Fabric-reinforced cementitious composites are a recent family of commercial products devoted to the external retrofitting and strengthening of masonry and concrete structures. In the present work, the authors investigate the possibility of using, as matrix, a mortar based on alkali-activated materials. Basalt textile was selected as reinforcement because it is an effective, low-cost and environmentally friendly reinforcement. The matrix was prepared using by-products of industrial processes. Mortar was characterized by measuring its drying shrinkage, capillary water absorption, compressive and flexural strengths and analyzed using X-Ray diffractometry, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical behavior of the composites was investigated through tensile and direct shear tests. The basalt fabric-reinforced alkali-activated matrix composite showed, under tension, a tri-linear response curve, mainly governed by cracks development and widening. The measured ultimate stress, ultimate strain and tensile modulus of elasticity in region III were 434 MPa (CoV 14.2%), 2.192% (CoV 4.1%) and 39 GPa (CoV 11.3%), respectively. The load-global slip response curves of the composite show an average peak load around 1148 N (CoV 23.0%) and an exploitation ratio versus the textile and the tensile of 0.40 and 0.86, respectively. Even if the preliminary results are encouraging, the performance of FRAAM composites would be positively affected by an increase of the dimensional stability of the matrix.

Mechanical characterization of basalt fabric-reinforced alkali-activated matrix composite: A preliminary investigation

Candamano S.
;
Crea F.;Iorfida A.
2020-01-01

Abstract

Fabric-reinforced cementitious composites are a recent family of commercial products devoted to the external retrofitting and strengthening of masonry and concrete structures. In the present work, the authors investigate the possibility of using, as matrix, a mortar based on alkali-activated materials. Basalt textile was selected as reinforcement because it is an effective, low-cost and environmentally friendly reinforcement. The matrix was prepared using by-products of industrial processes. Mortar was characterized by measuring its drying shrinkage, capillary water absorption, compressive and flexural strengths and analyzed using X-Ray diffractometry, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical behavior of the composites was investigated through tensile and direct shear tests. The basalt fabric-reinforced alkali-activated matrix composite showed, under tension, a tri-linear response curve, mainly governed by cracks development and widening. The measured ultimate stress, ultimate strain and tensile modulus of elasticity in region III were 434 MPa (CoV 14.2%), 2.192% (CoV 4.1%) and 39 GPa (CoV 11.3%), respectively. The load-global slip response curves of the composite show an average peak load around 1148 N (CoV 23.0%) and an exploitation ratio versus the textile and the tensile of 0.40 and 0.86, respectively. Even if the preliminary results are encouraging, the performance of FRAAM composites would be positively affected by an increase of the dimensional stability of the matrix.
2020
Alkali-activated materials; Basalt textile; Direct shear test; Fabric-reinforced cementitious matrix composites; Fly ash; Mechanical properties; Slag; Tensile test
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/304789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact