We report a thorough, multitechnique investigation of the structure and transport properties of a UV-cross-linked polymer electrolyte based on poly(ethylene oxide), tetra(ethylene glycol)dimethyl ether (G4), and lithium bis(trifluoromethane)sulfonimide. The properties of the cross-linked polymer electrolyte are compared to those of a non-cross-linked sample of same composition. The effect of UV-induced cross-linking on the physico/chemical characteristics is evaluated by X-ray diffraction, differential scanning calorimetry, shear rheology, 1H and 7Li magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, 19F and 7Li pulsed field gradient stimulated echo NMR analyses, electrochemical impedance spectroscopy, and Fourier transform Raman spectroscopy. Comprehensive analysis confirms that UV-induced cross-linking is an effective technique to suppress the crystallinity of the polymer matrix and reduce ion aggregation, yielding improved Li+ transport number (>0.5) and ionic conductivity (>0.1 mS cm-1) at ambient temperature, by tailoring the structural/morphological characteristics of the polymer matrix. Finally, the polymer electrolyte allows reversible operation with stable profile for hundreds of cycles upon galvanostatic test at ambient temperature of LiFePO4-based lithium-metal cells, which deliver full capacity at 0.05 or 0.1C current rate and keep high rate capabilities up to 1C. This enforces the role of UV-induced cross-linking in achieving excellent electrochemical characteristics, exploiting a practical, easy up-scalable process.

Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes

Simari C.;Nicotera I.;
2019-01-01

Abstract

We report a thorough, multitechnique investigation of the structure and transport properties of a UV-cross-linked polymer electrolyte based on poly(ethylene oxide), tetra(ethylene glycol)dimethyl ether (G4), and lithium bis(trifluoromethane)sulfonimide. The properties of the cross-linked polymer electrolyte are compared to those of a non-cross-linked sample of same composition. The effect of UV-induced cross-linking on the physico/chemical characteristics is evaluated by X-ray diffraction, differential scanning calorimetry, shear rheology, 1H and 7Li magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, 19F and 7Li pulsed field gradient stimulated echo NMR analyses, electrochemical impedance spectroscopy, and Fourier transform Raman spectroscopy. Comprehensive analysis confirms that UV-induced cross-linking is an effective technique to suppress the crystallinity of the polymer matrix and reduce ion aggregation, yielding improved Li+ transport number (>0.5) and ionic conductivity (>0.1 mS cm-1) at ambient temperature, by tailoring the structural/morphological characteristics of the polymer matrix. Finally, the polymer electrolyte allows reversible operation with stable profile for hundreds of cycles upon galvanostatic test at ambient temperature of LiFePO4-based lithium-metal cells, which deliver full capacity at 0.05 or 0.1C current rate and keep high rate capabilities up to 1C. This enforces the role of UV-induced cross-linking in achieving excellent electrochemical characteristics, exploiting a practical, easy up-scalable process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/298520
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 103
social impact