In this paper, the mechanical behavior of bio-inspired nacre-like staggered composites is studied. The bio-inspired materials, combining stiff and soft constituents, exhibit superior mechanical properties. Here, the attention is focused on the competing properties: penetration resistance and flexibility of the composites. To this end, a novel hybrid multiscale method is developed, combining a hierarchical multiscale approach with a concurrent approach. The method allows to perform accurate parametric nonlinear analyses at a low computational cost. The influence of the microstructural parameters (i.e., platelet aspect ratio and volume fraction) on the macroscopic mechanical behavior is thus analyzed. Finally, the potential of achieving tailored protective properties and flexibility through microstructural design of the bio-inspired composites is illustrated.

Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach

Greco Fabrizio.
;
Leonetti Lorenzo.;Pranno Andrea.;
2020-01-01

Abstract

In this paper, the mechanical behavior of bio-inspired nacre-like staggered composites is studied. The bio-inspired materials, combining stiff and soft constituents, exhibit superior mechanical properties. Here, the attention is focused on the competing properties: penetration resistance and flexibility of the composites. To this end, a novel hybrid multiscale method is developed, combining a hierarchical multiscale approach with a concurrent approach. The method allows to perform accurate parametric nonlinear analyses at a low computational cost. The influence of the microstructural parameters (i.e., platelet aspect ratio and volume fraction) on the macroscopic mechanical behavior is thus analyzed. Finally, the potential of achieving tailored protective properties and flexibility through microstructural design of the bio-inspired composites is illustrated.
2020
Bio-inspired composites; Finite deformations; Finite element method; Multiscale models; Nacre-like microstructure; Nonlinear homogenization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/298062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 51
social impact