An experimental campaign, based on Particle Image Velocimetry measurements in a laboratory flume with different median sediment sizes in the no-motion condition, has been carried out aiming at investigating the effects of bed roughness on turbulence anisotropy in two different vertical zones of the turbulent open-channel flow. An analysis of turbulence anisotropy, which relies on second-order structure functions and anisotropy angle, has been performed. The scale-dependent anisotropy level has been quantified, verifying the tendency of the system to span from large-scale anisotropy, due to the main shear of the boundary layer, to small-scale isotropy. Isotropy is well-established for the largest sediment sizes. High-order structure function analysis reveals that intermittency is more pronounced in the near-bed layers, where the flow is more populated by coherent vortices. Spectral anisotropy and intermittency strongly characterize the transport properties of turbulence and are, therefore, important phenomena for natural bed rivers.

Turbulence anisotropy and intermittency in open-channel flows on rough beds

francesco coscarella
;
nadia penna;sergio servidio;roberto gaudio
2020-01-01

Abstract

An experimental campaign, based on Particle Image Velocimetry measurements in a laboratory flume with different median sediment sizes in the no-motion condition, has been carried out aiming at investigating the effects of bed roughness on turbulence anisotropy in two different vertical zones of the turbulent open-channel flow. An analysis of turbulence anisotropy, which relies on second-order structure functions and anisotropy angle, has been performed. The scale-dependent anisotropy level has been quantified, verifying the tendency of the system to span from large-scale anisotropy, due to the main shear of the boundary layer, to small-scale isotropy. Isotropy is well-established for the largest sediment sizes. High-order structure function analysis reveals that intermittency is more pronounced in the near-bed layers, where the flow is more populated by coherent vortices. Spectral anisotropy and intermittency strongly characterize the transport properties of turbulence and are, therefore, important phenomena for natural bed rivers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/310103
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact