The aim of this work is to compare two different joining technologies for steel and carbon fibre reinforced polymer materials in a hybrid gear in order to improve the dynamic behaviour in terms of natural frequencies and damping properties. A comprehensive approach for the design and prototyping of hybrid metal-composite gears with interference fitting and adhesive bonding is provided. In a following phase, an accurate description of the experimental impact tests is shown in order to investigate modal performances. Successively, in a finite element environment, modal analyses are conducted and frequency response functions of the gear model are analysed by means of complex stiffness matrix that accounts for structural damping. Impact tests and simulations indicate that the solution with interference fitting is stiffer than the one with adhesive, even if the damping capacity is lower. The results for both technologies show that it is possible to enhance noise and vibrations behaviour of gears through the application of composite materials in place of conventional full-metal solutions.

A comparative analysis of adhesive bonding and interference fitting as joining technologies for hybrid metal-composite gear manufacturing

Catera P. G.;Mundo D.;Gagliardi F.;Treviso A.
2020-01-01

Abstract

The aim of this work is to compare two different joining technologies for steel and carbon fibre reinforced polymer materials in a hybrid gear in order to improve the dynamic behaviour in terms of natural frequencies and damping properties. A comprehensive approach for the design and prototyping of hybrid metal-composite gears with interference fitting and adhesive bonding is provided. In a following phase, an accurate description of the experimental impact tests is shown in order to investigate modal performances. Successively, in a finite element environment, modal analyses are conducted and frequency response functions of the gear model are analysed by means of complex stiffness matrix that accounts for structural damping. Impact tests and simulations indicate that the solution with interference fitting is stiffer than the one with adhesive, even if the damping capacity is lower. The results for both technologies show that it is possible to enhance noise and vibrations behaviour of gears through the application of composite materials in place of conventional full-metal solutions.
2020
Adhesive bonding; Finite element analysis; Frequency response function; Hybrid gear; Interference fitting; Modal damping
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/300727
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact