite element method. Under optical excitation, two configurations of AuNPs, representing the same cluster of particles at rest and under stretching, show a relative increase of temperature that is in good quantitative agreement with experimental data, if normalized to the number of involved particles. This system realizes for the first time an opto-mechanical control of the temperature at the nanoscale which holds promise for the development of optically-active thermal patches, usable for biomedical applications, and flexible platforms for microfluidics and lab-on-a-chip devices.

Flexible thermo-plasmonics: An opto-mechanical control of the heat generated at the nanoscale

G. Palermo;CONDELLO, ANTONIO;R. Caputo;A. De Luca
2018-01-01

Abstract

The opto-mechanical control of the heat generated by an amorphous arrangement of homogenously distributed gold nanoparticles (AuNPs), excited by an external laser source, is investigated. Application of a macroscopic mechanical strain to the biocompatible elastomeric tape supporting the particles leads to a nanoscale modification of their mutual inter-distance. The resulting strong variation of the particles near-field coupling gives rise to a macroscopic variation of the photo-generated heat. A fine control of the amount of generated heat is thus possible by stretching the initially isotropic sample by only a few percent. Due to the anisotropy of the stretching procedure, the plasmon band shift and thus the heat generation becomes strongly polarization-dependent. A model of the system based on Mie theory is implemented by using a finite element method. Under optical excitation, two configurations of AuNPs, representing the same cluster of particles at rest and under stretching, show a relative increase of temperature that is in good quantitative agreement with experimental data, if normalized to the number of involved particles. This system realizes for the first time an opto-mechanical control of the temperature at the nanoscale which holds promise for the development of optically-active thermal patches, usable for biomedical applications, and flexible platforms for microfluidics and lab-on-a-chip devices.
2018
Materials Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/287085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact