The aim of this study is to examine the efficiency of biobased Spanish broom (SB) surface modified cellulose fibers to remove bisphenol A (BPA), a well-known endocrine disruptor, from water. Spanish brooms are flowering plants, which are native and abundant to Mediterranean regions. The functionalized fibers (FF) were found to have the best adsorption efficiency at pH 5, due to the optimal hydrophobic interaction between the FF fiber and BPA. Adsorption kinetics of BPA was found to fit well a pseudo-second order reaction. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. A very fast and simple regeneration method was developed and it was observed that adsorption capacity of the fibers was kept almost unchanged after 3 consecutive uses. Bottled water and synthetic wastewater were also tested to assess the efficiency of the process under more realistic water and wastewater treatment conditions. It was found that BPA removal was slightly decreased from 77% in ultrapure water to 64% in synthetic wastewater matrix, indicating that FF has a high selectivity toward BPA, even in the presence of other organic compounds. Overall, it was observed that SB-modified fibers can be a new promising green biotechnology for water purification.

Removal of endocrine disrupting chemicals from water: Adsorption of bisphenol-a by biobased hydrophobic functionalized cellulose

Tursi, Antonio
;
Chidichimo, Francesco;Chidichimo, Giuseppe
2018-01-01

Abstract

The aim of this study is to examine the efficiency of biobased Spanish broom (SB) surface modified cellulose fibers to remove bisphenol A (BPA), a well-known endocrine disruptor, from water. Spanish brooms are flowering plants, which are native and abundant to Mediterranean regions. The functionalized fibers (FF) were found to have the best adsorption efficiency at pH 5, due to the optimal hydrophobic interaction between the FF fiber and BPA. Adsorption kinetics of BPA was found to fit well a pseudo-second order reaction. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. A very fast and simple regeneration method was developed and it was observed that adsorption capacity of the fibers was kept almost unchanged after 3 consecutive uses. Bottled water and synthetic wastewater were also tested to assess the efficiency of the process under more realistic water and wastewater treatment conditions. It was found that BPA removal was slightly decreased from 77% in ultrapure water to 64% in synthetic wastewater matrix, indicating that FF has a high selectivity toward BPA, even in the presence of other organic compounds. Overall, it was observed that SB-modified fibers can be a new promising green biotechnology for water purification.
2018
EDCs; Endocrine disruptors; Priority pollutants; Spanish broom; Surface modified cellulose; Wastewater treatment; Public Health, Environmental and Occupational Health; Health, Toxicology and Mutagenesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/288772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 56
social impact