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Abstract  

 

In this paper we characterized several weathering profiles developed on granitoid rocks in the Sila 

Massif upland (Calabria, southern Italy), integrating detailed macro- and micromorphological 

observations with physico-mechanical field tests and petrographic, mineralogical and geochemical 

analyses. We focused our attention on the main weathering and pedogenetic processes, trying to 

understand apparent discrepancies between weathering grade classes based on field description and 

geomechanical properties, and two common weathering indices, such as the micropetrographic index 

(Ip) and the chemical index of alteration (CIA). Our results showed that sericite on plagioclase and 

biotite chloritization, that represent inherited features formed during late-stage hydrothermal 

alteration of granitoid rocks, may cause an overestimation of the real degree of weathering of primary 

mineral grains under meteoric conditions, especially in lower weathering grade classes. Moreover, 

the frequent identification of Fe-Mn oxides and clay coatings of illuvial origin (rather than or in 

addition to those formed in situ), both at the macro- and microscale, may also explain an 

overestimation of the weathering degree with respect to field-based classifications. Finally, some 

apparent inconsistencies between field geomechanical responses and chemical weathering were 

interpreted as related to physical weathering processes (cryoclastism and thermoclastism), that lead 

to rock breakdown even when chemical weathering is not well developed. Hence, our study showed 



that particular caution is needed for evaluating weathering grades, because traditional field and 

geochemical-petrographic tools may be biased by inherited hydrothermal alteration, physical 

weathering and illuvial processes. On the basis of chronological constraints to soil formation obtained 

from a 42 ka-old volcanic input (mixed to granite parent materials) detected in the soil cover of the 

Sila Massif upland, a first attempt to estimate soil formation rates was achieved for different depths 

of corresponding weathering profile zones. Soil formation rates ranged from 0.01-0.07 mm a-1 for A 

and Bw horizons (weathering class VI) to 0.04-0.36 mm a-1 for the underlying saprolite (C and Cr 

layers; class V). By comparing these results with the corresponding erosion rates available in the 

literature for the study area, that range from <0.01-0.05 to 0.10-0.21 mm a-1, we suggest that the 

upland landscape of the Sila Massif is close to steady-state conditions between weathering and erosive 

processes.  
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1. Introduction  

 

Weathering studies cover a quite large variety of topics, often accomplished by applying multi- or 

trans-disciplinary approaches, in turn involving multi-scale and multi-analytical procedures. 

Available literature spans from morphological and visual investigations (e.g., Bourke and Viles, 

2007) to climatic geomorphology and landscape evolution (Dixon and Thorn, 2005; Dixon, 2013; 

Migoń, 2013b; Pope, 2013b; Migoń and Vieira, 2014), to petrographic, mineralogical, 

micromorphological and/or geochemical approaches (e.g., Critelli et al., 1991; Blum and Erel, 1997; 

Kretzschmar et al., 1997; Taboada and García, 1999a, 1999b; Le Pera et al., 2001a, 2001b; Sequeira 

Braga et al., 2002; Zauyah et al., 2010; Mavris et al., 2012; Campodonico et al., 2014), hydrological 

or geotechnical characterization of weathering profiles (Chigira and Yokoyama, 2005; Pellegrino and 

Prestininzi, 2007; Heidari et al., 2013) or modeling of weathering processes (Buss et al., 2008; 

Apollaro et al., 2009, 2013a, 2013b; Perri et al., 2015), up to estimation of ages of regolith mantles 

and weathering rates (Migoń and Lidmar-Bergström, 2002; Heimsath, 2006; Dosseto et al., 2008; 

Dixon et al., 2009; Chabaux et al., 2013; Migoń, 2013b), implications for sediment generation and 

composition (Johnsson, 1993; Arribas et al., 2000; Critelli et al., 2003; Le Pera and Arribas, 2003; 

Caracciolo et al., 2012; Pope, 2013a), etc. Among these approaches, several papers aimed at defining 

a classification of weathering grades based on geochemical parameters and ratios (Nesbitt and Young, 

1982; Harnois, 1988; Birkeland, 1999; Darmody et al., 2005), petrographic indices (Lumb, 1962; 



Irfan and Dearman, 1978; Palomares and Arribas, 1993) and qualitative, visual observations coupled 

with physico-mechanical tests (Ruxton and Berry, 1957; GEO, 1988; Gullà and Matano, 1997; Arikan 

and Aydin, 2012; Perri et al., 2012a; Borrelli et al., 2012b, 2014). Although several papers highlight 

a general accordance between weathering grade classes and increasing or decreasing trends of 

weathering ratios and indices (e.g., Nesbitt et al., 1997; Arel and Tugrul, 2001; Haskins, 2006), in 

some cases a deeper examination of the analytical results suggests that these features are not always 

strictly coupled (Kirschbaum et al., 2005; Gong et al., 2013; Chiu and Ng, 2014; Perri et al., 2015). 

In this work we aimed at exploring apparent discrepancies between weathering grade classes (based 

on field description and geomechanical properties) and some petrographic or chemical weathering 

indices. We focused on a more detailed description of weathering features at the macro- and 

microscales, giving an emphasis on weathering and pedogenetic processes, including both in situ 

chemical weathering and translocation of secondary products. Moreover, a first attempt to estimate 

soil formation rates is proposed in this work, as weathered, loose and mobile materials represent 

potential sources of sediments entering the drainage river system. Hence, these results were discussed 

in the light of their interplay with erosion rates. To these purposes, novel morphological, petrographic, 

mineralogical and geochemical data on weathering profiles from large areas of the Sila Massif 

(Calabria, southern Italy) were integrated with some published results. The Sila upland represents a 

key site to a deeper understanding of weathering processes on plutonic rocks in the central 

Mediterranean basin, as a consequence of a combination of peculiar geolithological, tectonic, 

geomorphological and climatic factors, and their interplay with a number of morphodynamic 

processes (e.g., Le Pera and Sorriso-Valvo, 2000b; Scarciglia et al., 2005b, 2007; Borrelli et al., 2007; 

Terranova et al., 2007, 2009).  

 

2. Materials and methods  

 

2.1 Geological and geomorphological setting of the study area  

 

The study area is located in the Sila Massif upland (Calabria, southern Italy) (Fig. 1), that represents 

part of an orogenic segment (Calabrian Arc) located between the Calabrian-Lucanian Apennines and 

the Maghrebian Chain, formed during the Paleogene, and overthrusted during the Miocene over the 

Apennine Chain (e.g., Bonardi et al., 2001). The bulk of the relief consists of a Paleozoic crystalline 

basement, which includes medium- to high-grade metamorphic rocks (amphibolite to granulite facies) 

intruded by late Hercynian granitoids (Sila batholith), and forming the highest tectonic units of the 

fold-and-thrust belt of southern Italy (e.g., Messina et al., 2004). The Sila batholith consists of 



tonalite, monzogranite and minor granodiorite (Messina et al., 1991; Liotta et al., 2008), 

discontinuously covered by unmetamorphosed Mesozoic to Cenozoic sedimentary rocks (e.g., Van 

Dijk et al., 2000; Critelli et al., 2011, 2013).  

Since the Miocene the Sila Massif margins were covered by terrigenous sedimentary successions 

(Van Dijk et al., 2000; Barone et al., 2008; Zecchin et al., 2012; Muto et al., 2014; Perri et al., 2012b, 

2014) and experienced brittle deformation. Strike-slip tectonics displaced the Sila Massif rocks and 

the Neogene-Quaternary basins (Critelli and Le Pera, 1995, 1998; Barone et al., 2008; Critelli et al., 

2013; Fabbricatore et al., 2014), developing transpressional and transtensional blocks. Starting from 

the Neogene the ancient, thin, flat-lying thrust belt of the Calabrian Arc and of the Sila Massif, were 

dissected and displaced by the intersection of regional NW-SE and N-S fault systems (Fig. 2A). The 

first system is characterized by inherited, early Pleistocene regional, left-lateral strike-slip faults, 

reactivated as normal with left-lateral component of displacement during the middle-upper 

Pleistocene (Van Dijk et al., 2000; Spina et al., 2007; Tansi et al., 2007; Corbi et al., 2009; Tripodi et 

al., 2013). Very wide fault damage zones occur, with an occasional thick argillification of the fault 

core (Borrelli et al., 2015b). The Sila Massif shows present-day tectonic activity, as indicated by an 

intense seismicity along the western piedmont zone (Tortorici et al., 1995) and the major NW-SE 

transversal fault system (Spina et al., 2007).  

The geomorphological evolution of the Sila Massif is mainly related to a multiphase tectonic uplift 

alternated to prolonged phases of relative geomorphological stability (Olivetti et al., 2012). During 

stable geomorphic conditions or slowly lowering base level a gently rolling landscape was shaped 

across the crystalline basement and in particular the granitoid rocks (planation surfaces of Pliocene-

Pleistocene ages; e.g., Molin et al., 2004, 2012). The flat topography favored intense chemical 

weathering processes, resulting in deep weathering profiles. The intervening tectonic events 

progressively displaced this low-relief landscape and uplifted the fragmented blocks at elevations 

between about 1000 and 1700 m a.s.l. on top of the massif. Uplift started at a slow rate in the late 

Tertiary and underwent a strong acceleration in the middle Pleistocene (e.g., Westaway, 1993; 

Olivetti et al., 2012). The main scarps and drainage network, as well as river longitudinal profiles, 

appear strongly controlled by all the major NW-SE and N-S tectonic lineaments (Molin et al., 2004, 

2012; Borrelli et al., 2015a, 2015b), that mutually intersect to create a complex, chessboard-like 

morphotectonic pattern. The deepening of the hydrographic system, caused by the tectonically-driven 

high local relief mainly along the steep massif flanks (cf. Martino et al., 2009; Schiattarella et al., 

2013), favored a severe mechanical erosion of source rocks from the weathered mantles (e.g., Matano 

and Di Nocera, 1999; Le Pera et al., 2001a, 2001b; Scarciglia, 2015). This is confirmed by a rapid 

and short transport through the drainage system indicated by compositionally immature fluvial sands 



in the main rivers draining the Sila Massif (Le Pera and Sorriso-Valvo, 2000b; Le Pera et al., 2001a; 

Critelli and Le Pera, 2002; Scarciglia et al., 2007).  

The granitoid rocks, affected by intense and deep weathering processes, outcrop in the Sila Massif 

for an area of about 870 km2. A small scale map of the weathering grade of these rocks obtained by 

Borrelli et al. (2012a) (Fig. 2B) allows a general overview of the intensity and spatial distribution of 

three macro-classes of weathering: macro-class A (soil-like material), that includes classes VI (soil 

and colluvium) and class V (completely weathered rock); macro-class B (weak rock), that includes 

class IV (highly weathered rock) and class III (moderately weathered rock); macro-class C (hard 

rock), that includes class II (slightly weathered rock) and class I (fresh rock) (Fig. 2B). The macro-

class A terrains (ca. 63% of the whole area occupied by granitoids) widely crop out at the top of the 

paleosurface in the summit areas, where they are covered with both Pleistocene lacustrine deposits 

hosted in morphotectonic depressions (Scarciglia et al., 2005a, 2005b) and Holocene alluvial and/or 

colluvial deposits, these latter widespread in topographic lows or morphological hollows. At some 

sites, such as near Cecita Lake, Silvana Mansio and Lagarò, macro-class A is tens of meters thick 

(Fig. 2B). The macro-class B (about 32% of the granitoid surface) crops out prevalently along the 

slopes, whereas macro-class A (ca. 5% of the entire granitoid area) crops out only along the deeply 

incised main streams (e.g., Mucone, Trionto and Neto rivers; Fig. 2B). Rocks are cross-cut by a 

complex fracture pattern related to regional and local-scale faults and fault zones developed during 

ancient and recent tectonic phases (cf. Scarciglia et al., 2005a, 2007; Borrelli et al., 2014, 2015a, 

2015b). This pattern consists of two main fault systems oriented N-S and NW (Fig. 2B). The first 

exhibits a prevalent normal kinematics and is responsible of the uplifted and downthrown blocks 

(e.g., Cecita Lake and San Giovanni fault system). The footwall rocks are characterized by fresher 

rocks belonging to macro-classes B and C (Fig. 2B). Rocks belonging to the widespread macro-class 

A outcrop along the hanging-wall block. The NW fault system is characterized by longer segments 

that cross the entire Sila Massif. These fault zones, consist of wide fault gouges and breccias, and 

undergo watercourse erosion and valley downcutting, that expose to daylight the rocks of macro-

classes B and C (e.g., in the area between San Giovanni in Fiore and Ampollino-Arvo Lakes). The 

peculiar geological and structural features, coupled with the typical mountainous Mediterranean 

climate of the Sila Massif, strongly controlled the response of the upland landforms to the major 

morphogenetic processes, where a range of physical and chemical weathering processes on granitoid 

rocks contributed to landscape evolution (e.g., Le Pera and Sorriso-Valvo, 2000b; Scarciglia et al. 

2005a, 2005b, 2007; Borrelli et al., 2012c, 2014; Perri et al., 2015). The main erosional landforms 

consist of wide boulder fields exposed on the flat to gently rolling planation surfaces, aligned along 

ridges or grouped as castellated piles on residual hilly reliefs of the summit landscape. Also tors and 



bornhardts often occur on top of ridges and steep slopes close to the upper reaches of stream incisions 

(Le Pera and Sorriso-Valvo, 2000a; Scarciglia et al., 2005a, 2007; Scarciglia, 2015).  

 

2.2 Field work and laboratory analyses  

 

About 90 weathering profiles developed on granitoid rocks located in the Sila Massif highlands were 

described in the field on natural and artificial cut slopes to investigate their main weathering features 

and related processes. These profiles are representative of the mountainous landscapes comprised in 

the neighborhood of Acri, Longobucco, Camigliatello, Silvana Mansio and San Giovanni in Fiore 

villages (Fig. 2). They were carefully characterized following the methodology proposed by Gullà 

and Matano (1997), to classify the weathering front into six different classes from the 

fresh/unweathered bedrock (class I) to completely weathered rock, soil and colluvial material (class 

VI) (Table 1). The field survey was based on a detailed description of morphological features of the 

rock (fabric, color, texture and any other weathering features) and on its physical (resistance to 

rupture, scratching and indentation) and acoustic responses to solicitations with a geological hammer, 

coupled with evaluation of the elastic rebound (compressive strength) of rock masses on 

representative samples for each weathering class using a Schmidt hammer (sclerometer). Selected 

samples for each weathering class were also collected for laboratory analyses. These samples were 

thin-sectioned for detailed microfabric and minero-petrographic description under a polarizing optical 

microscope and by scanning electron microscopy (SEM) coupled with energy dispersive 

spectrometry (EDS) microprobe. Qualitative petrographic observations were carried out on 40 thin 

sections. Quantitative data were obtained by point counting on 29 selected thin sections, calculating 

the micropetrographic index (Ip) proposed by Irfan and Dearman (1978). This index is defined as a 

ratio among unweathered primary minerals and weathered minerals including secondary (neoformed) 

phases together with microcracks and voids, and thus tends to decrease as far as weathering goes on. 

SEM-EDS analyses were performed on about 30 bulk samples, focused on identification of the major 

weathering microtextures and neogenic products based on major element concentrations (e.g., 

Mulyanto et al., 1999; Scarciglia et al., 2011). A FEI Quanta 200 scanning electron microscope 

equipped with an EDAX Genesis 4000 system was used at DiBEST, Università della Calabria (Italy). 

Furthermore, these samples were prepared by milling to a fine grained powder in an agate mill for 

geochemical analyses. Concentrations of major and some trace elements (such as Nb, Zr, Y, Sr, Ba, 

Ni, Co, V, Cu, Zn, Pb, La, Ce) were obtained by X-ray fluorescence spectrometry (XRF) for rock 

samples classified with varying weathering grades, and compared with additional compositional data 

available in the literature (Messina et al., 1991) for more than 60 samples. Compositional analyses 



were performed with a Bruker S8 Tiger spectrometer (DiBEST, Università della Calabria, Italy) on 

pressed powder disks of whole-rock samples and compared to international reference rock standards 

of the USGS (United States Geological Survey). Total loss on ignition (L.O.I.) was determined after 

heating the samples for three hours at 900 °C. The chemical index of alteration (CIA) proposed by 

Nesbitt and Young (1982) was calculated as the ratio: Al2O3/(Al2O3 + CaO + Na2O + K2O) x 100, 

where CaO represents the Ca content in silicate minerals only.  

A first estimation of soil formation rates (in terms of net lowering of the weathering/pedogenetic front 

from the topographic surface; e.g., Egli et al., 2014) was achieved by dividing various recurrent 

depths of weathering profile zones measured in the field on the most stable landforms of the summit 

landscape (where the soil cover is better preserved and thus virtually unaffected – or less affected, at 

least – by surface erosion), by time of exposure of fresh rock to weathering and soil formation 

processes. This time interval was estimated using age constraints to soil development available from 

the literature and other field-based controls in the area between Silvana Mansio and San Giovanni in 

Fiore sites.  

 

3. Results  

 

3.1 Field features  

 

The granitoid rocks exposed in the study area display a general trend of increase of the degree of 

weathering from top to bottom, as expected as a consequence of the downward deepening of the 

weathering front. However, the physical and chemical weathering pattern is often more complex, as 

controlled by the juxtaposition of varying lithological units and tectonic discontinuities affecting the 

substrate, such as changes in rock mineral assemblages, fabric or texture, fault planes, shear zones 

and aplite dikes (Fig. 3A, B, C). These features also affect the type of debris removed by gravity from 

the weathering profiles, which ranges from large angular/subangular blocks to rounded corestones 

and boulders up to loose, granular material consisting of small polymineral and monomineralic grains 

(Fig. 3D).  

The most recurrent weathering grades identified in the field are comprised between class II (slightly 

weathered) to class VI (completely weathered), that commonly occur within weathering profiles in 

the range of ca. 4 to 8 m depths or more (Fig. 4A, B, C), and rarely reach 20-25 m up to about 50 m 

(cf. Le Pera and Sorriso-Valvo, 2000a; Borrelli et al., 2015a; Perri et al., 2015; Scarciglia, 2015). 

Transitional grades between subsequent weathering classes are very frequent. Class I (fresh, 

unweathered, hard rock) is virtually absent (not exposed). The only rock outcrops of class I are the 



spheroidal boulders exhumed at the topographic surface, that in the area between Silvana Mansio and 

san Giovanni in Fiore form wide boulder fields. They frequently overlie weathering profiles ranging 

from class II to V or VI (Fig. 5A, B). However, the outer portion of these boulders often appears 

weakly weathered (class II), showing biotite oxidation and flaking, concentric laminar sheeting 

(surface exfoliation) and microfracturing, large block spalling and/or lichen colonization (Fig. 5C, D) 

(cf. Le Pera and Sorriso-Valvo, 2000a; Scarciglia et al., 2005a, 2007, 2012). Very slightly weathered 

rock masses with a transitional weathering grade (class I-II) are more common. They are mainly 

affected by physical breakage patterns, with deep fractures (some decimeters to meters in length) 

isolating large, angular blocks. An increasing degree of weathering of primary minerals appears from 

class I-II to VI, with a progressive loss of transparency of quartz grains, translucency of K-feldspar 

and plagioclase, exfoliation and oxidation of micas. This behavior is accompanied by a progressive 

smoothing of rock edges (up to concentric, spheroidal patterns isolating weathered corestones in the 

saprolite) (Fig. 6A) and/or an increase in rock microfractures up to a centimetric scale (Fig. 6B). Also 

rock strength (resistance to rupture, scratching and indentation, and elastic rebound) declines 

accordingly, from hard rock (classes I-II) to weak rock (III and IV), to soft rock (class V) and soil 

(class VI) or coarse-textured single-grain debris. Class VI includes proper soil horizons (A and/or 

Bw), that are on average 30-50 cm and 60-100 cm deep (Fig. 6C, D), respectively, with deeper and 

more horizonated soil profiles occurring under long-lived forest stands and flat landforms. Greater 

depths of about 5-6 m occur in topographic depressions and along footslope belts, where soil materials 

are affected by strong colluvial processes, often include angular to subangular rock clasts (ranging in 

size from 2-3 to 8-10 cm) and/or are buried by younger slope deposits. The soil horizons show 

dominant subangular blocky structure of pedogenic origin (coupled with crumby/granular aggregates 

in the topsoil) and (dark) brown (A) to yellowish brown (Bw) colors. On crests and steep slopes the 

soil profile is very shallow and often consists of a centimeter to decimeter-thick topsoil directly on 

the saprolite/bedrock, as a consequence of severe erosion rejuvenating the weathering front. It may 

completely lack, so that the bare rock with varying degree of weathering is exposed at the ground 

surface. The underlying saprolite (C and Cr layers) commonly reaches 120-150 cm to 3-5 m depth 

and corresponds to class V. It is mainly soft and friable, easy to dug with hand tools and prone to 

granular (grain-by-grain) disintegration (e.g., Butzer, 1976) or arenization (Power and Smith, 1994; 

Teeuw et al., 1994) upon small pressure, but still retains some original rock structure and fabric, with 

a lower bulk density. It usually appears pervasively weathered, with a (dark) brown to reddish-brown 

and brownish- to (reddish-)yellow, iron-stained and clay-rich groundmass, which includes whitish 

relicts of the original rock (Fig. 7A). The intermediate weathering grades represent moderately (class 

III) to highly weathered (class IV) rocks. They consist of rock masses displaying the main texture and 



fabric of the fresh rock, with a pervasive to almost complete change in color, respectively, from 

(reddish-) to (brownish-)yellow, where a clay- and iron-oxyhydroxide matrix developed. Rocks 

belonging to classes II to IV (and especially III and III-IV) very often exhibit occasional to very 

abundant, spotted to extensive, (reddish-)yellow to yellowish-red and (very) dark brown to black, Fe-

Mn-oxide/hydroxide staining (Fig. 7B), that sporadically also occur in class V samples, as well as 

dark (reddish-)brown clay coatings of illuvial origin, on fracture surfaces (Fig. 7C, D). Many 

weathering profiles are commonly cross-cut by a few centimeter- to decimeter-thick, white to pale 

yellow, aplite dykes of different chemical and mineralogical composition and finer texture than 

surrounding granitoid rocks. They are usually less weathered than the host rock, and undergo much 

more physical fragmentation than chemical weathering, often remaining as relatively preserved, 

continuous hard rock intrusions (weathering grade classes I-II to III) (Fig. 3C) or discontinuous block 

alignments within the surrounding, soft saprolitic mass. Their surfaces are sometimes iron-stained or 

covered by illuvial clay coatings. Most of the rocks described in the profiles show a coarse to very 

coarse texture, even in proper soil horizons (A, Bw and C) where the clay fraction never exceeds 

18%, as clearly documented by previous laboratory measurements (e.g., Scarciglia et al., 2005a, 

2005b, 2008; Pelle et al., 2013b; Borrelli et al., 2014).  

A number of weathering profiles in the area between Silvana Mansio and San Giovanni in Fiore are 

exposed below spheroidal boulders of class I-II exhumed at the topographic surface, with the non-

exhumed counterparts of weathered rocks always affected by a lesser degree of rounding and/or a 

more intense weathering.  

 

3.2 Petrographic observations, Ip index and SEM-EDS analyses  

 

The mineral assemblage of the studied rocks consists of prevalent quartz or K-feldspar (with common 

microcline, that in some samples hugely dominates over quartz and plagioclase grains), followed by 

plagioclase, biotite (Fig. 8A, B) and minor amounts of chlorite and/or muscovite. Epidote, apatite, 

zircon, amphibole and/or opaque minerals occur among accessory phases. Alkali feldspar and 

plagioclase crystals often displayed twinning and/or concentric zonation. Class I-II and II samples in 

thin sections evidenced occasional rock microcracks, very poor biotite oxidation or argillification 

with partial flaking and bending along outer edges of cleavage planes, varying amounts of sericite 

mica flakes mainly in the core of plagioclase, (Fig. 8C), occasional surface pitting of feldspar. Rocks 

classified as classes II, II-III and III-IV display very rare to extensive rock fractures, a higher (poor 

to moderate and occasionally severe) degree of weathering of biotite, that is partly split into two or 

more lamellae, with inter- and intra-granular cracks radiating towards surrounding mineral grains and 



a clear migration of Fe(-Mn)-oxides (and more rarely clays) into these cracks (Fig. 8D-H). A similar 

behavior is observed on chlorite crystals (and chloritized biotite), also affected by local oxidation and 

clay neogenesis. Alkali feldspar grains very rarely appear weakly sericitized and show scanty etch 

pits, sometimes concentrated along parallel lines. Plagioclases may show early to diffuse clay 

neoformation and etching, in places with a differential, concentric pattern controlled by their 

compositional zoning and frequent sericitization of the core, up to complete pseudomorphs. More 

rarely plagioclase grains exhibit an almost pervasive growth of sericite, especially in the Silvana 

Mansio area. Conversely, in a few samples, both feldspar and plagioclase appear very poorly 

weathered. Some samples of classes III to IV or their transition also exhibit some surface corrosion 

of quartz grains, as well as rock fractures frequently infilled with illuvial clay coatings and/or iron 

oxyhydroxides (Fig. 9A, B), and rare opaque, iron-stained, clayey matrix patches with small 

anisotropic domains observed in crossed polarized light. In some cases granitoid samples belonging 

to class II-III exhibit more intense and diffuse chemical weathering than those classified as III-IV. 

Weathering grade classes V and VI are characterized by an overall diffuse breakage pattern of rock 

with inter- and intra-grain fractures, moderately to extremely weathered biotite (exfoliated, cleaved, 

oxidized and argillified up to frequent or occasional, unrecognizable pseudomorphous grains and 

matrix patches) (Fig. 9C, D), iron-stained or clay-coated cracks especially close to weathered biotite, 

very weathered plagioclase and feldspar, affected by common to poor sericitization, respectively and 

by diffuse etch pits and/or clay neogenesis (Fig. 9E, F), sparse surface pitting of quartz (Fig. 9G, H), 

and large matrix zones rich in clay and Fe-oxides separating mineral grains or rock fragments.  

The micropetrographic index Ip of the selected samples exhibit an overall decreasing trend from class 

I-II to V-VI, as expected. However, a few samples of classes V and V-VI show higher values than 

some less weathered classes, such as transitional III-IV and IV-V (Table 2).  

SEM analyses on bulk samples confirmed the main weathering patterns of primary minerals 

evidenced under the optical microscope (Figs. 10A-D and 11A-D). In addition, microprobe 

compositional data of the weathered parts of these mineral grains and of illuvial coatings evidenced 

the occurrence of varying groups of phyllosilicate clays as secondary products, in places coupled with 

local Fe- and/or Mn-oxides. In particular, 1:1 clay minerals (such as kaolinite and/or halloysite) were 

identified where Si/Al ratios were close to 1 and associated to generally very poor amounts of other 

cations, and 2:1 clays (including vermiculite, illite and/or smectite) where greater Si/Al ratios 

generally around 2 were detected, along with varying percentages of Mg, Fe, K, Ca and/or Na.  

 

3.3 Geochemical data  

 



The results of major and trace element analysis were grouped into weathering grade classes obtained 

in the field, including transitional classes (see section 3.1), and the mean value was considered for 

each class (Tables 3 and 4). Compositional data of rock samples from the literature were considered 

as potentially transitional class I(-II), because of the lack of ‘pure’ class I weathering grade. Classes 

represented by only one sample (II-III and IV-V) were not included in the final dataset, which finally 

embraces the following groups: I(-II) (Messina et al., 1991), I-II, II, III, III-IV, IV, V and VI. For 

some chemical species an overall trend of increase (e.g., for Al2O3) or decrease (e.g., SiO2) can be 

observed with increasing weathering grade, though some classes (commonly III, III-IV and/or IV) do 

not fit this behavior. A similar increase is shown by the CIA index, where only class III does not 

match the main trend (Fig. 12A). However, irregular patterns from class I-II to VI are more often 

detected for both major oxides and trace elements. Some species (e.g., CaO, K2O and Sr) exhibit 

varying trends, with an initial decline followed by an increase in concentration from lower to higher 

grade weathering classes or vice versa. A number of molar ratios between elements with different 

relative mobility display at least partly similar trends to those of single chemical species and 

sometimes irregular patterns (Figs. 12-16). In particular, many of them commonly show important 

peaks for the weathering grade class III-IV.  

 

3.4 Chronological constraints and soil formation rates  

 

Previous studies indicated a partial contribution of fine volcanic ash to pedogenesis (in addition to 

granitoid parent materials) in the soil cover of the Sila upland landscape (Scarciglia et al., 2005b, 

2008; Pelle et al., 2013b; Scarciglia, 2015), that has a larger extension and a regional character (Pelle 

et al., 2013a; Vingiani et al., 2014). The ash-bearing soil corresponds to the class VI weathering grade 

soil in the study area of the present work. Based on the rhyolitic composition of vesiculated 

micropumice fragments identified in this soil, its lateral continuity and constant pedostratigraphic 

position, the volcanic input can be related to late Pleistocene to Holocene eruptions of the Aeolian 

Islands archipelago spanning the last 42 ka (Pelle et al., 2013b; Vingiani et al., 2014). The most likely 

volcanic events are the explosive eruptions from Lipari that form the Valle Muria synthem (42-22 ka) 

(Crisci et al., 1991; Lucchi et al., 2013) and the Pollara eruptions (24-13 ka) from Salina (Keller, 

1980; Calanchi et al., 1993). The corresponding volcanic deposits are dated on land in the archipelago 

and consistent with the tephrochronological records in proximal marine cores of the Tyrrhenian Sea 

(Paterne et al., 1988), and for the oldest eruptions as distal cryptotephra in the southern Adriatic Sea 

to the north-east (Matthews et al., 2015), in accordance with late Quaternary eastward dominant wind 

directions (Paterne et al., 1988). Their time constraints serve as a maximum age for the above cited 



soil, which also postdates a paleosol of the last interglacial (Scarciglia et al., 2005b, 2008), includes 

charcoals whose older AMS radiocarbon date reaches 14 ka (Moser, unpublished data) and late 

Neolithic/early Eneolithic (ca. 5800-5350 a BP) to Roman (3rd – 5th century AD) archaeological 

settlements and artefacts (Pelle et al., 2013a, 2013b). Scarciglia (2015) demonstrated that the 

granodiorite spheroidal boulders exhumed at the topographic surface in the area around Silvana 

Mansio had been completely exposed by erosion before the volcanic input and the consequent 

formation of the soil. In fact, the latter covers the base of the exhumed boulders, whose lower exposed 

part is usually dirty and brown-colored as the soil itself, as a consequence of further recent 

exhumation. These boulders are classified as rocks of weathering grades I to I-II, and represent the 

deepest counterpart of an ideally ‘complete’ spheroidal weathering profile from fresh bedrock to 

saprock, up to saprolite and soil horizons (e.g., Migoń, 2013a, 2013b), later removed by erosive 

processes. On this basis, it is very likely that the weathering profiles nowadays observed beneath 

them, which include weathering grade classes from I-II to VI, developed after their exhumation. This 

feature allowed us to fix rough age constraints to assess the soil formation rates of these profiles. 

These rates were estimated for different (maximum) recurrent depths of the weathering profile zones, 

according to field data (see section 3.1), by dividing depth values by time: 50 and 100 cm for A and 

Bw horizons (class VI), respectively; 1.5 and 5 m for Cr or C layers (class V); 8 and 25 m, that 

represent the most common (maximum) depths of the exposed profiles (excluding intensely eroded 

soils and bare rock), reaching class (I-)II. Because of some age uncertainty of the soil discussed above, 

two endmember scenarios were considered as reference time ranges for the calculations, using (i) the 

potentially oldest volcanic input to the surface soil (42 ka) and (ii) the oldest 14C date (14 ka). The 

obtained values of soil formation rates reported in Table 5 ranged from minima of 0.01 and 0.02 mm 

a-1 for A and Bw horizons, respectively, to 0.04-0.12 mm a-1 when including the underlying saprolite 

for the first scenario (42 ka). Weathering rates for deeper, less weathered rock layers were of 0.19 

and 0.60 mm a-1, respectively (42 ka). Higher rates were estimated for the 14 ka-constrained scenario, 

as follows: 0.04 mm a-1 (A horizon), 0.07 mm a-1 (Bw horizon), 0.11-0.36 mm a-1 (C or Cr layers), 

0.57-1.79 mm a-1 (R layers). Nonetheless, the rates obtained for proper soil horizons exhibited the 

same order of magnitude for the two scenarios and shifted of one order for the saprolite and weathered 

bedrock.  

 

4. Discussion  

 

4.1 Weathering processes  

 



4.1.1 Surface weathering versus inherited hydrothermal alteration  

Both macro- and micromorphological discontinuities of the bedrock (including compositional 

changes) appear to have controlled modes and extent of physical and chemical weathering, acting as 

specific surface area prone to the onset of weathering processes and their dynamic progression (e.g., 

Ehlen, 2002; Anderson et al., 2007), with mutual down- and up-scaling effects (Viles, 2001, 2013). 

Tectonic activity and related structural features could be assumed to have a strong control on 

enhancement of physical breakdown and disintegration of rocks, as well as on the triggering of major 

chemical weathering processes. The multiscale joint systems associated to fault gouges, shear zones, 

thrust planes and any other fractures presumably acted as predisposing factors for preferential water 

flow and water-rock interaction, often leading to intense argillification (cf. Borrelli et al., 2012b, 

2014, 2015a, 2015b). Similarly, at a microtextural level the chemical and crystallographic 

discontinuities (compositional zoning, cleavage and twinning planes) proved to control the location, 

modes and spatial patterns of the main weathering features affecting primary minerals, as preferential 

pathways for chemical reactions and physical breakage, with consequent rock decomposition (cf. 

Scarciglia et al., 2005a, 2007; von Eynatten et al., 2016). The observed chloritization of biotite is very 

likely derived from hydrothermal alteration of plutonic igneous masses of the Sila batholith during 

cooling (cf. Messina et al., 1991 and see below). The hydrothermal origin of chlorite is as also 

supported by its very low amount in the soil horizons overlying the granitoid parent materials of the 

study area, where it is easily transformed into vermiculite (Scarciglia et al., 2008; Apollaro et al., 

2013a; Perri et al., 2015). The progressive exfoliation and oxidation of micas (especially biotite) from 

poorly to intensely weathered rock samples, coupled with an increasing clay neogenesis, were 

observed to generate a partial to complete flake separation along cleavage planes. This process in turn 

generates microcraks that propagate into surrounding, less weathered mineral grains, thus leading to 

a progressive biotite-induced grussification (Isherwood and Street, 1976; Scarciglia et al., 2007). The 

occurrence of iron-manganese segregations (and at a minor extent clay coatings) in the cracks 

radiating from weathered biotite grains already in classes II to III-IV indicates that circulating waters 

promote migration of these oxides (and neoformed clays) since early stages of weathering. A 

significant presence of Fe-Mn oxyhydroxide and clay infillings within cracks was detected in samples 

of weathering grade class V, where also clay- and iron-rich matrix zones appear as a late stage, in situ 

replacement of pseudomorphous mica grains. Our petrographic observations showed that plagioclase 

crystals are affected by a quite varying degree of chemical weathering, sometimes characterized by 

diffuse dissolution features and clay neogenesis even in classes II(-III) to III-IV, whereas K-feldspar 

appears poorly to moderately etched. This behavior suggests that in situ hydrolysis of plagioclase was 

enhanced by its pre-existing and often incomplete sericitization, that was presumably of deuteric 



origin, i.e. developed in later stages of magma consolidation of the Sila pluton. The very common 

sericitization of the plagioclase generally limited to its core, along with the very rare and poor 

hydrothermal alteration of the alkali feldspar, suggest overall low fluid/rock ratios promoted by a 

limited access of hydrothermal fluids, possibly occurred during contractional cooling phases of the 

granite batholith (Que and Allen, 1996) rather than during later tectonic fracturing and dyke intrusion 

(Peters and Hofmann, 1984). Similarly, most of the biotite chloritization could be attributed to this 

stage of hydrothermal alteration (Peters and Hofmann, 1984). Late-stage fluid-rock interactions 

presumably occurred during the final phases of emplacement and slow cooling of the Sila batholith 

due to late-orogenic extension, with cooling of the exposed lower crustal rocks possibly terminated 

during the late Miocene (cf. Thomson, 1998; Graessner et al., 2000). This interpretation is supported 

by a late, mild hydrothermal alteration event identified in a few of the more evolved granitic rocks 

by De Vivo et al. (1991). The lack of evidence for intense and pervasive hydrothermal alteration in 

the Sila Massif (Ayuso et al., 1994), with an exception of the metasomatism created by fluid advection 

in the Longobucco area (Caggianelli et al., 2000; Perri et al., 2008), could be explained by the severe 

erosion documented in the study area, which might have removed large parts of the most altered 

rocks. Despite many weathering profiles clearly exhibit mesoscale tectonic features in the field (cf. 

section 2.1), a certain independence of part of the collected samples that include sericitized 

plagioclase and/or chloritized biotite from faults, major tectonic fissures and veins, supports that 

circulating fluids which led to hydrothermal alteration were not mainly related to the Pleistocene 

tectonics affecting the Sila Massif granitoids. A tectonic influence cannot be ruled out for a couple of 

sites close to important faults, especially in the Silvana Mansio area where alteration features are 

more pervasive (see section 3.2), and in the Longobucco surroundings where sericite is more 

abundant.  

The neoformed clays identified on weathered primary minerals and in illuvial clay coatings consist 

of both 1:1 and 2:1 clays, such as kaolinite/halloysite, and illite, vermiculite and/or smectite 

components, in agreement with those reported for weathering profiles and soils in the Sila Massif 

(Scarciglia et al., 2008; Pelle et al., 2013b; Perri et al., 2015; Scarciglia, 2015). Coherently with 

increasing weathering grades, even quartz grains exhibited some chemical dissolution microtextures 

starting from classes III or IV. Despite the acidic pH measured in the soils of the study area (ARSSA, 

2003; Scarciglia et al., 2005a, 2005b; Pelle et al., 2013b), quartz dissolution could have been 

controlled by alkali and alkaline-earth metals (Dove and Nix, 1997; Karlsson et al., 2001) at the 

microsite level, where a transient, locally alkaline soil environment could have been promoted by 

basic cations released from the weathering of primary feldspars and micas, possibly coupled with a 

long time of exposure to weathering processes (Scarciglia et al., 2007, 2015).  



 

4.1.2 In situ weathering versus illuvial processes  

The slight differences in composition between the measured samples of class I-II and those reported 

by Messina et al. (1991) virtually ascribed to class I(-II) (see section 3.3) can be easily related to 

intrinsic small compositional changes of the granitoid parent rocks, ranging from tonalite to 

monzogranite and granodiorite, and including different accessory phases. The chemical index of 

alterationrecords an incipient to intermediate chemical weathering stage (cf. Fedo et al., 1995). The 

overall decrease in SiO2 as far as weathering grade increases (except in weathering class III-IV) is 

consistent with a progressive desilication from the most labile minerals, such as plagioclase, K-

feldspar and micas (and more rarely from more resistant quartz). This is in turn associated to an 

increase of Al2O3, probably fixed in the neoformed phyllosilicate clays. Both the Al2O3/SiO2 ratio 

and the CIA index support this interpretation. The apparent inconsistency of class III-IV and III 

samples with the above trends, respectively, suggests a partial downward mobilization and re-

precipitation of aluminum and silica from overlying saprolite and/or soil layers (cf. White, 2005). 

This is in agreement with an increase in the amount of clay minerals in those classes, as evidenced 

by the identification of clay coatings/infillings of illuvial origin on rock surfaces/fractures. Also a 

similar anomalous behavior of other components (e.g., MnO, partly Fe2O3, Ni, etc.) suggests that 

their increase in intermediate weathering classes (III to IV) is not mainly due to in situ weathering, 

but rather to illuvial processes, as indicated by the iron-manganese coatings and mottles staining rock 

fractures in the field (and microcracks identified in thin sections). The initial decline of CaO followed 

by its less pronounced increase according to increasing weathering grades suggests its release from 

Ca-bearing minerals (mainly plagioclase) and leaching, followed by its fixation in or adsorption onto 

phyllosilicate clays such as smectite and vermiculite. A similar reversal in abundance is shown by Sr 

and Ba, which commonly replace calcium in Ca-minerals (Reimann et al., 2003). The opposite 

behavior of K2O suggests its being trapped in neoformed clays (such as illite) after removal from 

primary K-feldspar and mica, and a further leaching from illite. This also applies to Rb+, which 

preferentially replaces K+ due to its similar ionic radius, and is thus enriched into clay minerals by 

weathering processes (cf. Wennrich et al., 2014). Adsorption onto reactive sites of soil organic matter 

may also affect elemental patterns, especially in A horizons (class VI), as suggested by Pb behavior. 

Lead may be in turn retained in clay minerals (Mongelli et al., 1998), as suggested by its pattern that 

is partially similar to that of alumina (Bauer and Velde, 2014). A more irregular pattern of Na2O, 

MgO, Fe2O3, TiO2 and some trace chemical species (e.g., vanadium, zinc and the lanthanides) can be 

interpreted as partly controlled by a complex interplay among weathering of dominant and accessory 

host minerals, leaching, incorporation into phyllosilicate clays and/or concentration by the above 



quoted illuviation processes (cf. Laveuf and Cornu 2009; Scarciglia et al., 2011; Huang et al., 2015; 

Perri et al., 2015). The importance of adsorption mechanisms onto clays (and/or oxyhydroxides) and 

illuvial processes affecting the III-IV weathering grade samples is evidenced by higher peaks for this 

class of the ratios of Mg, K, Na, Fe, Si and Al oxides, as well as of mobile trace metals (e.g., Ba, Sr 

and V), versus titanium, which is usually considered as ‘immobile’. This interpretation is supported 

by a similar behavior of the Rb/Sr (e.g., Wennrich et al., 2014) and Ba/Sr ratios, as Sr is selectively 

leached whereas Rb and Ba are enriched in secondary minerals (e.g., Wan et al., 2010), along with 

the Zr/Zn ratio, because in weathered settings Zn tends to be concentrated in the finest fractions (e.g., 

von Eynatten et al., 2016). Ce and La are fractionated and enriched relative to parent rocks during 

weathering (e.g., Mongelli, 1993; Mongelli et al., 1998), as suggested by their general trend of 

increase relative to Ti. The Ce/Ti and La/Ti ratios show higher values even in weathering grade class 

III-IV than classes IV and V. This behavior is consistent with the occurrence of the above cited illuvial 

processes involving both clay minerals and iron oxyhydroxides, where the lanthanides are commonly 

adsorbed (Laveuf and Cornu, 2009; Scarciglia et al., 2011). An analogous behavior between these 

REEs and TiO2 suggests that although on the whole immobile, titanium tends to concentrate as a 

consequence of weathering processes in the fine fractions, where it is more stable just in the form of 

dioxide (Tyler, 2004; Scarciglia et al., 2015). The partly illuvial origin of clays/Fe-Mn oxyhydroxides 

in some low to intermediate weathering grade classes is additionally confirmed by some values of Ip 

higher than those obtained in moderately weathered classes. Indeed, the micropetrographic index does 

not take into account whether clay minerals and/or iron-oxides are produced in situ by direct 

weathering of primary mineral phases or are transported and deposited into rock cracks after 

downward migration (illuviation) through circulating water across the weathering/soil profile. In 

addition, inheritance of some grain microtextures from hydrothermal alteration of the parent rock can 

be misleading in evaluating a correct weathering degree in surface conditions (Stoops et al., 2010), 

as it may simulate a higher degree of weathering. The above quoted deuteric origin of both chloritized 

biotite and sericitized plagioclase crystals, rather than a result of surface (meteoric) weathering 

processes, could clearly cause an overestimation of weathered versus unweathered primary minerals 

in poorly weathered classes, thus leading to an average underestimation of Ip values of 0.1, up to a 

difference of 3.4 in the weathering class III-IV (data not shown). A very poor statistic correlation 

between Ip values and the sum of sericitized and chloritized grains corroborates the bias that affects 

the micropetrographic index in the estimation of the extent of weathering. However, the hydrothermal 

features may have acted as preferential predisposing factors for the onset of subsequent chemical 

weathering processes (‘real’ clay neogenesis and etching) under environmental conditions. The 

peculiar response of different rock samples to chemical weathering may be also caused by an intrinsic 



variability of the mineralogical composition, such as in those samples where K-feldspar largely 

prevails over plagioclase. Alkali feldspar appears very rarely and at a very small extent affected by 

sericitization with respect to plagioclase, and less weathered as well. Some mineralogical (and thus 

geochemical) heterogeneity is also suggested by small changes in the Ti/Zr and Si/Zr ratios even in 

low weathering grade classes, because of the relatively immobile behavior of titanium, silica and 

zirconium. Of course, a differential sensitivity of primary minerals to chemical attack may clearly 

affect the comparability of weathered/unweathered components quantification in different samples, 

definitely influencing the reliability of the micropetrographic index.  

 

4.1.3 Chemical versus physical weathering  

The apparent discrepancy detected between physical-mechanical field tests of rock strength with the 

geological and/or Schmidt hammer clearly suggests that chemical weathering of granitoid substrata 

is not always coupled with its physical degradation. This behavior can be explained by a significant 

role played by physical breakage processes in addition to dissolution, hydrolysis and 

reduction/oxidation. Cryoclastic and thermoclastic processes, that are well-documented at present in 

the study area (Scarciglia et al., 2005a, 2005b), presumably actively contribute to rock degradation 

and fragmentation in addition to the predisposing role of tectonics discussed above. Some authors 

(e.g., Butzer, 1976; Migoń and Thomas, 2002) suggest that cryogenic processes related to freeze-

thaw cycles could be responsible for important grussification, as supported by the dominant coarse 

texture of weathered layers and soil horizons. Paleoclimatic reconstructions (Dimase, 2006) suggest 

that these processes could have been particularly intense during Pleistocene glacial phases in the Sila 

mountains, leading to friable or disintegrated debris (Scarciglia et al., 2007). The abundance of 

coarse-textured rock material in all parts of the studied weathering profiles, coupled with the various 

evidence of illuvial processes including important iron-oxide and clay translocation, suggests that 

more clay-enriched saprolite layers and soil horizons, argillified after hydrolysis of primary phases, 

formed in the past over the lower weathering grade rock classes. Hence the present-day profiles are 

clearly truncated and rejuvenated by long-term erosion, similarly to the boulders exposed at the 

ground floor (Scarciglia, 2015).  

 

4.2 Soil formation rates  

 

The contribution of volcanic ash to soil formation in the study area is very difficult to estimate, 

because it is at present very poor in the soil and pedogenesis occurred at the expenses of both the 

pumice and the granitoid parent materials, with consequent transformation into clay minerals (cf. 



Scarciglia et al., 2008; Pelle et al., 2013b). The distal depositional environment in respect of the 

volcanic source area (Aeolian Islands), the occurrence as rare, micron-sized glass fragments dispersed 

in the pedogenic matrix and as distal cryptotephra in a north-eastern marine core, the granitic nature 

of skeletal rock fragments (Scarciglia et al., 2005a, 2005b) and the weakly andic properties of the soil 

(Scarciglia et al., 2008; Vingiani et al., 2014) suggest an important contribution of the granite parent 

material to soil formation. However, the more labile volcanic glass than the crystalline (alumino-

)silicate primary components can be supposed to have promoted faster soil formation rates than in 

pure granitoid terrains. This does not attain directly to the saprolite and bedrock, where no volcanic 

components were detected, but clay formation and illuviation from the upper ash-bearing soil 

horizons could have affected indirectly even C, Cr and/or R layers. The soil formation rates estimated 

in this work for the Sila upland, especially those related to the 42 ka-constrained scenario, are 

consistent with a large number of data available in the literature, obtained with varying methods 

(uranium-series isotope disequilibria, cosmogenic radionuclide inventories, geochemical mass-

balance modeling and residence time approach) for several areas with different geographic position 

but overall similar bedrock and climatic conditions (e.g., Heimsath et al., 2001; Riebe et al., 2001; 

Dosseto et al., 2008; Dixon et al., 2009; Suresh et al., 2013). These literature weathering and soil 

production rates mainly range from ≤ 0.01 to 0.14 mm a-1 and overlap all our estimates on saprolite 

and soil horizons (classes V-VI) for the 42 ka scenario, and partly for the 14 ka scenario. The 

chronological constraints which permitted to obtain these rates (see section 3.4) are consistent with 

the expected time ranges of specific weathering and soil-forming processes, such as clay neogenesis 

(102-104 a), redox processes leading to different types of Fe- and Mn-oxide segregations (102-106 a), 

organic matter accumulation and storage (101-103 a) (e.g., Harden, 1987; Baisden et al., 2002; 

Targulian and Krasilnikov, 2007; Cornu et al., 2009). The weathering rates calculated for the deepest 

weathering profile zones underlying the proper saprolite layers and soil horizons, classified with 

lower weathering grades (I-II to IV), seem to be much less reliable. In fact, these weathering zones 

still maintain part of the original rock structure and fabric, and are often characterized by large 

amounts of illuvial features, that clearly refer to non-in-situ weathering.  

Our results feed and renew the ongoing scientific debate on some presumably ‘old’ weathering 

mantles, such as some sandy saprolites (or ‘grus weathering profiles’) in Europe, that proved to be 

quite young, pointing to Quaternary rather than to Tertiary weathering (e.g., Migoń, 1997). This issue 

is consistent with intrinsic methodological flaws, such as the possible shielding effect of ice caps 

affecting 10Be method applied in formerly glaciated areas (Migoń and Lidmar-Bergström, 2002), or 

the truncation of weathering profiles clearly evidenced in this paper, possibly caused by severe 

erosion phases since the middle Pleistocene (Scarciglia, 2015), in turn enhanced by high tectonic 



uplift rates (Molin et al., 2012; Olivetti et. al., 2012). Geomorphological/pedological-based erosion 

rates (<0.01-0.05 to 0.10-0.21 mm a-1; Scarciglia, 2015), preliminary cosmogenic 10Be data from the 

basal portion of spheroidal boulders in the Silvana Mansio area (0.001-0.10 mm a-1; Scarciglia and 

Egli, unpublished data), as well as 10Be erosion rates from river systems (ca. 0.09-0.13 mm a-1; 

Olivetti et. al., 2012) estimated for the Sila Massif upland, are consistent with uplift-driven 

Pleistocene erosion rates estimated in various areas of the southern Apennines (north of the Calabria 

region), which range between 0.04 and 0.6 mm a-1 (Amato et al., 2003; Schiattarella et al., 2006; 

Martino et al., 2009; Gioia et al., 2011). The highest values obtained for the Apennine Chain were 

likely promoted by lithologies on the whole less resistant to erosion than the Sila granitoids, whose 

summit paleolandscape appears less fragmented by tectonic faulting and headward-migrating 

(retrogressive) fluvial dissection (Martino et al., 2009; Schiattarella et al., 2013). Olivetti et. al. (2012) 

calculated even higher 10Be erosion rates in the deeply incised river valleys along the Sila Massif 

flanks, reaching up to about 1 mm a-1, whereas for the Aspromonte Massif (another tectonically active 

area in southern Calabria with similar relief features and evolution), Cyr et al. (2014) estimated rates 

between 0.6 and 2.1 mm a-1. Also Ibbeken and Schleyer (1991), using missing volume and mass 

balance approaches, estimated long-term (1 Ma) erosion rates of 0.2 mm a-1, with higher short-term 

rates of 0.9-1.9 mm a-1 up to a maximum of 2.7 mm a-1 in the fluvial systems. Although fluvial erosion 

rates can be expected to be higher than land surface erosion rates (where the action of concentrated 

water flow is less effective), there is a coherence between the soil formation rates obtained on the 

summit flat landforms of the study area and the erosion rates associated to sediment delivery into the 

drainage system. Overall comparable values of soil formation and long-term erosion rates in the 

summit landscape suggest conditions close to a dynamic equilibrium (steady state) between the 

deepening of the weathering front (soil production, i.e. bedrock conversion to weathered products) 

and the removal of the regolith by morphodynamic processes (erosion) (Riebe et al., 2003; Anderson 

et al., 2007; Heimsath et al., 2012). Such an equilibrium is not necessarily strictly achieved, as 

changes in sediment generation rates over time (possibly driven by climatic and/or tectonic forcing) 

can be buffered by the soil mantle, where potentially erodible materials may be stored for millennia 

before entering the river system (Bierman and Nichols, 2004). Where soils mantle hillslopes, soil 

formation (and sediment production) rates exceed transport capacity, whereas where bare rock slopes 

dominate, sediment transport rates exceed those of regolith production. Higher erosion rates in the 

fluvial system, which can be considered as basin-scale average rates of erosion equivalent to rates of 

sediment generation (Bierman and Nichols, 2004; Heimsath et al., 2012), indicate that these are not 

in balance with sediment yields.  

 



5. Conclusions  

 

An integrated analysis of large datasets, including novel and partly published morphological, 

geomechanical, petrographic, mineralogical and geochemical features of weathered granitoid rocks 

in a wide area of the Sila Massif upland (Calabria, southern Italy), allowed us a deeper comprehension 

of the weathering profile patterns and corresponding weathering processes. First of all, we remarked 

the potentially misleading effects of hydrothermal alteration of some primary minerals (such as 

sericitization of plagioclase and chloritization of biotite) on the evaluation of a correct degree of 

weathering. These inherited features may induce an overestimation of effective meteoric weathering, 

although they may also control and enhance chemical dissolution and clay neogenesis in surface 

conditions. Secondly, our results showed that a mere field description of weathering profiles or a 

simple identification of weathering products may not take into account the in-situ versus illuvial 

genesis of some morphological features (at the macro- and microscales). Actually, changes in color 

of the weathered materials in respect to the parent rock were observed to originate in places by local 

neogenesis of phyllosilicate clays or release of iron and manganese in the form of oxyhydroxides on 

mineral grain surfaces (especially biotite or chlorite crystals), whereas in other places they appeared 

to be illuviated as coatings into rock cracks and thus not formed in situ. These features produced some 

apparent inconsistencies between the classification of weathering grades based on field observations 

coupled with geomechanical tests and the chemical index of alteration (CIA) or the micropetrographic 

index (Ip). In addition to the effects of illuvial processes, some discrepancies between the results from 

the above methodological approaches were explained as caused by other weathering processes than 

chemical weathering. Cryoclastic and thermoclastic processes promote a physical breakdown besides 

tectonics even in rock masses that are relatively poorly affected by chemical weathering features. Our 

results showed that particular caution is required for a correct assessment of weathering grade classes, 

because inherited hydrothermal alteration features, physical weathering and illuvial processes may 

affect results obtained from traditional field and geochemical-petrographic tools.  

Finally, a first estimation of soil formation rates was proposed in this paper for different depths of 

weathering profile zones, based on radiocarbon and tephrochronological constraints. The obtained 

values ranged from 0.01-0.07 mm a-1 for A and Bw horizons (weathering grade class VI) to 0.04-0.36 

mm a-1 for the underlying saprolitic layers C and Cr (class V). These results are consistent with 

worldwide literature data for areas with similar bedrock and climate, and are on the whole comparable 

to the erosion rates estimated for the same site and other areas of southern Italy. This behavior 

suggests that the upland landscape of the Sila Massif is close to steady-state conditions between 

weathering and erosive processes.  
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Figure captions  

 

Fig. 1. Location map of the study area.  

 

Fig. 2. A) Geological and structural sketch map of the study area: 1) Holocene deposits; 2) Plio-Pleistocene 

deposits; 3) Miocene deposits; 4) Mesozoic sedimentary cover; 5) plutonic rocks (Sila batholith; 

Carboniferous-Permian); 6) high-grade metamorphic rocks; 7) low- to medium-grade metamorphic rocks; 8) 

normal faults; 9) strike-slip faults; 10) major fractures. B) Map of the weathering macro-classes referred to 

granitoid rocks and the main tectonic lineaments.  

 

Fig. 3. Field examples of complex weathering patterns in the study area: A) Abrupt change between weathering 

classes III and V separated by a subvertical fault plane (red arrows) near Savelli site; B) juxtaposition of 

different weathering classes along a fault zone (red arrows) in the Castelsilano area close to Savelli village; 

C) dyke included in the saprolite, San Giovanni in Fiore site; D) weathering profile showing angular to 

rounded rock masses and corresponding detritus, which also includes granular material (San Giovanni in 

Fiore).  

 

Fig. 4. A, B, C: Typical weathering profiles dominated by completely weathered rock (class V) and 

characterized by increasing depths: A) Acri, B) Castelsilano (Savelli), and C) Savelli site.  

 

Fig. 5. A, B) Spheroidal boulders exhumed at the topographic surface, overlying weathering profiles with 

different features (Silvana Mansio site). C) Slightly weathered granodiorite rock from a boulder showing 

partially oxidized and exfoliated biotite crystals (Silvana Mansio); D) Surface exfoliation (red arrows) and 

lichen cover on a boulder at Silvana Mansio site.  

 

Fig. 6. A) Weathering profile with a typical concentric, spheroidal pattern isolating rounded corestones in the 

saprolite (Silvana Mansio). B) Completely weathered rock sample affected by centimetric microfractures 

(red arrows). C) Very shallow soil (ca. 40 cm deep) overlying a highly weathered rock of class IV. D) 

Typical soil profile overlying the saprolite close to Silvana Mansio.  

 

Fig. 7. A) Detail of a saprolitic mass showing an iron- and clay-rich groundmass, which still includes whitish 

relicts of the original rock. Illuvial Fe-Mn oxyhydroxide (B) and clay coatings (C, D) on joint surfaces of 

granodiorite (Silvana Mansio site).  

 

Fig. 8. Microphotographs of thin sections of samples from Acri and San Giovanni in Fiore sites: A) peculiar 

granite characterized by prevalent microcline crystals (XPL); B) common mineral assemblage of granite 

including quartz, K-feldspar, plagioclase and biotite (XPL); C) sericitization of the inner core of a 



plagioclase grain (XPL); D, E, F) iron-oxide coatings released from weathered biotite grains (red dotted 

circle) into the surrounding microcracks (red arrows) (PPL); F) close-up of the image in figure 8E; G, H) 

biotite crystal split along cleavage planes with microcracks radiating into the surrounding mineral grains 

(red arrows) (PPL, XPL).  

 

Fig. 9. Microphotographs of thin sections of samples from Acri and San Giovanni in Fiore sites: A, B) 

weathered biotite with release of clay and iron-oxide coatings into surrounding rock microcracks (red 

arrow) (PPL, XPL); C, D) intensely weathered biotite, in place largely replaced by clays and iron-oxides 

appearing as matrix patches) (PPL, XPL); E, F) very weathered plagioclase with diffuse surface pitting and 

local neoformed clay (red circle) and Fe-oxide staining (red arrow) (PPL, XPL); quartz grain affected by 

outer edge and surface pitting (red arrows) (PPL, XPL).  

 

Fig. 10. SEM images and EDS spectra of fresh (A, C) and weathered parts (B, D) of mica minerals showing 

argillified flakes in rock samples of classes III-IV and IV-V, respectively (San Giovanni in Fiore area). Red 

arrows indicate approximate location of microprobe analyses. A and B refer to class III-IV, whereas C and 

D refer to class IV-V.  

 

Fig. 11. SEM images of rock samples from San Giovanni in Fiore and Silvana Mansio sites: A) weathered 

plagioclase exhibiting surface argillification and dissolution, coupled with Fe-oxide segregations (red 

arrow), and corresponding EDS spectrum (class V-VI); B) quartz grain with occasional etch pits  (red 

arrows) and curved to linear, parallel and stepped dissolution features (class IV); C, D) illuvial clay coatings 

with surface microcracks (red arrows) on rock samples of classes III-IV and V, respectively, and 

compositional EDS spectra.  

 

Fig. 12. Distribution of CIA values (A) and some molar ratios between relatively immobile major elements, 

reported as oxides (B-D), according to weathering grade classes.  

 

Fig. 13. Distribution of some major oxides versus TiO2 according to weathering grade classes (A-D).  

 

Fig. 14. Distribution of Fe2O3 versus TiO2 (A) and some trace elements versus Ti (B-D) according to 

weathering grade classes.  

 

Fig. 15. Distribution of some trace element ratios according to weathering grade classes (A-D).  

 

Fig. 16. Distribution of some trace element ratios according to weathering grade classes (A-D).   



Table captions  

 

Table 1  

Weathering grade classes based on morphological criteria and physico-mechanical field tests.  

Based on Gullà and Matano (1997); modified after Borrelli et al. (2014b).  

NSchmidt: rebound value obtained with a Schmidt hammer.  

 

Table 2  

Values obtained for the micropetrographic index (Ip) proposed by Irfan and Dearman (1978).  

SGF: San Giovanni in Fiore.  

 

Table 3  

Mean values of major element concentrations (expressed as weight percent of oxides) and chemical index of 

alteration (CIA; Nesbitt and Young, 1982) for each weathering grade class.  

*: data from Messina et al. (1991). St. dev.: standard deviation.  

 

Table 4  

Mean values of trace element concentrations (expressed in mg kg-1) for each weathering grade class.  

*: data from Messina et al. (1991); St. dev.: standard deviation; b.d.l.: below detection limits.  

 

Table 5  

Soil formation rates calculated for soil horizons, saprolitic layers and less weathered rock samples of the 

weathering profile. See text for more details.  

 



 

 



 

 



 

 

 



 

 

 



 

 



 

 



 



 



 



 

 

 

 

 



 

 

 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 



Weathering 

grade class 
Sample Location 

Unweathered 

minerals % 

Weathered 

minerals 

% 

Microfractures 

and voids  

% 

Ip 

I-II C102 Acri 91.83 7.92 0.25 11.24 

II C57 Acri 89.20 9.56 0.52 8.26 

II-III C2 Longobucco 86.00 14.00 0 6.14 

II-III C4 Longobucco 81.00 15.44 3.56 4.26 

III C64 Acri 80.96 16.29 2.75 4.25 

III C103 Acri 82.35 14.58 3.07 4.67 

III-IV SAD SGF 54.00 35.50 10.50 1.17 

III-IV PT SGF 19.30 13.50 2.90 1.20 

IV-V S17 SGF 51.50 35.30 13.00 1.07 

IV-V S3 SGF 46.20 39.30 14.50 0.85 

IV-V SA1 SGF 30.60 40.60 27.90 0.40 

IV-V S3 bis SGF 42.50 46.50 9.90 0.80 

IV-V C1 Longobucco 49.00 49.25 1.75 0.96 

IV-V C3 Longobucco 51.00 38.10 10.09 1.04 

IV-V C8 Longobucco 49.00 49.97 1.03 0.96 

IV-V C9 Longobucco 52.00 41.86 6.14 1.08 

V C60 Acri 64.13 19.14 16.73 1.79 

V C72 Acri 61.20 32.68 6.12 1.57 

V C89 Acri 59.05 29.14 11.81 1.44 

V C104 Acri 42.83 36.20 20.97 0.75 

V SF SGF 37.70 45.60 16.8 0.6 

V-VI C74 Acri 21.29 64.84 13.87 0.27 

V-VI C77 Acri 42.17 43.77 14.06 0.73 

V-IV C105 Acri 69.20 23.15 7.65 2.24 

V-VI S4 SGF 39.60 48.10 12.00 0.65 

V-VI SV1 SGF 41.90 40.40 17.40 0.72 

V-VI L4 SGF 17.50 33.20 49.00 0.20 

V-VI S1 SGF 20.60 77.30 9.50 0.20 

V-VI C10 Longobucco 23.00 67.86 9.14 0.19 

 

 

 

 

 

 

 

 

 

 

 



Weathering 

grade class 

Na2O 

% 

MgO 

% 

Al2O3 

% 

SiO2 

% 

P2O5 

% 

K2O 

% 

CaO 

% 

TiO2 

% 

MnO 

% 

Fe2O3 

% 

CIA 

% 

I(-II)* 
3.38 1.41 15.67 67.21 0.19 3.55 2.64 0.53 0.07 1.16 

62 

St. dev. 

0.19 0.19 0.39 0.71 2.33 0.03 0.35 0.57 0.07 0.02 0.59 

I-II 2.52 1.71 14.31 64.83 0.25 4.33 2.00 0.61 0.06 4.35 

62 

St. dev. 

0.01 0.28 1.20 6.34 0.08 0.58 1.17 0.29 0.03 1.36 3.57 

II 2.97 1.38 15.27 65.55 0.24 4.36 1.87 0.48 0.05 3.47 

62 

St. dev. 

0.51 0.61 0.76 4.38 0.09 1.49 1.12 0.25 0.04 1.84 1.32 

III 1.96 1.61 17.20 64.40 0.24 5.66 1.19 0.48 0.05 3.92 

66 

St. dev. 

0.81 0.44 2.33 3.77 0.08 1.87 0.79 0.20 0.03 1.33 1.93 

III-IV 2.68 1.10 16.23 68.08 0.17 5.53 0.62 0.28 0.02 2.39 

65 

St. dev. 

0.88 0.88 1.90 4.00 0.06 0.17 0.06 0.14 0.01 1.44 4.93 

IV 2.26 1.55 16.43 63.87 0.20 5.62 1.00 0.51 0.06 4.01 

65 

St. dev. 

0.82 0.43 0.60 2.06 0.04 2.05 0.36 0.10 0.03 0.75 2.44 

V 2.36 1.18 16.31 63.00 0.17 5.30 1.03 0.45 0.06 3.59 

65 

St. dev. 

0.35 0.19 0.82 3.18 0.06 0.62 0.33 0.08 0.04 0.67 2.29 

VI 2.50 1.18 17.24 62.17 0.20 4.65 1.11 0.47 0.06 3.68 

68 

St. dev. 

0.50 0.32 1.01 4.68 0.07 0.66 0.64 0.15 0.03 1.22 1.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Weathering 

grade class 

Na2O 

% 

MgO 

% 

Al2O3 

% 

SiO2 

% 

P2O5 

% 

K2O 

% 

CaO 

% 

TiO2 

% 

MnO 

% 

Fe2O3 

% 

CIA 

% 

I(-II)* 
3.38 1.41 15.67 67.21 0.19 3.55 2.64 0.53 0.07 1.16 

62 

St. dev. 

0.19 0.19 0.39 0.71 2.33 0.03 0.35 0.57 0.07 0.02 0.59 

I-II 2.52 1.71 14.31 64.83 0.25 4.33 2.00 0.61 0.06 4.35 

62 

St. dev. 

0.01 0.28 1.20 6.34 0.08 0.58 1.17 0.29 0.03 1.36 3.57 

II 2.97 1.38 15.27 65.55 0.24 4.36 1.87 0.48 0.05 3.47 

62 

St. dev. 

0.51 0.61 0.76 4.38 0.09 1.49 1.12 0.25 0.04 1.84 1.32 

III 1.96 1.61 17.20 64.40 0.24 5.66 1.19 0.48 0.05 3.92 

66 

St. dev. 

0.81 0.44 2.33 3.77 0.08 1.87 0.79 0.20 0.03 1.33 1.93 

III-IV 2.68 1.10 16.23 68.08 0.17 5.53 0.62 0.28 0.02 2.39 

65 

St. dev. 

0.88 0.88 1.90 4.00 0.06 0.17 0.06 0.14 0.01 1.44 4.93 

IV 2.26 1.55 16.43 63.87 0.20 5.62 1.00 0.51 0.06 4.01 

65 

St. dev. 

0.82 0.43 0.60 2.06 0.04 2.05 0.36 0.10 0.03 0.75 2.44 

V 2.36 1.18 16.31 63.00 0.17 5.30 1.03 0.45 0.06 3.59 

65 

St. dev. 

0.35 0.19 0.82 3.18 0.06 0.62 0.33 0.08 0.04 0.67 2.29 

VI 2.50 1.18 17.24 62.17 0.20 4.65 1.11 0.47 0.06 3.68 

68 

St. dev. 

0.50 0.32 1.01 4.68 0.07 0.66 0.64 0.15 0.03 1.22 1.93 

 

 

 

 

 

Weathering 

profile zone 

Weathering 

grade class 

Depth 

(m) 

Soil formation rate 

(mm a-1) estimated 

for 42 ka 

Soil formation rate 

(mm a-1) estimated 

for 14 ka 

A VI 0.5 0.01 0.04 

Bw VI 1.0 0.02 0.07 

C or Cr V 1.5 0.04 0.11 

C or Cr V 5.0 0.12 0.36 

R IV to I-II 8.0 0.19 0.57 

R IV to I-II 25.0 0.60 1.79 

 


