Spatial variation of the levels of polycyclic aromatic hydrocarbons (PAHs) was evaluated within an urbanindustrial district where the main anthropogenic pressures are a 15MW biomass power plant (BPP) and road traffic. The use of a high-density lichen transplant network and wind quantitative relationships made it possible to perform a hierarchical analysis of contamination. Combined uni-bi and multivariate statistical analyses of the resulting databases revealed a dual pattern. In its surroundings (local scale), the BPP affected the bioaccumulation of fluoranthene, pyrene and total PAHs, although a confounding effect of traffic (mostly petrol/gasoline engines) was evident. Spatial variation of the rate of diesel vehicles showed a significant association with that of acenaphthylene, acenaphthene, fluorene, anthracene and naphthalene. The series of high-speed wind values suggests that wind promotes diffusion rather than dispersion of the monitored PAHs. At the whole study area scale, the BPP was a source of acenaphthylene and acenaphthene, while diesel vehicles were a source of acenaphthylene. PAHs contamination strongly promotes oxidative stress (a threefold increase vs pre-exposure levels) in lichen transplants, suggesting a marked polluting effect of anthropogenic sources especially at the expense of the mycobiont. The proposed monitoring approach could improve the apportionment of the different contributions of point and linear anthropogenic sources of PAHs, mitigating the reciprocal biases affecting their spatial patterns.

PAHs in an urban-industrial area: The role of lichen transplants in the detection of local and study area scale patterns

Lucio Lucadamo
;
Luana Gallo;Anna Corapi
2021-01-01

Abstract

Spatial variation of the levels of polycyclic aromatic hydrocarbons (PAHs) was evaluated within an urbanindustrial district where the main anthropogenic pressures are a 15MW biomass power plant (BPP) and road traffic. The use of a high-density lichen transplant network and wind quantitative relationships made it possible to perform a hierarchical analysis of contamination. Combined uni-bi and multivariate statistical analyses of the resulting databases revealed a dual pattern. In its surroundings (local scale), the BPP affected the bioaccumulation of fluoranthene, pyrene and total PAHs, although a confounding effect of traffic (mostly petrol/gasoline engines) was evident. Spatial variation of the rate of diesel vehicles showed a significant association with that of acenaphthylene, acenaphthene, fluorene, anthracene and naphthalene. The series of high-speed wind values suggests that wind promotes diffusion rather than dispersion of the monitored PAHs. At the whole study area scale, the BPP was a source of acenaphthylene and acenaphthene, while diesel vehicles were a source of acenaphthylene. PAHs contamination strongly promotes oxidative stress (a threefold increase vs pre-exposure levels) in lichen transplants, suggesting a marked polluting effect of anthropogenic sources especially at the expense of the mycobiont. The proposed monitoring approach could improve the apportionment of the different contributions of point and linear anthropogenic sources of PAHs, mitigating the reciprocal biases affecting their spatial patterns.
2021
PAHs, Biomass power plant, Lichen transplants, Wind quantitative relationships
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/327772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact