The main scope of the present work is to synthesize pH-responsive Engelhard titanium silicate (ETS)-10 phase crystalline pellets through the smart modification of a synthetic process which was previously applied to the preparation of other phases. The original preparative method, which envisages the use of the same initial synthesis as a binder for the preparation of pellets, was modified by adding an appropriate pH indicator to a number of systems subject to this investigation. It should be noted that the modified process was never before used to give access to pH-responsive ETS-10 phase pellets, and it is disclosed here for the first time. The study started from the definition of the best experimental conditions, which were optimized by analyzing the eects of temperature and system composition. The addition of the pH indicator did not alter the physicochemical characteristics and reactivity of the system. The pH-responsive ETS-10 phase crystalline pellets were characterized by an adequate mechanical strength and by a high capability to change color. The latter aspect can be particularly useful when this material is used in catalytic processes whose performance is strictly dependent on the pH value. The amount of gel used, as well as the working temperature, were the main critical parameters to be controlled during the preparation of pH-responsive ETS-10 phase crystalline pellets. The pellets were fully characterized by X-ray diraction in order to investigate and identify the possible phases, and by using a hardness tester to measure the compressive strength. Finally, toning tests were performed.

Preparation of ETS-10 Microporous Phase Pellets with Color Change Properties

De Luca P.
Supervision
;
Siciliano C.
Methodology
;
MacArio A.
Supervision
2019-01-01

Abstract

The main scope of the present work is to synthesize pH-responsive Engelhard titanium silicate (ETS)-10 phase crystalline pellets through the smart modification of a synthetic process which was previously applied to the preparation of other phases. The original preparative method, which envisages the use of the same initial synthesis as a binder for the preparation of pellets, was modified by adding an appropriate pH indicator to a number of systems subject to this investigation. It should be noted that the modified process was never before used to give access to pH-responsive ETS-10 phase pellets, and it is disclosed here for the first time. The study started from the definition of the best experimental conditions, which were optimized by analyzing the eects of temperature and system composition. The addition of the pH indicator did not alter the physicochemical characteristics and reactivity of the system. The pH-responsive ETS-10 phase crystalline pellets were characterized by an adequate mechanical strength and by a high capability to change color. The latter aspect can be particularly useful when this material is used in catalytic processes whose performance is strictly dependent on the pH value. The amount of gel used, as well as the working temperature, were the main critical parameters to be controlled during the preparation of pH-responsive ETS-10 phase crystalline pellets. The pellets were fully characterized by X-ray diraction in order to investigate and identify the possible phases, and by using a hardness tester to measure the compressive strength. Finally, toning tests were performed.
2019
ETS-10; catalysis; pH responsive materials; microporous materials; pellets
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/295191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact