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Abstract. Answer Set Programming (ASP), a well-known declarative
programming paradigm, has recently found practical application in Pro-
cess Mining, particularly in tasks involving declarative specifications of
business processes. Declare is the most popular declarative process model-
ing language. It provides a way to model processes by sets of constraints,
expressed in Linear Temporal Logic over Finite Traces (LTLf), that valid
traces must satisfy. Existing ASP-based solutions encode a Declare con-
straint by the corresponding LTLf formula or its equivalent automaton,
derived using well-established techniques. In this paper, we propose a
novel encoding for Declare constraints, which models their semantics di-
rectly as ASP rules, without resorting to intermediate representations.
We evaluate the effectiveness of the novel approach on two Process Min-
ing tasks by comparing it to alternative ASP encodings and a Python
library for Declare.
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1 Introduction

A process, as defined in the Project Management Body of Knowledge [1], is
(sic) “a set of interrelated actions and activities performed to achieve a specified
set of products, results, or services”, typically performed in a periodic, recur-
rent or continuous fashion. Process Mining [2] is an interdisciplinary field that
analyzes processes, using a blend of formal methods, data science, computer
science, and business process management tools. One of the main tasks of Pro-
cess Mining is conformance checking, which evaluates the validity of a particular
process execution, referred to as a trace, with respect to a process model. This
process model is a formal mathematical representation that allows for various
forms of reasoning related to the underlying process. Process models can be
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expressed using either imperative or declarative languages. Imperative process
models explicitly describe all possible execution traces and are effective in rep-
resenting well-structured routine processes. However, their use is impractical
when the process involves a large number of activities characterized by intricate
coordination patterns. In such cases, declarative process models may be more
convenient. Declarative process modeling uses logic-based languages to provide
a set of constraints on the possible executions, where every execution is allowed
unless a constraint explicitly prohibits it. Linear temporal logic over finite traces
(LTLf) emerged as a natural formalism for declarative process modeling [24].
However, in Process Mining applications, “free-form” LTLf formulae are rarely
used for specification purposes. Instead, a limited set of predefined patterns,
derived from the realm of systems’ verification literature [14], is exploited. Re-
stricting modeling languages to a set of predefined patterns accomplishes two
important objectives: (i) it simplifies the tasks of modelers [25], and (ii) it paves
the way for ad-hoc implementations that may outperform generic LTLf tech-
niques in terms of efficiency. In particular, the most widely used declarative
process modeling language in Process Mining applications is Declare [4], which
consists of a set of patterns (“templates”) whose semantics can be formalized in
LTLf. Although, historically, the initial semantics of Declare was not provided
in terms of LTLf, its LTLf formalization became the cornerstone of many rea-
soning tasks within Declare [12]. Answer Set Programming (ASP; [6, 21, 32])
has been used in planning applications to inject domain-dependent knowledge
rules, similar to a predefined set of patterns, obtained by encoding an action the-
ory language into ASP [35]. Recently, ASP has been proposed to tackle various
computational tasks in Declare-based Process Mining [26, 10]. The work of [11]
proposes a solution based on the well-known LTLf-to-automata translation [22].
This transformation maps a LTLf formula φ into a symbolic automaton Mφ

such that, given a trace π, π |= φ if and only if Mφ recognizes π. In a different
study [28], authors suggested a method for encoding the semantics of temporal
operators into a logic program, enabling the encoding of arbitrary LTLf formu-
lae, by a reification of their syntax tree. Nevertheless, as far as we know, there
has been no prior attempt to directly encode the Declare LTLf patterns library
using ASP – “directly" refers to an encoding that represents the semantics of
Declare constraints without relying on any intermediary translation. In this pa-
per, we fill this gap by proposing a direct encoding of the most common Declare
constraints and comparing it to existing ASP-based encodings on several logs
commonly used in Process Mining literature [31]. The experimental evaluation
aims to achieve two primary objectives: (i) compare the ASP-based methods on
the conformance and query checking tasks; and, (ii) evaluate the performance
of our direct encoding approach. Code and data to reproduce our experiments
are publicly available at https://github.com/ainnoot/padl-2024.

https://github.com/ainnoot/padl-2024
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2 Preliminaries

In this section fundamental concepts related to Process Mining, linear temporal
logic over finite traces, the Declare process modeling language, and Answer Set
Programming are discussed.

2.1 Process Mining

Process Mining [2] is a research area at the intersection of Process Science and
Data Science. It leverages data-driven techniques to extract valuable insights
from operational processes by analyzing event data (i.e., event logs) collected
during their execution. A process can be seen as a sequence of activities that
collectively allow to achieve a specific goal. A trace represents a concrete exe-
cution of a process recording the exact sequence of events and decisions taken
in a specific instance. Process Mining plays a significant role in Business Pro-
cess Management [36], by providing data-driven approaches for the analysis of
events logs directly extracted from enterprise information systems. Typical Pro-
cess Mining tasks include: Conformance checking that aims at verifying if a
trace is conformant to a specified model and, for logic-based techniques, Query
Checking that evaluates queries (i.e., formulae incorporating variables) against
the event log. Several formalisms can be used in process modelling, with Petri
nets [3] and BPMN [37] being among the most widely used, both following an
imperative paradigm. Imperative process models explicitly describe all the valid
process executions and can be impractical when the process under considera-
tion is excessively intricate. In such cases, declarative process modelling [1] is a
more appropriate choice. Declarative process models specify the desired prop-
erties (in terms of constraints) that each valid process execution must satisfy,
rather than prescribing a step-by-step procedural flow. Using declarative mod-
eling approaches allows to easily specify the desired behaviors: everything that
does not violate the rules is allowed. Declarative specifications are typically ex-
pressed in Declare [4], Linear Temporal Logic over Finite Traces (LTLf) [16], or
Linear Temporal Logic over Process Traces (LTLp) [17].

2.2 Linear Temporal Logic over Finite Traces

This section recaps minimal notions of Linear Temporal Logic over Finite Traces
(LTLf) [24]. We start by introducing its syntax and semantics, and then we
informally describe its temporal operators, and some Process Mining application-
specific notation.

Syntax Let A be a finite set of propositional symbols. A finite trace is a sequence
π = π0 · · ·πn−1, with n ∈ N. For each i, πi ⊆ A is its i-th state, and |π| = n
denotes the trace length. LTLf is an extension of propositional logic that can be
used to reason about temporal properties of traces. It shares the same syntax
as Linear Temporal Logic (LTL) [33], but it is interpreted over finite traces
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Fig. 1. Left: Minimal automaton for the LTLf formula φ = G (a → X F b). Models of
propositional formulae (labeling the transitions) compactly represent sets of symbols;
Right: Minimal automaton for φ interpreted as a LTLp formula, where ∗ denotes any
x ∈ A \ {a, b}. A comma on edges denotes multiple transitions.

rather than infinite ones. An LTLf formula φ over A is defined according to the
following grammar:

φ ::= ⊤ | a | ¬φ | φ ∧ φ | X φ | φ1 U φ2,

where a ∈ A. We assume common propositional (∨,→,←→, etc.) and temporal
logic shorthands. In particular, for temporal operators, we define eventually op-
erator F φ ≡ ⊤ U φ, the always operator G φ ≡ ¬F ¬ϕ, the weak until operator
φ W φ′ ≡ G φ ∨ φ U φ′ and weak next operator Xw φ ≡ ¬X ¬φ ≡ X φ ∨ ¬X ⊤.
Semantics Let φ be an LTLf formula, π a finite trace, 0 ≤ i < |π| an integer.
The satisfaction relation, denoted by π, i |= φ, is defined recursively as follows:

• π, i |= ⊤;
• π, i |= p iff p ∈ πi;
• π, i |= ¬φ iff π, i |= φ does not hold;
• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;
• π, i |= X φ iff i < |π| − 1 and π, i+ 1 |= φ;
• π, i |= φ1 U φ2 iff ∃j with i ≤ j ≤ |π| s.t. π, j |= φ2 and ∀k with i ≤ k < j,
π, k |= φ1.

We say that π is a model for φ if π, 0 |= φ, denoted as π |= φ. Each LTLf
formula φ can be associated to a minimal automaton M(φ) over 2A such that
for whatever trace π it holds that π |= φ if and only if π, interpreted as a string
over 2A, is accepted by M(φ) [22, 24]. A common assumption in LTLf appli-
cations to Process Mining, referred to as Declare assumption [23] or simplicity
assumption [11], is that exactly one activity occurs in each state. LTLf with
this additional restriction is known as LTLp [17], and traces therein, known as
process traces, can be seen as strings over the alphabet A. This has the following
practical implication: given a LTLp formula φ, the minimal automatonM(φ) of
φ can be simplified into a deterministic automaton [11], as shown in Figure 1.

2.3 Declare modeling language

Declare [4] is a declarative process modeling language that consists of a set of tem-
plates that express temporal properties of process execution traces. The seman-
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Template LTLp Description
Choice(a,b) F (a ∨ b) a or b must be executed.
ExclusiveChoice(a,b) Choice(a,b) ∧ ¬(F a ∧ F b) Either a or b must be executed, but

not both.
RespEx(a,b) F a → F b If a is executed, then b must be ex-

ecuted as well.
CoExistence(a,b) RespEx(a,b)∧RespEx(b,a) Either a and b are both executed,

or none of them is executed.
Response(a,b) G (a → F b) Every time a is executed, b must

be executed afterwards.
Precedence(a,b) ¬b W a b can be executed only if a has been

executed before.
Alt.Response(a,b) G (a →X (¬a U b)) Every a must be followed by b,

without any other a in between.

Alt.Precedence(a,b)
Precedence(a,b)

∧G (b → Xw Precedence(a,b)) Every b must be preceded by a,
without any other b inbetween.

ChainResponse(a,b) G (a → X b) If a is executed then b must be ex-
ecuted next.

ChainPrecedence(a,b) G (X b → a)∧¬b Task b can be executed only imme-
diately after a.

Table 1. Some Declare templates as LTLp formulae along with their informal descrip-
tion, as reported in [23]. We slightly edit the definitions for ChainPrecedence(a,b) and
AlternatePrecedence(a,b), to align their semantics to the informal description commonly
assumed in Process Mining applications. Changes w.r.t the original source [23] are high-
lighted in red. The Succession (resp. AlternateSuccession, ChainSuccession) template is
defined as the conjunction of (Alternate, Chain) Response and Precedence templates.

tics of each Declare template is defined in terms of an underlying LTLp formula.
Table 1 provides the LTLp definition of some Declare templates, as reported in
[23]. Declare templates can be classified into four distinct categories, each ad-
dressing different aspects of process behavior: existence templates, specifying
the necessity or prohibition of executing a particular activity, potentially with
constraints on the number of occurrences; choice templates, centered around the
concept of execution choices as they model scenarios where there is an option
regarding which activities may be executed; relation templates, establishing a
dependency between activities as they dictate that the execution of one activity
necessitates the execution of another, often under specific conditions or require-
ments; negation templates, modelling mutual exclusivity or prohibitive condi-
tions in activity execution. In Table 1, Choice(a,b) and ExclusiveChoice(a,b) are
examples of choice templates; while the others fall under the relation category.
A Declare model is a set of constraints, where a constraint is a particular instan-
tiation of a template, over specific activities, called respectively activation and
target for binary constraints. Informally, the activation of a Declare constraint
is the activity whose occurrence imposes a constraint over the occurrence of the
target on the rest of the trace. A more formal account of activation-target seman-
tics of Declare constraints can be found in [8]. The following example showcases
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the informal semantics of the Response template, which will serve as a running
example in the rest of the paper.

Example 1 (Semantics of the Response template). The informal semantics for
Response(a,b) is that whenever a occurs in the trace, b will appear in the fu-
ture. Formally, the template is defined as G (a → F b). Thus, if a occurs at
time t in a trace π, in order for the constraint to be satisfied, b must appear in
the trace suffix πt+1, . . . , πn. In the context of a customer service process, let’s
consider the response template instantiated with a = customer_complains and
b = address_complain, corresponding to the template instantiation, i.e., the con-
straint, Response(customer_complains,address_complain). Such constraint imposes
that when a customer complaint is received (activation activity), a follow-up ac-
tion, such as addressing the complaint (target activity), must be executed. The
trace π = customer_complains, logging_complain, address_complain, feedback_
collection satisfies the above constraint while the trace π′ = customer_complains,
logging_complain, address_complain, customer_complains, feedback_collection does
not, indeed the second occurrence of customer_complains is not followed by any
address_complain event.

This paper focuses on the Declare conformance checking and Declare (tem-
plate) query checking tasks, as defined below:
Conformance checking. Let L be an event log (a multiset of traces) and M
a Declare model. The conformance checking task (L,M) consists in computing
the subset of traces L′ ⊆ L such that for each π ∈ L′, π |= c for all c ∈M.
Query checking. Let L be an event log, and c a constraint. The support of
c on L, denoted by σ(c,L), is defined as the fraction of traces π ∈ L such
that π |= c. High support for a constraint is usually interpreted as a measure
of relevance for the given constraint on the log L. Given a Declare template t
and a support threshold s ∈ (0, 1], the query checking task (t,L, s) consists in
computing variable-activity bindings such that the constraint c we obtain by
instantiating t with such bindings has a support greater than s on L.

Interested readers can refer to [12, 14] as a starting point for Declare.

2.4 Answer Set Programming

Answer set programming (ASP) [6, 21] is a declarative programming paradigm
based on the stable models semantics, which has been used to solve many com-
plex AI problems [15]. We now provide a brief introduction describing the basic
language of ASP. We refer the interested reader to [6, 21, 19] for a more com-
prehensive description of ASP. The syntax of ASP follows Prolog’s conventions:
variable terms are strings starting with an uppercase letters; constant terms are
either strings starting by lowercase letter or are enclosed in quotation marks, or
are integers. An atom of arity n is an expression of the form p(t1, . . . , tn) where
p is a predicate and t1, . . . , tn are terms. A (positive) literal is an atom a or its
negation (negative literal) not a where not denotes negation as failure. A rule
is an expression of the form h ← b1, . . . , bn where b1, . . . , bn is a conjunction of
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literals, called the body, n ≥ 0, and h is an atom called the head. All variables
in a rule must occur in some positive literal of the body. A fact is a rule with
an empty body (i.e., n = 0). A program is a finite set of rules. Atoms, rules and
programs that do not contain variables are said to be ground. The Herbrand
Universe UP is the collection of constants in the program P . The Herbrand Base
BP is the set of ground atoms that can be generated by combining predicates
from P with the constants in UP . The ground instantiation of P , denoted by
ground(P ), is the union of ground instantiations of rules in P that are obtained
by replacing variables with constants in UP . An interpretation I is a subset of
BP . A positive (resp. negative) literal ℓ is true w.r.t. I, if ℓ ∈ I (resp. ℓ /∈ I); it
is false w.r.t. I if ℓ /∈ I (resp. ℓ ∈ I). An interpretation I is a model of P if for
each r ∈ ground(P ), the head of r is true whenever the body of r is true. Given
a program P and an interpretation I, the (Gelfond-Lifschitz) reduct [21] P I is
the program obtained from ground(P ) by (i) removing all those rules having in
the body a false negative literal w.r.t. I, and (ii) removing negative literals from
the body of remaining rules. Given a program P , the model I of P is a stable
model or answer set if there is no I ′ ⊂ I such that I ′ is a model of P I .

In the paper, also use more advanced ASP constructs such as choice rules and
function symbols. We refer the reader to [7] for a description of more advanced
ASP constructs. In the rest of the paper, ASP code examples will use Clingo [20]
input language.

3 Translation-based ASP encodings for Declare

This section introduces ASP encodings for conformance checking of Declare mod-
els and query checking of Declare constraints with respect to an input event log,
based on the translation to automata and syntax trees. Both encodings share
the same input fact schema to specify which Declare constraints belong to the
model, or which constraint we are performing query checking against. These
encodings are indirect, since they rely on a translation, but also general in the
sense that they can be applied to the evaluation of arbitrary LTLp formulae.
This is achieved, in the case of the syntax tree encoding, by reifying the syn-
tax tree of a formula and by explicitly modeling the semantics of each LTLp
temporal operator through a logic program, and in the case of the automaton
encoding, by exploiting the well-known LTLp-to-automaton translation [11, 24].
Thus, one can use these two encodings to represent Declare constraints by their
LTLp definitions. The automaton-based encoding is adapted from [10], the syn-
tax tree-based encoding is adapted from [28] - integrating changes to allow for
the above-mentioned shared fact schema and evaluation over multiple traces. A
similar encoding has also been used in [27] to learn LTLf formulae from sets
of example traces, using the ASP-based inductive logic programming system
ILASP [29]. We start by defining how event logs and Declare constraints are
encoded into facts, then introduce conformance checking and query checking
encodings with the two approaches.
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Encoding process traces. For our purposes, an event log L is a multiset
of process traces, thus a multiset of strings over an alphabet of propositional
symbols A (representing activities). We assume that each trace π ∈ L is uniquely
indexed by an integer, and we denote that the trace π has index i by id(π) = i.
This is a common assumption in Process Mining, where i is referred to as the
trace identifier. Traces are modeled through the predicate trace/3, where the
atom trace(i, t, a) encodes that πt = a, id(π) = i — that is, the t-th activity in
the i-th trace π is a. Given a process trace π, we denote by E(π) the set of facts
that encodes it. Thus, an event log L is encoded as E(L) =

⋃
π∈L E(π).

Example 2 (Encoding a process trace). Consider an event log composed of the
two process traces π0 = abc and π1 = xyz, respectively with identifiers 0 and
1, over the propositional alphabet A = {a, b, c, x, y, z}. This is encoded by the
following set of facts:

trace(0,0,a). trace(0,1,b). trace(0,2,c).
trace(1,0,x). trace(1,1,y). trace(1,2,z).

Each Declare template, informally, can be understood as a “LTLp formula
with variables”. Substituting these variables with activities yields a Declare con-
straint. How templates are instantiated into constraints, and how constraints are
evaluated over traces, depends on the ASP encoding we use. However, all encod-
ings share a common fact schema where constraints are expressed as templates
with bound variable substitutions.

Encoding Declare constraints. A Declare constraint is modeled by predicates
constraint/2 and bind/3. The former model which Declare template a given
constraint is instantiated from and the latter which activity-variable bindings
instantiate the constraint. An atom constraint(cid, template) encodes that the
constraint uniquely identified by cid is an instance of the template template.
The atom bind(cid, arg, value) encodes that the constraint uniquely identified
by cid is obtained by binding the argument arg to the activity value. Given
a Declare model M = {c1, . . . , cn}, where the subscript i uniquely indexes the
constraint ci, we denote by E(M) the set of facts that encodes M, that is
E(M) =

⋃
c∈M E(c). Recall that in Declare π |=M if and only if π |= c for all

c ∈ M, thus there is no notion of “order" among the constraints within M and
it does not matter how indexes are assigned to constraints as long as they are
unique.

Example 3 (Encoding a Declare model). Consider the modelM composed of the
two constraints Response(a1, a2) and Precedence(a2, a3). M is encoded by the
following facts:

constraint(0,"Response").
bind(0,arg_0,a_1).
bind(0,arg_1,a_2).

constraint(1,"Precedence").
bind(1,arg_0,a_2).
bind(1,arg_1,a_3).
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3.1 Encoding Conformance Checking

All the Declare conformance checking encodings we propose consist of a stratified
normal logic program PCF . Given a log L and a Declare model M, it holds
that for every trace πi ∈ L, πi |= cj ∈ M if and only if the unique model of
PCF ∪E(M)∪E(L) contains the atom sat(i, j). Complete encodings for all the
templates in Table 1 are available online.

Automaton encoding. The automaton encoding, reported in Figure 2, models
Declare templates through their corresponding automaton obtained by translat-
ing the template’s LTLp definition [22]. The automaton’s complete transition
function is reified into a set of facts that defines the template in ASP. The
predicates initial/2, accepting/2 model the initial and accepting states of
the automaton, while template/4 stores the transition function of the template-
specific automaton. In particular, arg_0 refers to the template activation, and
arg_1 refers to the template target. A constraint c instantiated from a template
binds its arg_0, arg_1 to specific activities. The constant "*" is used as a place-
holder for any activity in A\{x, y} – where x and y are the bindings of arg_0 and
arg_1. Activities not explicitly mentioned as within the atomic propositions in
an LTLp formula φ have the same influence to π |= φ. Consequently, all unbound
activities can be denoted by the symbol "*" in the automaton transition table.
As an example, consider the constraint c = Response(a,b), shown in Figure 4.
Evaluating the trace abwqw is equivalent to evaluating the trace abtts, which
would be equivalent to evaluating the trace ab***, since a and b are the only
propositional formulae that appear in the definition of Response(a,b).

Syntax tree-based encoding. The syntax tree encoding, shown in Figure 3,
reifies the syntax tree of a LTLp formula into a set of facts, where each node
represents a sub-formula. The semantics of temporal operators and propositional
operators is defined in terms of ASP rules. Analogously to the automaton en-
coding, templates are defined in terms of reified syntax trees, which are used to
evaluate each constraint according to the template they are instantiated from.
The following normal rules define the semantics of each temporal and propo-
sitional operator. We report the rules for operators { U ,X ,¬,∧} which are
the basic operators of LTLp. The full encoding, that also includes definitions of
derived operators, is available online. In particular, the true/4 predicate tracks
which sub-formula of a constraints’ definition is true at any given time. As an ex-
ample, the atom true(c, f, t, i) encodes that at time t the constraint sub-formula
f of constraint c is satisfied on the i-th trace. The predicates conjunction/3,
negate/2, next/2, until/3 model the topology of the syntax tree of the corre-
sponding formula. The first term refers to a node identifier, while the other terms
(one for unary operators , two for the binary operators are the node identifiers
of its child nodes. The atom/2 predicate models that a given node (first term) is
an atom, bound to a particular argument (second term) by the bind/3 predicate
which is used in encoding of Declare constraints. Figure 5 shows an example.

https://github.com/ainnoot/padl-2024
https://github.com/ainnoot/padl-2024
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% Automaton initial state
cur_state(C,TID,S,0) :-
trace(TID,_,_),
initial(Template,S),
constraint(C,Template).

% Last point of each trace
last(TID,T) :-
trace(TID,T,_),
not trace(TID,T+1,_).

% A trace is accepted
sat(TID,C) :-
cur_state(C,TID,S,T+1),
last(TID,T),
template(Template,C),
constraint(C, Template),
accepting(Template,S).

% Reads activation/target
cur_state(C,TID,S2,T+1) :-
cur_state(C,TID,S1,T),
constraint(C,Template),
template(Template,S1,Arg,S2),
trace(TID,T,A),
bind(C,Arg,A).

% Reads "*"
cur_state(C,TID,S2,T+1) :-
cur_state(C,TID,S1,T),
constraint(C,Template),
template(Template,S1,"*",S2),
trace(TID,T,A),
not bind(C,_,A).

Fig. 2. ASP program to execute a finite state machine corresponding to a constraint,
encoded as template/4 facts, on input strings encoded by trace/3 facts.

3.2 Encoding Query Checking

The query checking problem takes as input a Declare template T , an event log
L and consists in deciding which constraints c can be instantiated from T such
that σ(c,L) ≥ k, where σ(c,L) is the support and denotes the fraction of traces
in L that are models of c. The problem has been formally introduced in [9] for
temporal logic formulae, and in [34] it has been framed into a Process Mining
setting, in the context of LTLf. An ASP-based solution to the problem has been
provided in [10], through the same automaton encoding we have been referring to
throughout the paper, and instead an exhaustive search-based, Declare-specific
implementation is provided in the Declare4Py [13] library. From the ASP perspec-
tive, a conformance checking encoding can be easily adapted to perform query
checking, by searching over possible variable-activities bindings that yield a con-
straint above the chosen support threshold. In particular, we adapt the query
checking encoding presented in [18] to the LTLf setting. In order to encode the
query checking problem, we slightly change our input model representation, as
reported in the following example.

Example 4. Consider the query checking problem instance over the template
Response, with both its activation and target ranging over A. The var_bind/3
predicate, analogously to bind_3, models that in a given template a parameter is
bound to a variable. Notice that the ASP formulation can be easily generalized
to query check sets of Declare constraints, while available tools address only a
single constraint at a time. For the query checking problem, we are interested in
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last(TID,T) :-
trace(TID,T,_),
not trace(TID,T+1,_).

true(C,F,T,TID) :-
constraint(C,Template),
template(Template,
atom(F,Arg)

),
bind(C,Arg,A),
trace(TID,T,A).

true(C,F,T,TID) :-
constraint(C,Template),
template(Template,
conjunction(F,G,H)

),
trace(TID,T,_),
true(C,G,T,TID),
true(C,H,T,TID).

true(C,F,T,TID) :-
constraint(C,Template),
template(Template,negate(F,G)),
not true(C,G,T,TID),
trace(TID,T,_).

sat(C,TID) :-
true(C,0,0,TID).

true(C,F,Ti,TID) :-
constraint(C,Template),
template(Template,next(F,G)),
trace(TID,Ti,_),
Tj=Ti+1,
Ti<M,
last(TID,M),
true(C,G,Tj,TID).

true(C,F,Ti,TID) :-
constraint(C,Template),
template(Template,

until(F,G,H)),
trace(TID,Ti,_),
trace(TID,Tj,_),
Tj>=Ti,
Tj<=M,
last(TID,M),
X {true(C,G,T,TID):

trace(TID,T,_), T >=Ti,
T<Tj} X,

X = Tj-Ti,
true(C,H,Tj,TID).

Fig. 3. ASP program to evaluate each sub-formula of the LTLp definition of a given
template, encoded as template/2 facts, on input strings encoded by a syntax tree
representation through the conjunction/3, negate/2, until/3, next/2 and atom/2.

template("Response",0,"*",0).
template("Response",0,arg_1,0).
template("Response",0,arg_0,1).
template("Response",1,arg_1,0).
template("Response",1,"*",1).
template("Response",1,arg_0,1).
accepting("Response",0).
initial("Response",0).

Fig. 4. Left: Facts that encode the Response template; Right: A minimal finite state
machine whose recognized language is equal to the set of models of Response, under
LTLp semantics.
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template("Response",always(0,1)).
template("Response",implies(1,2,3)).
template("Response",atom(2,arg_0)).
template("Response",eventually(3,4)).
template("Response",atom(4,arg_1)).

arg2
0 F3

→1

G0

arg4
1

Fig. 5. Left: Facts that encode the Response template; Right: Syntax tree of the Re-
sponse template LTLp definition.

tuples of activities that, when substituted to the constraints’ variables, yield a
constraint whose support is above the threshold over the input log. The domain/2
predicate can be used to give each variable its own subset of possible values, but
in this case, for both variables, the domain of admissible substitutions spans
over A. The choice rule generates candidate substitutions that are pruned by
the constraints if they are above the maximum number of violations. Given an
input support threshold s ∈ (0, 1], the constant max_violations is set to the
nearest integer above (1− s) · |L|.

constraint(c,"Response").
var_bind(c,arg_0,var(a)).
var_bind(c,arg_1,var(b)).
domain(var(a),A) :- trace(_,_,A).
domain(var(b),A) :- trace(_,_,A).
{ bind(C,Arg,Value): domain(Var,Value) } = 1 :- var_bind(C,Arg,Var).
:- #count{X: not sat(C, X), trace(X, _, _)} > max_violations.

4 Direct ASP encoding for Declare

The previous encodings are general techniques that enable reasoning over arbi-
trary LTLp formulae. The encoding discussed in this section instead is an ad-hoc,
direct translation of the semantics of Declare constraints into ASP rules. The
general approach we followed in defining the templates, is to model constraint
failures through a fail/2 predicate. Due to the activation-target semantics of
Declare templates, sometimes it is required to assert that an activation condition
is matched in the suffix of the trace by a correlation condition. In the encoding,
this is modeled by the witness/3 predicate. This mirrors the activation and
target concepts in the definition of Declare constraints. However, the encodings
are not based on a systematic, algorithmic rewriting. We show an example us-
ing the Response and Precedence templates, typical patterns in the verification
literature [14].

Example 5 (Modeling the Response template directly in ASP). Recall from Ta-
ble 1 that the template Response(a, b) is defined as the LTLp formula G (a →
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F b), whose informal meaning is that whenever a happens, b must happen some-
where in the future. Thus, every time we observe an a at time t, in order for
Response(a, b) to be true, we have to observe b at a time instant t′ ≥ t. The
first rule below encodes this situation. If we observe at least one a that is not
matched by any b in the future, the constraint fails, which is encoded in the
second rule.

witness(C,T,TID) :-
constraint(C, "Response"),
bind(C,arg_0,X),
bind(C,arg_1,Y),
trace(TID,T,X),
trace(TID,T’,Y), T’>=T.

fail(C,TID) :-
constraint(C,"Response"),
bind(C,arg_0,X),
bind(C,arg_1,Y),
trace(TID,T,X),
not witness(C,T,TID).

Example 6 (Modeling the Precedence template directly in ASP). Recall from
Table 1 that the constraint Precedence(x, y) is defined as the LTLp formula
¬x W y = G (¬x) ∨ ¬x U y, whose informal meaning is that if y happens,
x must have happened before. Notice that in order to witness the failure of this
constraint, it is enough to reason about the trace prefix up to the first occurrence
of y.

fail(C,TID) :-
constraint(C,"Precedence"),
bind(C,arg_0,X),
bind(C,arg_1,Y),
trace(TID,T’,Y),
T = #min{Q: trace(TID,Q,X)},
trace(TID,T,X), T’<=T.

fail(C,TID) :-
constraint(C,"Precedence"),
bind(C,arg_0,X),
bind(C,arg_1,Y),
trace(TID,_,Y),
not trace(TID,_,X).

Let PCF denote the logic program that encodes LTLp semantics or Declare
semantics. The logic program P∪E(M)∪E(L) has a unique model, and contains
the atom sat(c, i) if and only if πi |= c. We validate our direct encoding defi-
nitions of Declare semantics by a bounded model checking approach, searching
for a counterexample trace π that is accepted (rejected) by the direct encoding
but rejected (accepted) by the automaton of the corresponding constraint, over
the propositional alphabet {a, b, ∗} which represents respectively the first two
parameters of the Declare constraint under test, and a placeholder “everything
else” character, as discussed in the automata encoding subsection.

5 Experiments

In this section, we report the results of our experiments comparing different
methods to perform conformance checking and query checking of Declare models,
using the ASP-based representations outlined in the previous sections and De-
clare4Py, a Python library for Declare tasks. Methods will be referred as ASPD,



14 Francesco Chiariello, Valeria Fionda, Antonio Ielo, and Francesco Ricca

0 5 10 15 20 25

101

102

103

Solved conformance checking instances

E
xe

cu
ti

on
ti

m
e

(s
)

ASPD

D4Py
ASPA

ASPS

Fig. 6. Conformance checking cactus.

Log ASPD D4Py ASPA ASPS

ID 23.3 39.5 124.9 4621.7
RP 10.8 16.3 25.8 409.8
PT 5.2 8.5 12.6 121.6
SC 4.3 11.6 13.4 141.2
PL 10.8 35.6 20.7 624.1
DD 14.2 22.4 40.1 963.2
BC 14.1 23.7 20.5 796.6

Table 3. Run time in seconds to per-
form conformance checking on CIV, the
model that contains the most con-
straints, on each log.

ASPA, ASPS and D4Py - denoting respectively our direct encoding, the au-
tomata and syntax tree-based translation methods and Declare4Py. We start
by describing datasets (logs and Declare models), and execution environment to
conclude by discussing experimental results.

Data. We validate our approach on real-life event logs from past BPI Chal-
lenges [31]. These event logs are well-known and actively used in Process Mining
literature. For each event log Li, we use Declare4Py to mine the set of Declare
constraints Ci whose support on Li is above 50%. Then, we define four models,
CIi , CIIi , CIIIi , CIVi , containing respectively the first 25%, 50%, 75% and 100% of the
constraints in a random shuffling of Ci, such that CIi ⊂ CIIi ⊂ CIIIi ⊂ CIVi . Table 2
summarizes some statistics about the logs and the Declare models we mined over
the logs. All resource measurements take into account the fact that ASP encod-
ings require an additional translation step from the XML-based format of event

Log name |A| Average |π| |L| |CIV|
Sepsis Cases (SC) 16 14.5 1050 76
Permit Log (PL) 51 12.3 7065 26

BPI Challenge 2012 (BC) 23 12.6 13087 10
Prepaid Travel Cost (PC) 29 8.7 2099 52

Request For Payment (RP) 19 5.4 6886 52
International Declarations (ID) 34 11.2 6449 152

Domestic Declarations (DD) 17 5.4 10500 52

Table 2. Statistics for the logs used in the experiments: |A| denotes the number of
activities for the log; Average |π| is the average trace length for the log; |L| is the
number of traces in the log; |CIV| is the total number of Declare constraints above 50%
support in the log, by Declare4Py miner.
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Fig. 7. Query checking cactus plot.

Log ASPD D4Py ASPA ASPS

ID 817.2 1624.5 1654.0 3522.4
RP 884.2 565.8 318.2 1179.4
PT 223.6 451.1 236.1 427.9
SC 163.8 267.0 173.1 665.1
PL 1614.0 4227.7 3926.8 5397.5
DD 407.7 698.2 479.2 2436.2
BC 2304.8 2467.7 6636.0 27445.3

Table 4. Cumulative run time in sec-
onds to perform all query checking
tasks on a given log.

logs to a set of facts. The translation time is included in the measurement times
and is comparable with the time taken by Declare4Py.
Execution environment. The experiments in this section were executed on
an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, 512GB RAM machine, using
Clingo version 5.4.0, Python 3.10, Declare4Py 1.0 and pyrunlim [5] to mea-
sure resources usage. Experiments were run sequentially. All data and scripts to
reproduce our experiments are available at this repository.

Conformance Checking. We consider the conformance checking tasks (Li,M),
with M ∈ {CIi , CIIi , CIIIi , CIVi }, over the considered logs and its Declare models.
Figure 4 reports the solving times for each method in a cactus plot. Recall that a
point (x, y) in a cactus plot represents the fact that a given method solves the x-
th instance, ordered by increasing execution times, in y seconds. Table 3 reports
the same data aggregated by the event log dimension, best run-time in bold.
Overall, our direct encoding approach is faster than the other ASP-based encod-
ings as well as Declare4Py on considered tasks. ASPA and Declare4Py perform
similarly, whereas ASPS is less efficient.
Query Checking. We consider the query checking instances (t,Li, s) where t
is a Declare template, from the ones defined in Table 1, s ∈ {0.50, 0.75, 1.00} is
a support threshold, and Li is a log. Figure 5 summarizes the results in a cactus
plot, and Table 4 aggregates the same data on the log dimension, best runtime
in bold. ASPD is again the best method overall, outperforming other ASP-based
methods with the exception of ASPA on the RP log tasks. Again, ASPA and
D4Py perform similarly and ASPS is the worst.
Discussion. We conjecture that the significant increase in maximum memory
usage, as indicated in Table 5, is the primary factor contributing to the per-
formance gap observed for ASPS in both tasks. In fact, we observe that in
conformance checking ASPD is more efficient w.r.t. memory consumption when

https://github.com/ainnoot/padl-2024
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Log Conformance Checking Query Checking
ASPD D4Py ASPA ASPS ASPD D4Py ASPA ASPS

BC 323.6 566.3 546.0 8757.9 3157.0 580.7 1450.8 18866.5
DD 536.6 386.0 927.2 14473.8 728.1 336.4 513.0 2706.0
ID 837.1 578.4 2338.9 55435.2 1498.5 583.5 763.6 5029.8
PL 312.8 2062.2 579.5 11388.3 2434.2 2071.0 1023.3 7006.2
PC 222.2 281.9 341.2 5211.2 435.3 283.4 282.8 1209.3
RP 372.3 347.6 610.8 9706.0 574.8 312.3 396.9 1843.3
SC 195.0 245.6 336.4 5786.5 480.4 244.6 247.2 2146.7

Table 5. Max memory usage (MB) over all the conformance checking and query check-
ing tasks, aggregated by log, for all the considered methods. Lowest value in boldface.

compared to D4Py, and, when combined, these two methods collectively show
better memory efficiency when compared to other ASP-based methods. As for
the query checking tasks, D4Py is the most efficient method memory-wise. This
is expected, since the imperative nature of its implementation allows to “iterate
and discard” candidate assignments, rather than requiring their explicit ground-
ing, as in the ASP-based techniques. In conclusion, it is worth noticing that for
both tasks, ASPS is the least efficient memory-wise implementation, and it also
tends to exhibit lower efficiency in terms of running times across nearly all logs.

6 Conclusion

Declare is a declarative process modeling language, which describes processes
by sets of temporal constraints. Declare specifications can be expressed as LTLp
formulae, and traditionally have been evaluated by executing the equivalent
automata [12]. Translation-based approaches (on automata, or syntax trees) are
at the foundation of existing ASP-based solutions [10, 28]. This paper proposes
a novel direct encoding of Declare in ASP that is not based on translations.
Moreover, for the first time, we put on common ground (regarding input fact
schema) and compare available ASP solutions for conformance checking and
query checking. Our experimental evaluation over well-known event logs provides
the first aggregate picture of the performance of the methods considered. The
results show that our direct encoding outperforms other methods in terms of
execution time, and thus that ASP provides a compact, declarative and efficient
way to implement Declare constraints in the considered tasks. As far as future
work is concerned, we plan to extend our approach to the data perspective [30],
i.e., attaching data payloads to each activity in a trace, as well as considering
other Process Mining tasks such as log generation tasks, along the lines of [10].
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