
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

1



Abstract—The future Internet of Things (IoT) is expected to

enable a new and wide range of decentralized systems (from

small-scale smart homes to large-scale smart cities) in which

“things” are able to sense/actuate, compute and communicate,

and thus play a central and crucial role. The growing importance

of such novel networked cyber-physical context demands suitable

and effective computing paradigms to fulfill the various

requirements of IoT systems engineering. In this paper, we

propose to explore an agent-based computing paradigm to

support IoT systems analysis, design, and implementation. The

synergic meeting of agents with IoT makes it possible to develop

smart and dynamic IoT systems of diverse scales. Our agent-

oriented approach is specifically based on the ACOSO (Agent-

based COoperating Smart Objects) methodology and on the

related ACOSO middleware: they provide effective agent design

and programming models along with efficient tools for the actual

construction of an IoT system in terms of a multi-agent system. A

case study concerning the development of a complex IoT system,

namely a Smart University Campus, is described to show the

effectiveness and efficiency of the proposed approach.

Index Terms— Internet of Things, Cooperative Smart Objects,

Multi-Agent Systems, Agent-Oriented Software Engineering

I. INTRODUCTION

HE Internet of Things (IoT) term refers to a loosely

coupled, decentralized and dynamic system in which billions

(even trillions) of everyday objects are globally

interconnected and endowed with smartness, becoming active

participants in business, logistics, information and social

processes [1]. Such “things” can be commonly defined as

smart objects (SOs) and, if supported by an “anywhere,

anytime and anything connection” [2], they represent the

fundamental building blocks for the IoT [3]. In fact, SOs are

able to provide highly pervasive cyber-physical services to

both humans and machines thanks to their communication,

sensing, actuation, embedded processing, and even reasoning

abilities.

Giancarlo Fortino, Wilma Russo and Claudio Savaglio are with the

Department of Informatics, Modelling, Electronics and Systems Engineering

(DIMES), University of Calabria, Via P. Bucci, cubo 41C, 87036 Rende (CS),

Italy (g.fortino@unical.it, w.russo@unical.it, csavaglio@dimes.unical.it).
Weiming Shen is with the National Research Council Canada, Ottawa,

Ontario, ON K1A 0R6, Canada (wshen@ieee.org).

Mengchu Zhou is with Department of Electrical and Computer
Engineering, New Jersey Institute of Technology Newark, NJ 07102, USA

(zhou@njit.edu).

The development of IoT systems, e.g., smart home [4],

smart car, smart factory [5, 6], and smart city, their

management as well as their integration in real applications,

are complex and challenging, thereby requiring suitable

models, methods/techniques and technologies. In this

direction, several middleware solutions, tools and

methodologies have been developed, facing notable challenges

such as physical device virtualization [7], decentralized entity

management [8], and guideline identification [9]. However,

these solutions tend to tackle different specific issues,

typically one at a time, without providing a full-fledged

methodology to support the entire IoT system development

process, from analysis to implementation. However, such

partial approach results in poorly interoperable, poorly

scalable or application-driven “Intranet of Things” systems,

thus leading away from the original inclusive IoT vision.

Therefore, by providing a full-fledged and application-neutral

methodological approach for IoT systems development, we

aim at concretely developing the IoT concept of a horizontal

landscape of interoperable cyber, physical, and cyber-physical

systems.

To deal with such challenges, this work proposes the

exploitation of the Agent-based Computing (ABC) paradigm

[10], which is centered on the concept of Agent as a well-

defined software engineering and distributed computing

abstraction, for designing, programming, deploying and

managing IoT systems. The ABC paradigm allows modelling

distributed software systems in terms of multi-agent systems

(MASs), where agents are networked software entities that can

autonomously perform specific tasks on behalf of a user by

properly interacting with other agents and with their

environment. Due to such reasons, agents have been

effectively used in many application domains to develop

robust and dynamic distributed systems/applications [11-13].

However, few research efforts are currently focused on

defining methodologies and middleware to develop agent-

oriented IoT systems. In our view, the main agent features

(autonomy, social ability, responsiveness, proactiveness, and

mobility) perfectly fit the generic and specific requirements of

IoT systems [14, 15].

This work first elicits and discusses main IoT system

development requirements at both system and things levels

(namely, requirements related respectively to the whole

system or to its individual components), then proposes a full-

fledged approach to IoT system development based on our

Agent-oriented COoperating Smart Objects Methodology,

Agent-Oriented Cooperative Smart Objects:

from IoT System Design to Implementation

Giancarlo Fortino, Senior Member, IEEE, Wilma Russo, Claudio Savaglio, Student Member, IEEE,

Weiming Shen, Fellow, IEEE, Mengchu Zhou, Fellow, IEEE

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

2

called ACOSO-Meth for short, and its related middleware.

ACOSO-Meth supports the SO development phases of

analysis, design and implementation by means of metamodels

featured by different levels of abstraction. Each metamodel is

derived from the previous phase metamodel to allow a

seamless transition from analysis to implementation phases as

to enable an easy-to-do translation from analysis system

models to implementation system models. The design and

implementation phases are currently based on the ACOSO

[17] middleware that provides an effective agent model and a

JADE-based platform to program both basic SOs and more

complex IoT systems. Finally, the application of ACOSO-

Meth to the development of a complex IoT system, including

small-, medium-, and large-scale SOs, highlights the

effectiveness as well as the efficiency of the proposed

approach.

This work contributes to the state-of-the-art in IoT system

engineering with the following three main contributions:

- A comparison framework comprising IoT fundamental

development requirements, raised from a thorough state-

of-the-art analysis, has been designed. It inspired the

ACOSO-Meth development but it can be reused to

compare future work in the field.

- ACOSO-Meth is the first application domain-neutral,

full-fledged agent-based approach able to support the

main engineering phases of IoT systems and

applications, thus fulfilling the fundamental system-level

and things-level requirements (by referring to our

previous work, [16] presented preliminary and less

detailed models, not structured according to the SO main

features, while [68] presented functional and data models

specifically conceived for smart environments and

designed for natively supported edge computing).

- ACOSO-Meth is applied to develop a complex Smart

University campus, that have been tested according to

our performance evaluation approach for IoT systems,

specifically involving the concept of scale (small,

medium, and large), the number of IoT devices and

communication sub-networks (by referring to our

previous work, [16] presented a case study but no

running example, while [68] considered a single use

case, with few devices and a single operation modality

without any performance evaluation).

As highlighted also by the Smart University Campus case

study, IoT system outcomes are strongly influenced by many

cyber-physical factors such that any performance analysis or

variable optimization could be narrowed only to the evaluated

application and its specific configuration (in every real

scenario, device deployments, adopted protocols, and

infrastructure design are notably constrained to a physical

environment, different functional and non-functional

requirements, resource availability, etc.). Due to such reasons,

it is out of the scope of this work to select specific

requirements or optimize variables purposely defined for a

specific application. The rest of this paper is organized as

follows. Section II discusses generic and specific requirements

that IoT system development poses. How such requirements

have been so far tackled by means of different approaches is

surveyed in Section III. Section IV describes the proposed

ACOSO-Meth and related middleware. Section V presents a

Smart University Campus case study to exemplify the

ACOSO-based approach and the related performance

evaluation to show its effectiveness. Finally, Section VI

summarizes this work’s research contributions, lessons learned

and future work.

II. IOT SYSTEM DEVELOPMENT REQUIREMENTS

IoT systems are composed of many distributed and interacting

components that are usually heterogeneous in terms of

hardware devices, communication protocols, software

interfaces, data, and semantics. To effectively support their

development, general and specific requirements need to be

defined [18]. While the general requirements allow effective

and flexible middleware for facilitating IoT system

programming, the specific requirements are purposely defined

for a target IoT system by considering its specific application

domain. In the following, we focus on the former that are

common to all IoT systems. In particular, we group such

requirements in two categories: System-level (Table I), which

includes requirements related to the whole distributed system

and its development, and Things-level (Table II), which

encompasses requirements particularly referring to the

“things” such as Radio Frequency Identification (RFID) items,

smart objects, mobile devices, and robots, in an IoT system.

Requirements listed in Tables I and II have been outlined

after thoroughly analyzing the state-of-the-art of IoT

middleware, architectures and platforms, focusing on their

main features and extracting common keywords. Such

requirements are not totally new, since they have been already

studied in several fields of computer science and engineering.

However, at both levels, they recur at the same time and with

a substantial prominence within the IoT context and they

allow accommodating all the most important features of IoT

systems. Indeed, conventional computing devices and

everyday things tend to converge in the IoT [1], requiring

virtual networked alias (SLR1), software interfaces (SLR3) and

communication/data abstractions (SLR2-SLR5) to

synergistically cooperate, despite their heterogeneities (TLR1).

To cope with such cyber-physical (SLR4) and dynamic

scenario rich in continuously evolving (TLR4) and augmented

(TLR2) things, proper methodologies are needed (SLR6) to

fully support the IoT system development. Furthermore,

decentralized management (TLR3) mechanisms are essential

for making things autonomous and effectively integrated in

their application contexts. Finally, at both system- and things-

levels, the cyber-physical nature of SOs introduces important

novel elements in the characterization of SO-based systems,

particularly with regard to the concept of “scale” (SLR7 and

TLR5). In traditional distributed systems, the concept of scale

is closely related to the number of involved computing nodes,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

3

TABLE I
 SYSTEM-LEVEL REQUIREMENTS (SLRS)

Requirement Description
SLR1:

Hardware
Devices

(Virtualization)

IoT systems typically comprise heterogeneous devices;

in order to facilitate their use, abstractions are needed to
virtualize and let them be used, as they are

homogeneous by following a kind of a “plug&play”

paradigm [8].
SLR2:

Communication

(Abstractions)

Software components and devices need to communicate

with each other. Communication abstractions are

needed to make them interact and cooperate,
independently from the available low-level network

protocols [20].

SLR3:

Software
Interfaces

As software interfaces are usually heterogeneous, they

need to be generic and standardized through higher
level mechanisms such that their use is straightforward.

Thus, software components based on such high-level

interfaces can be seamlessly accessed [21].

SLR4:

Physicality

(Self and
Context

Awareness)

Hardware and software components in IoT systems and

entire IoT systems themselves are intrinsically situated.

This implies that they have static or dynamic locations
and refer to one or multiple contexts during their

lifecycle. Abstractions are therefore needed to capture

the concepts of location and context, as they are useful
in the design and implementation of IoT systems [22].

SLR5:

Data
(Abstraction)

Different hardware and software components, e.g.,

sensors, machines, smart objects, and mobile apps,
usually produce data according to different modalities,

formats and types. Thus, abstractions are needed to

formalize data streams generated by such components.
Continuous data streams, discrete data and sporadic

events should be defined under a common framework.

Moreover, the representation of data types needs to be
standardized as it would allow interoperability in data

exchange among heterogeneous components [7].

SLR6:

Development
Process

(Methodology)

To analyze, design and implement IoT systems, suitable

software engineering methods and tools need to be
defined. They should be able to effectively model IoT

systems by using high-level modelling abstractions and

fully support their design, implementation, deployment
and management [23].

SLR7: System’s

Scale
Characterization

IoT systems can notably differ in terms of geographical

extensions, network infrastructures and number of
involved IoT devices. Hence, it is useful to define some

criteria to facilitate the unambiguous characterization of

their scale and possibly enable their comparison.

their geographical distribution and logical organization among

different administrative domains. Such domains usually have

different configurations, policies and privileges, thus

emphasizing the need of interoperability and coordination

mechanisms [19]. In traditional agent-based systems, the scale

concept usually overlaps with agent population [24] and

agents distribution among host devices, regardless of their

actual geographic location. Note that, one of the peculiarities

of agents is their mobility. Finally, in Wireless Sensor

Networks (WSNs) the concept of scale refers both to the

number of involved devices and to their spatial collocation, as

the radio communications are strongly susceptible to

interferences and mutual collisions [25, 26]. It is just in the

WSN context, indeed, that the concept of density, intended as

the number of sensors per unit area, appears [25]. In

conclusion, depending on the application contexts, the “scale”

term is differently defined as well as its characterizations

(large, medium, and small scale) can notably vary (a large

scale WSNs very likely will differ from a large scale

computational grid in terms of geographical extension,

Fig. 1. Scale in IoT systems.

population and density). Within the SO-based IoT context,

therefore:
i. It is handy to refer to well established concepts of “small-

medium-large scale” taken from traditional distributed

systems, as long as such definitions are not exclusively

attributable to geographical factors. Moreover it is convenient

to take into account the network infrastructure, in particular

the number of subnets involved, in order to better evaluate

system performance; and

ii. Since SOs are highly pervasive and mostly based on

wireless interconnections, the density issue pointed out for

WSNs strongly recurs. Although not only simple sensors but

even other kinds of functionally heterogeneous devices are

involved within SO-based IoT systems, the density remains a

useful metric to characterize scenarios when the number of

SOs changes.

On the basis of such considerations, and specifically for an

unambiguous characterization of the case studies of Section V,

hereinafter we classify IoT systems and SOs in small-medium-

large scale on the basis of their physical dimension and

density, as shown in Fig. 1. Similar criteria for scenario

characterization are defined in [27, 28].

III. BACKGROUND

A. ABC paradigm

The ABC paradigm is centered around the concept of

Agent, a sophisticated software abstraction that allows

instilling smartness and autonomy within a single entity and

consequently developing decentralized, cooperating and

heterogeneous societies in terms of multi-agent systems

(MASs) [31]. Indeed, this paradigm represents both a suitable

design metaphor and an effective programming paradigm,

providing specific methods, techniques and tools for

effectively conceptualizing and developing dynamic, robust

and distributed systems (TLR2, TLR4) within diverse cyber,

physical, and cyber-physical application domains [10, 30]. It

intrinsically contemplates high-level concepts (e.g., models,

metaphors, and abstractions, SLR1), concrete mechanisms

(e.g., shared interfaces, protocols, and ontology, SLR2, SLR3,

and SLR5), and specific guidelines (SLR6) to support, at both

things and system levels, interoperability among agents, other

computing systems, the surrounding environment and its

resources (TLR1, SLR1, and SLR4).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

4

TABLE II
THINGS-LEVEL REQUIREMENTS (TLRS)

Requirement Description
TLR1:

Heterogeneity
and

Interoperability

Applications that use “things” should be programmed

independently from vendors-specific “things”. For
instance, if an application is based on a “smart chair”, it

should be able to use smart chairs built by different

vendors. Moreover, applications should be able to
exploit “things” to be built in the future. This implies to

adopt a standardized approach or, if not applicable

(standardization is a very long process), to exploit
software layering-based dynamic adaptation techniques

between application and the “things” levels [2].

TLR2:
Augmentation

Variation

“Things” usually provide a set of devices and services
that can vary in quantity and types both among

different “things” and among similar “things”. In

particular, different “things” can provide same services
whereas two similar “things” can provide different

services. Thus, “things” cannot be crisply classified

only by their type and may expose non-standard
interfaces. Augmentation variation of “things” is an

important requirement as it defines how “things” can

modify their augmentation by providing diversified
services that can change during their lifecycle. This

implies to design not only methods to dynamically

add/modify/remove “things” services and devices but
also how they are actually furnished [29].

TLR3:

Decentralized
Management

An effective management of “things” is crucial in IoT

applications where tons of distributed “things” could
potentially interact with each other and/or be used to

fulfill a final goal. Applications and “things” should be

therefore able to dynamically adapt as “things” could
continuously change for different purposes

(augmentation variation, mobility, failures, etc.). Thus,

the matching among “things” services and application
requirements should be often done at run-time.

Discovery services are therefore strategic in such a

dynamic context to find and retrieve “things” according
to their static and dynamic properties [20].

TLR4:

Dynamic

Evolution

Applications and “things” should be simply and rapidly

prototyped and upgraded through proper programming

abstractions. The evolution can be driven by
programming, learning, or both. In particular, evolution

by learning is usually based on smart self-evolving

components (application-level components and smart
“things”) able to self-drive their evolution on the basis

of some learning models [3].

TLR5: Thing’s

Scale

Characterization

“Things” can notably differ in terms of physical

dimensions and number of aggregated devices. Hence,

it is useful to define some criteria to facilitate the
unambiguous characterization of their scale and

possibly enable their comparison.

The fundamental characteristics of agents include: (i)

Autonomy: agents should be able to perform the majority of

their problem-solving tasks without the direct intervention of

humans, and they should have a certain degree of control over

their own actions and their own internal state (TLR3); (ii)

Social ability: agents should be able to interact, when they

deem appropriate, with other software agents and/or humans

in order to complete their own tasks (TLR1); (iii)

Responsiveness: agents should perceive the environment in

which they are situated (SLR4), a physical world, an agent

container, and Internet, and respond in a timely fashion to

changes that may occur (TLR4); (iv) Proactiveness: agents

should not simply act in response to their environment, but

they should be able to exhibit opportunistic, goal-directed

behavior and take the appropriate initiative; (v) Mobility: in

order to fulfill distributed tasks, agents should be able to

logically migrate from one machine to another (mobile

software agents) and/or physically move in a targeted

environment, like robots and drones. These features allow

agents to be exploited in several crucial roles with various

degrees of smartness [31]:

- Decisional assignments: Agents are provided with different

degrees of intelligence that permit them to autonomously

reach their goals and to model their plans on the basis of

their sensed contexts (TLR3, SLR4). So, an agent

paradigm is often exploited as an enabling cognitive

technology that allows choosing the best algorithm to

apply, the most proper coordination model in the context

of collaborative tasks, the most effective realization of

user characterization mechanisms and pattern recognition

[32].

- Operational assignments: Agents are able to autonomously

perform their tasks and, at the same time, to interact with

their environment in an active manner (TLR4). Among

several operational tasks, in the IoT context, agents are

often deputed to service discovery (a crucial task due to a

large number and kinds of available services and

providers, TLR2), intra-extra system communication

(acting as a middleware layer by exploiting common

languages and interfaces, SLR2, SLR5), and interaction

with the real world, e.g. through cyber-physical SOs [33].
- Control assignments: Agents typically monitor the

fulfillment of predefined goals and the respect of some

thresholds, thus determining the safety and

trustworthiness of system/components. In order to realize

these tasks, agents optimize the parameters of given

algorithms or inspect other entities’ behaviors.

Particularly, considering that autonomous systems (whose

spread is daily increasing in the IoT context, e.g.

autonomous cars) contemplate several distinct decision

makers, checking in real-time such agents’ choices

through external monitoring agents is obviously

appreciated. Moreover, different from humans, agents

react much more quickly and are suitable for a plethora of

time-critical applications [65]. Finally, with regard to

security concerns, agents are often used in order to

increase safety, define trustworthiness metrics, and ensure

information and resource flow in dynamic and malicious

IoT environments [34].

Exploiting the aforementioned capabilities and features, the

ABC paradigm is able to fulfill the system-level (SLR) and

things-level (TLR) requirements presented in Section II:

therefore, several agent-based middleware and architectures

[7], [8], [35]-[37], [66] were presented in the past years.

Beside such contributions, a few IoT methodologies [10], [24],

[38]-[40], far from the ABC paradigm, have been proposed.

Table III shows at which development phase the related work

to be introduced next and ACOSO-Meth are placed, and how

(totally, partially or not at all) they support the SLRs and

TLRs in Tables I and II.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

5

TABLE III

COMPARISON OF RELATED WORK (Y = totally supported, P = partially supported, Blank = not supported)

Development phase

(Analysis, Design,

Implementation)

System-Level Requirements Things-Level Requirements

 A D I SLR1 SLR2 SLR3 SLR4 SLR5 SLR6 SLR7 TLR1 TLR2 TLR3 TLR4 TLR5

Agent-oriented

Middleware and

Architectures

[7] P Y Y Y Y P Y Y P

[8] P Y Y Y Y P P Y Y P

[35] Y P Y Y Y P Y P

[36] Y P Y Y Y P Y Y

[37] P Y Y Y Y P Y P

[66] Y Y Y Y P P Y P P

IoT

Methodologies

[9] Y P Y Y Y P Y Y Y

[23] P Y Y Y Y Y P Y P P

[38] P P Y Y P Y Y

[39] P P Y Y P Y Y

[40] Y P Y Y Y P Y Y Y

ACOSO-Meth Y Y Y Y Y Y Y Y Y Y Y Y Y

In particular, it should be noted that ACOSO-Meth is the

only contribution that, fully exploiting the ABC potential,

fulfils all the listed requirements at the same time to our best

knowledge.

B. Agent-oriented Middleware and Architectures

Agent technologies provide useful software abstractions,

independent of a specific implementation (TLR1), which

encourage the development of:

- Agent-based middleware, in order to speed up system

development and prototyping, as well as management and

evolution (TLR4);

- Agent-based architectures, for exploiting the ABC twofold

roles: a technology integrator (agents interoperate at high-

level, hiding the underlying implementation details,

protocols, etc.) and modelling paradigm (SLR6).

In [7], [8], [35]-[37], [66] IoT entities, even deeply

heterogeneous with each other, are virtualized and

homogenized by an “agent” definition (SLR1). Each system

component, e.g., everyday object, sensor, and robot, is

represented by an agent: it communicates with other agents

through well-known specifications (SLR2), and it may be

enhanced with machine learning techniques, pattern

recognition mechanisms and semantic technologies. The latter

are used both for descriptive specifications (service and

resource descriptions) and for prescriptive specifications

(component behavioral control and coordination) [35]: in such

a way, an agent is able to reason over the data, overcoming the

heterogeneities of standards and data formats, which typically

represent significant obstacles for system interoperability

(SLR5). Such sort of “intelligence” makes the agent aware of

its current status, abilities, goals, and environment. The

capability of dynamically elaborating both explicit and

implicit contextual information (SLR4) coming from sensors

and actuators makes an agent indispensable for the provision

of context-aware dynamic services [8]. Moreover, in order to

minimize the human intervention and realize a decentralized

management (see TLR3), an agent is often provided with

autonomic capabilities [69] that allow it to self-protect, self-

heal, self-configure, self-govern and self-optimize. In [7], an

entire toolkit is conceived around the notion of an autonomic

agent aiming to provide adaptive, composite and situated

intensive services. In [36], agents are able to self-compose,

promoting the integration of different applications with the

dynamic re-use of system resources: such issue is obviously

relevant for the IoT scenario, in which there may exist many

resource-constrained components. SOs and related services

composition can be done by agents even through high-level

software interfaces (SLR3), like RESTful web service API

[37], thus avoiding the need for a specific agent-based

middleware solution. In [66], every agent is provided with a

generic plug-in for self-configuring its internal communication

mechanisms and exploiting different communication

protocols, according to the context and other agent

technologies. To summarize, the briefly presented agent-

oriented middleware and architectures fulfill (often just one at

a time) all the SLRs of Table I but they only partially satisfy

SLR6, TLR2 and TLR4. In fact, they exploit the agent-based

modelling but lack a comprehensive development

methodology.

C. IoT Engineering Methodologies

Despite a variety of research efforts that tackle different

specific issues within an IoT system development process, a

full-fledged IoT methodology is missing. There are many

studies which, instead of providing a proper methodology,

collect domain-specific best practices, guidelines, checklists

and templates. For example, Slama et al. [38] and Collins [39]

build up a repository of technology-dependent solutions

coming from the experience in the industrial/business world

and specifically directed to the IoT makers and enterprises. In

fact, they propose reference architectures and guidelines to

make specific-purpose devices interoperable (TLR1) through

abstract data models (SLR5) and high-level software interfaces

(SLR3). Differently, some researchers present general-purpose

approaches. IoT-A [9] is a systematic collection of

architectures, reference models, common definitions and

guidelines that can be used to derive a concrete IoT

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

6

architecture. By means of different views, perspectives and

metamodels, IoT-A aims to offer a unified approach to the

development of IoT systems, in order to promote cross-

domain interaction (SLR2), to support interoperability (TLR1)

and to reduce fragmentation within an IoT context. Most of

the indications provided by IoT-A have inspired the AIOTI

(Alliance for the Internet of Things) [40] reference models,

specifically the domain model. The latter describes IoT

entities and their relationships, by eliciting all the TLRs in the

SO analysis phase. Zambonelli [23] proposes a software

engineering methodology centered on the main general-

purpose concepts related to the analysis, design and

implementation phases of IoT systems and applications. Such

concepts are used to identify the key software engineering

abstractions (SLR1, and SLR3-SLR5) as well as a set of

guidelines and activities that may drive the IoT systems

development. The envisioned methodology, however, lacks

the definition of models and tools to represent different

conceptual and software artifacts. In brief, the existing

methodologies neither completely support the TLRs and

SLRs, nor cover the entire development process.

IV. ACOSO METHODOLOGY

As so far argued, SO development is a very complex and

articulated process: in order to support the SO analysis, design

and implementation phases, we present the ACOSO-Meth

(Agent-based COoperating Smart Objects Methodology). It

intends to integrate within a comprehensive methodology

(SLR6) the ABC paradigm (whose features and related

benefits satisfy the SLRs as argued in Section III-A) and the

agent-oriented modelling and programming techniques

provided by the ACOSO middleware [17], with a special

attention to the TLRs of IoT device, e.g., TLR2 and TLR4.

Doing so, all the IoT development requirements presented in

Section II, at both system- and things-levels, are fulfilled, as

shown in Table III and better elicited in Section IV.D. In

particular, ACOSO-Meth aims to systematically support an

SO development process by means of metamodels placed at

different abstraction levels and completely decoupled from

any specific application context. Such choice provides

generality to the presented methodology and, considering the

plethora of ever-changing IoT scenarios, it is a remarkable

merit. As matter of facts, a less detailed version of the

metamodels presented in the following, and specifically

exploited in Section V to model a SmartBridge providing

structural health monitoring services, has been

straightforwardly used in [70] to model a SmartOffice

(aggregating in its turn a SmartDesk, a SmartProjector and a

SmartWhiteboard) supporting an officer during a user’s daily

working activity. This demonstrates that the proposed

metamodels are domain-neutral and suitable to be effectively

exploited regardless the SO specific scale, purpose or

application context.

As showed in Fig. 2 (diagrams are compliant with Object

Management Group (OMG) Software Process Engineering

Fig. 2. Relationships among ACOSO-Meth metamodels at different

phases

Modelling (SPEM) 2.0 [41]), ACOSO-Meth supports the

analysis phase through a high-level model describing main

basic SO features. Such model is specialized and better

detailed, thus evolving at the design and implementation

phases. In particular:

- at the Analysis phase, a High-Level SO Metamodel is

exploited;

- at the Design phase, an ACOSO-based SO Metamodel

specializes the analysis-level metamodel in order to

model the functional components of the system, their

relationships and interactions; and

- at the Implementation phase, a JACOSO (JADE-based

ACOSO) Metamodel specializes the ACOSO-based SO

Metamodel with respect to a particular implementation

based on the JADE platform [42].

Every phase introduces new features and a higher degree of

detail in the metamodels, maintaining at the same time strong

relations with the higher-level metamodels. This allows the

straightforward transition from the analysis to implementation

phases, seamlessly supporting the translation of high-level

system models into design-level agent-oriented platform-

independent models that, in turn, may be refined into agent-

oriented implementation platform-dependent system models.

A. System Analysis

The metamodel portrayed in Fig. 3 is a very high level

metamodel, since its components may characterize an

ecosystem of SOs [70] in any application domain, e.g., smart

cities, smart factories, and smart homes. In fact, it models the

main aspects of a generic SO/SO ecosystem in a very

straightforward way, sharing similar characteristics with IEEE

P2413 [43], AIOTI [40] and IoT-A [9] reference models. As

matter of fact, main coarse-grained SO concepts (namely SO

physical / virtual representation, SO user, SO service, and SO

device) recur in all the aforementioned models, as well as in

the High-Level SO Metamodel, as shown in Table IV.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

7

TABLE IV
COMPARISON OF MAIN ENTITIES OF SO’s METAMODELS OF

ACOSO-Meth, IEEE P2413, AIOTI and IoT-A.
ACOSO-Meth

High-Level

 SO MM

AIOTI

SO MM

IoT-A

SO MM

IEEE P2413

SO MM

SO Virtual Entity Virtual Entity Virtual Entity

SO Physical
Properties

Thing Physical Entity Physical Entity

SO Device IoT Device Device/Resource IoT Device

SO Service IoT Service Service N/A

SO User User User User

To fully support the SO analysis phase, ACOSO-Meth

High-Level Smart Object Metamodel exposes further features,

reported by means of a UML class diagram in Fig. 3. These

features describe both static (e.g., SO creator) and dynamic

(mainly related to the services provided, e.g., quality-of-

service indicators) SO characteristics.

They are categorized in five main groups:

- SO BasicInfo comprises basic SO information. In detail,

the Status contains a list of variables, given as pairs

<name, value>, that capture the SO state; Location

represents its geophysical position (expressed in absolute

terms by specifying latitude and longitude and/or in

relative terms through the use of location tags);

PhysicalProperty describes a physical property of the

original object without any hardware augmentation and

embedded smartness (it contributes to determining its

scale); FingerPrint comprises immutable SO information

like the SO identifier (or Id, which allows its unique

identification within an IoT system), SOCreator that

creates the SO for personal use, business or research

purposes, SOType represents an SO type, e.g., a smart

pen, smart building, and smart city, and QoSParameters

defines one or more QoS parameters associated to the SO,

e.g., precision, reliability, and availability.
- SO Service models a digital service provided by an SO.

Each service is characterized by a name, description, type

(e.g., sensing and actuation), input parameter type and

return type. Each Service is implemented by one or more

Operations and by zero or more QoSIndicators whose

associated values are provided. In detail, an Operation,

which defines an individual operation that may be

invoked on a service, has a description, a set of input

parameter types necessary for its invocation, and a return

type related to its output value.
- SO User identifies an entity using the services provided by

an SO. In particular, SO Users can be humans

(representing the classical man-machine use relationship),

SmartObjects (representing a less conventional use

relationship, in which SOs take advantage of services

exposed by other SOs and vice versa) or DigitalSystems

(representing a generic digital entity, like a web server,

software agent, robot or a more complex system).

- Augmentation defines the hardware and software

characteristics of a device that allows augmenting the

physical object and making it smart. A device can be

specialized in one of the following three categories: (i)

Computer, which represents the features of a processing

Fig. 3. Analysis Phase: High-Level SO Metamodel

- unit of the SO, e.g., PC, smart-phone, and embedded

computer; (ii) Sensor, which models the characteristics of

a sensor node of the SO; and (iii) Actuator, which models

the characteristics of an actuator node of the SO.

- SO Aggregation supports aggregation among SOs. In

particular, a complex SO (e.g., a Smart City) may

physically or logically aggregate other SOs to provide

more advanced and integrated services.

B. System design

A High-Level SO Metamodel at the analysis level is refined

to obtain an ACOSO-based SO Metamodel (Fig. 4), which

allows, at the design level, agent-based modelling of the

functional components of an IoT system, their relationships

and interactions. An ACOSO-based SO Metamodel is suitable

for modelling both basic IoT building blocks (e.g., basic

devices as sensors and actuators, and smart objects) and more

complex IoT components (e.g., WSNs and RFID systems) and

represents the cornerstone of ACOSO [17], a middleware for

the development, management and deployment of agent-

oriented Cooperating Smart Objects (CSOs). ACOSO

middleware provides an agent-oriented programming model

for effectively realizing CSOs in any IoT application context

requiring distributed computation, proactivity, knowledge

management and interaction among SOs/sensors/actuators,

thus fulfilling both system- and things-levels requirements

identified before. According to the ACOSO-based SO

Metamodel, an SO is modelled as an event-driven, lightweight

and platform-neutral agent, whose lifecycle is specified in

terms of Behavior. Behavior consists of one or more state

machine-based components named Tasks. They can refer to

internal system operations (SystemTask, e.g., SO

shutdown/reboot/standby) required for the management of the

agent lifecycle, or to user-defined operations

(UserDefinedTask) defining specific SO-oriented and/or

application-oriented functionalities of different SOs. SO Tasks

are driven by Events according to the following model [17]:

whenever the SO has to be notified (e.g., an incoming message

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

8

Fig. 4. Design Phase: ACOSO-based SO Metamodel

or a user request has arrived, an internal system operation is

over), a specific event is created; hence, the event activates

one or more Tasks according to its own event type and event

source. Events are classified into: (i) InternalEvent (the event

source is an SO internal component), raised to notify

information/request/error messages coming from an internal

SO module; (ii) ExternalEvent (the event source is an SO

external entity), raised to notify information/request/error

messages sent from entities external to the SO; (iii)

DeviceEvent (the event source is an SO device), raised to

notify information/error messages produced by the SO

sensors, actuators, etc.; and (iv) ServiceEvent, raised from

internal, external or device event sources, which specifically

drives UserDefinedTasks to define application-oriented

functionalities. The ACOSO-based SO metamodelling entities

(Fig. 4) are categorized into four main groups:

- SO Basic Info: Basic information is spread between the SO

itself and KBManagementSubsystem. The latter handles

information pertaining its global current state, inference

rules and other useful data that can be shared among

tasks.

- SO Service: Services provided by SOs are

encapsulated/implemented in specific application-level

UserDefinedTasks. They are highly customizable, easily

programmable, and interact with other SO components

through ServiceEvents.

- Augmentation: the DeviceManagement Subsystem allows

the management of sensors, actuators and devices

embedded into SO. The interactions with such

augmentation devices, regardless of their specific

technology or protocol, are conducted through

DeviceEvents.

- SO Communication: the

CommunicationManagementSubsystem provides a

common interface enabling communication toward the

SO itself (through InternalEvents) or toward external

entities (by means of ExternalEvents).

- Fig. 5. JACOSO three-layered architecture

C. System Implementation

In order to obtain the metamodel for supporting the

implementation phase, we have implemented the ACOSO-

based SO metamodel by using the JADE platform [42]. JADE

is selected mainly for the following reasons: (i) it is an FIPA-

compliant, well-known and Java-based agent middleware; (ii)

it is open-source, has a spread community and, over the years,

has evolved (e.g., JADEX [67], JADE-LEAP) to run atop

novel and heterogeneous computing systems such as Java

Micro Edition-enabled and Android-supported devices, as well

as on sensor nodes constituting heterogeneous WSNs (Fig. 5);

(iii) its middleware provides an effective agent-oriented

management/communication infrastructure, that comprises an

Agent Management System (AMS), ACL-based message

transport system and Directory Facilitator (DF). In particular,

DF supports agent service discovery, and has been extended

with an agent-oriented interface [44] to allow SOs to register,

index, and search on the basis of their specific functional

and/or non functional features (e.g., Location, FingerPrint, and

provided Services) introduced in the High-Level SO

Metamodel of Section IV-A (these features are represented

through metadata descriptions in a JSON format, which is

lightweight, easy to read and to manually write, as well as to

analyze and to automatically generate). Indeed, differently

from general-purpose JADE agents, SOs have a strong

“situatedness” and may seamlessly appear and disappear, but

they may also evolve on the basis of some learning models or

extemporary interactions with other SOs. An enhanced

Directory Facilitator, providing a dedicated and dynamic SO

discovery service, is thus fundamental. The metamodel shown

in Fig. 6 refers to JADE-based implementation of the

ACOSO-based SO Metamodel, named hereafter JACOSO.

Considering the inheritance relationship from the ACOSO-

based SO model and the JADE components, hereinafter we

present only the implementation components that characterize

the JACOSO SO metamodel with reference to the related

macro-components:

- SO Basic Info: JACOSO SO basic information is spread

between the JADE-based agent itself and an internal

knowledge base. The latter contains also the current

values of the variables constituting the inference rules

required for an SO decision-making process. Information,

inference rule variables and configurations that need to be

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

9

provided at the SO instantiation (e.g. for the JACOSO SO

devices), are set by ConfiguratorTask.

- SO Service: services are defined as UserDefinedTasks

implemented as JADE-based behaviors. The application

logic encapsulated in UserDefinedTasks can exploit the

JACOSO SO inference rules required for the SO decision-

making process by interacting with InferenceRuleTask.

- Augmentation: DeviceManager, by means of different

DeviceAdapters, interfaces JACOSO SO with

heterogeneous augmentation devices. In particular,

BMFAdapter and SPINEAdapter allow the management

of Wireless Sensor and Actuator Networks (WSANs) and

Body Sensor Network (BSN) respectively through BMF

(Building Management Framework) [45] and SPINE

(Signal Processing In-Node Environment) [46]

frameworks. BMF is a domain specific framework,

expressly conceived for the management of WSAN in the

context of environment monitoring and building

automation; while SPINE is designed for efficient

management of BSNs. Both SPINE and BMF comprise

networks of heterogeneous devices (e.g., Shimmers,

Telos-B and MICA2 sensor motes, Android-based

devices, and conventional computers) based on typical

IoT standards (e.g., IEEE 802.15.4, ZigBee, 6LowPan,

Bluetooth) and they interact with JACOSO by means of

the related deviceAdapters.

- SO Communication: CommunicationManager enables

JACOSO SO to flexibly support different communication

patterns by just implementing appropriate

CommunicationAdapters. In particular,

ACLCommunicationAdapter allows a direct message

passing of ACLMessages [42] between a sender and

receiver; TopicPSAdapter, instead, realizes an

asynchronous one-to-may communication in which

ACLMessages sent by a publisher are only received from

those who have subscribed the related topic and operate

in the same platform. JACOSO guarantees high

versatility, allowing the implementation of SOs and IoT

systems of different scales and within different

application scenarios just by re-using and/or re-

implementing some components. Such components that

can model new SO functionalities are indicated as hot

spots and are (i) ConfiguratorTask that sets up specific

SO Basic Info, SO components and Tasks at the SO

instantiation time; (ii) UserDefinedTasks that encapsulate

a specific SO application logic; (iii)

CommunicationManager, because it should be set up to

handle new CommunicationAdapters realizing other

communication patterns (e.g., web services and sockets)

beside or instead of the existing ones (direct message

passing and publish/subscribe); and (iv) DeviceManager

if other DeviceAdapters are introduced to interface

JACOSO SO with specific devices. On the opposite,

JACOSO architectural blocks that do not need to be

changed are the so-called frozen spots.

Fig. 6. Implementation phase: JACOSO SO Metamodel

D. Discussion

From analysis to implementation, SO-related concepts

evolve, being refined from high-level abstractions to

implementable software components. In Table V, such

concepts are listed and hence their mapping to different

development phases of analysis, design and implementation is

presented. First, it should be noted that an SO at the analysis

phase is described as a very abstract entity, becoming an agent

only at the design phase: since the High-Level SO Metamodel

is unbound from any paradigm, it may be used as a reference

model, similar to AIOTI [38] and IoT-A [18] ones. Moreover,

the abstract SO User introduced at the analysis phase is further

replaced by an agentified user (ACOSO SO, if it aggregates

and exploits other SOs) at the design phase and by a JADE

agent at the implementation phase (JACOSO SO, if it

aggregates and exploits other SOs). SO Basic Info,

individually described in a High-Level SO Metamodel, is

spread between the SO itself and its knowledge base in the

design and implementation phases. Regarding the

augmentation, SO devices are simply reported at the analysis

phase while their management (DeviceManagementSubsystem

and DeviceEvent) and actual interfacing (DeviceAdapters and

DeviceManager) are elicited respectively in the ACOSO-

based and JACOSO SO metamodels. SO communication

features, not explicitly highlighted in a High-Level SO

Metamodel, are introduced at the design and implementation

phases. Indeed, an ACOSO-based SO Metamodel presents a

CommunicationManagementSubsystem exploiting

ExternalEvents and InternalEvents while a JACOSO-based

SO Metamodel introduces the CommunicationManager,

customizable CommunicationAdapters, and FIPA-compliant

ACLMessages infrastructures. Finally, an SO Service concept

is first abstractly presented in terms of operations and QoS

indicators at the analysis phase and then refined as an

application-level UserDefinedTask and ServiceEvents in the

design and implementation phases.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

10

TABLE V
EVOLUTION OF THE SO MAIN CONCEPTS FROM THE ANALYSIS TO THE IMPLEMENTATION PHASE

Concept

High-Level SO

Metamodel

(Analysis Phase)

ACOSO-based SO Metamodel

(Design Phase)

JACOSO SO Metamodel

(Implementation Phase)

SmartObject
High-level (conceptual)

entity
ACOSO Agent, Behavior, Task JADE Agent, JADE Behaviors, Task

User SO, human, digital system Agentified user, ACOSO SO JADE Agent, JACOSO SO

SO Basic Info
FingerPrint, Location,

Status, PhysicalProperty
(Agent) SmartObject, KBManagementSubsystem

(JADE Agent) SmartObject,

InferenceRuleTask variables

Augmentation Device DeviceManagementSubsystem, DeviceEvent BMFAdapter, SPINEAdapter, DeviceManager

SO

Communication
Not explicitly highlighted

CommunicationManagementSubsystem, InternalEvent,

ExternalEvent

TopicPSAdapters, ACLCommunicationAdapter,

CommunicationManager, ACL Messages

SO Service Service UserDefinedTask, ServiceEvent
UserDefinedTask, InferenceRuleTask,

ServiceEvent

With regard to the SLRs and TLRs fulfilment, ACOSO-

Meth provides a systematic and full-fledged approach (SLR6)

to the SO development, exploiting (i) the agent abstraction to

virtualize and homogenize the different SOs to be developed

(SLR1); (ii) a flexible and modular communication

infrastructure (comprising at design phase the

CommunicationManagementSubsystem and at implementation

phase the Communication Manager with its

CommunicationAdapters) to enable voluntary communication

among different paradigms and data formats (SLR2 and SLR5);

(iii) a customizable augmentation infrastructure (comprising

the DeviceManagementSubsystem at design phase and

DeviceManager with its DeviceAdapters) to enable

interoperability among heterogeneous IoT devices (TLR1);

(iv) well-known FIPA-compliant interfaces and ontology in

order to straightforwardly access SO functionality, historical

and contextual information (leveraging at the design phase on

the KBManagementSubsystem and at the implementation

phase on SO internal knowledge bases, SLR3 and SLR4); (v)

the ACOSO-middleware (in particular its domain-neutral

metamodels and programming techniques) and the JADE

facilities (e.g., AMS and DF) to speed up SO prototyping and

evolution (TLR4), and support their augmentation variation

(TLR2) and decentralized management (TLR3); and (vi) a

revised scale concept to unambiguously characterize SO-based

IoT systems and possibly enable their comparison (SLR7 and

TLR5).

V. CASE STUDY: SMART UNIVERSITY CAMPUS

In this section, we present the application of ACOSO-Meth

for engineering a complex Smart University Campus IoT

ecosystem, specifically prototyped at the University of

Calabria and named Smart UniCal. Several references to

Smart University/Smart Campus scenarios are available in the

literature [47-53] and, regardless of particular goals or

implementations, they all present “comfortable and user-

tailored environments, rich in innovative services”.

Our Smart UniCal system (Fig. 13) is an aggregated SO

composed by a Smart Bridge (dotted yellow bordered area)

and Smart Departments (yellow bordered area), spanning

multiple adjacent buildings, which contains smart rooms such

as Smart Lab and Smart Office. Smart UniCal SOs have been

characterized respectively in “L”arge (i.e., the SmartBridge),

“M”edium (i.e., the SmartDIMES) and “S”mall scale (i.e., the

SmartSenSysCalLab) SOs, according to the considerations

reported in Section II. In particular, Table VI reports the list of

services provided by Smart UniCal SOs:

- SmartBridge provides a cyber-physical service for a

structural health monitoring [54] purpose;

- SmartDIMES (Department of Informatics, Modelling,

Electronics and Systems Engineering), namely a Smart

Department, provides a cyber-physical service to

remotely control department spaces and facilities, e.g.,

HVAC and lights, aiming to save energy; and

- SmartSenSysCalLab, namely a Smart Lab, provides cyber-

physical services to laboratory users who are supported in

their daily activities.

It should be noted that the domain-neutrality of the

ACOSO-Meth and ACOSO middleware allows supporting the

development of the different kinds of Smart Unical’s SOs and

related services by keeping the same methodological approach

and by exploiting the same metamodels and programming

techniques. In the following, the descriptions of the

SmartBridge in the analysis, design and implementation

phases are provided according to the ACOSO-Meth. Finally,

the Smart UniCal performance evaluation is presented.

A. Analysis

Smart Bridge (Fig. 14) is a large-scale SO physically based

on the “Pietro Bucci” bridge, which crosses the Unical campus

for 1.22 Km, linking together all the 14 university departments

(spread among different building units called cubes). Its

Administrator can query its status, specifically the currently

recorded vibration, or use the smartVibration service for

monitoring the bridge’s structural health [54]. Service

smartVibration allows the analysis of the vibrations generated

by the transit of vehicles and pedestrians upon the bridge.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

11

TABLE VI
SMART OBJECTS CONSTITUTING SMART UNICAL ALONG WITH

THEIR PROVIDED SERVICES

Scale Smart Object Service Description

S SmartSenSysCalLab

smartWellness
Correct lifestyle

suggestions

smartComfort

Workplace

conditions
improvement

M Smart DIMES smartMonitoring

Indoor

environmental

monitoring

L Smart Bridge smartVibration
Bridge vibrations

monitoring

Fig. 13. The Smart UniCal infrastructure: the SmartBridge part (dotted

yellow bordered area) which crosses the SmartDIMES (yellow bordered

area with building identification codes).

Fig 14. High-Level SmartBridge Metamodel at analysis phase.

Fig 15. ACOSO-based SmartBridge Metamodel at design phase.

If the sensed vibrations reach warning thresholds, the service

notifies such event to the Administrator. In order to provide

such service, SmartBridge is augmented through different

devices, including accelerometer sensor nodes and laptop base

stations,coordinated by a PC acting as a main coordinator. In

more details, smartVibration service has two basic operations:

getVib that exploits accelerometer sensors on the bridge to

accurately sense the vibrations, and vibAnalysis that exploits

SmartBridge’s computing devices to elaborate the raw

vibration data acquired and to compare them with the defined

thresholds.The getVib operation has a response time in the

order of second while vibAnalysis detects all the vibrations

exceeding the warning thresholds with 100% accuracy.

B. Design

SmartBridge’s High-Level metamodel is refined at the

design phase, resulting in Smart Bridge’s ACOSO-based

metamodel as shown in Fig. 15. In particular, SmartBridge is

modeled as an ACOSO-based agent and SO Users as generic

agents. The smartVibration service and the vibAnalysis and

getVib related operations are modeled as UserDefinedTasks

(smartVibrationTask, vibAnalysisTask and getVibTask

respectively) driven by the corresponding ServiceEvents

(getVibEvent and vibAnalysisEvent). The

vibrationSensingEvent, instead, allows interfacing the

accelerometer sensors with SmartBridge, e.g., providing the

raw vibration sensed data.

C. Implementation

Smart Bridge’s ACOSO-based metamodel is refined at the

implementation phase, resulting in Smart Bridge’s JACOSO-

based metamodel (Fig. 16). In particular, in this phase the

generic agentified SmartBridge is specialized into a JADE-

based agent, as well as the agentified SO User.

ACLCommunicationAdapter allows SmartBridge exploiting a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

12

direct ACL-based messages exchange mechanism.

SmartBridgeInferenceRuleTask contains both inference rules

required for a SmartBridge decision-making process (Table

VII) and current values of the variables constituting such

inference rules. UserDefinedTasks (smartVibrationTask,

vibAnalysisTask and getVibTask) implementing

smartVibration and related events (vibAnalysisEvent and

getVibEvent) are modeled as JADE Behaviour, while

BMFAdapter interfaces SmartBridge with its devices.

Interaction diagram of Fig. 17 illustrates the methods realizing

the Smart Bridge’s Smart Vibration service.

D. Technical implementation

In the following, some key technical implementation details

of the Smart UniCal system, related to the used IoT devices

and to the implemented JACOSO-based software components,

are described. In particular, Fig. 18 (a-c) shows some technical

deployment snapshot of the IoT devices of SmartBridge,

SmartDIMES and SmartSenSysCalLab. Table VIII shows the

characteristic of main hardware/software devices. Such

heterogeneous IoT devices along with Android-based devices

and conventional computers adopting different technologies

(e.g., IEEE 802.15.4, Wifi, and Bluetooth) and managed by

different frameworks (i.e., SPINE and BMF) have been made

interoperable through the related deviceAdapters provided by

the ACOSO middleware, independently from low-level

network protocols or different communication paradigms

through the exploitation of the related

communicationAdapters. We focus on the implementation of

the following services: (1) smartVibration service of

SmartBridge, (2) smartMonitoring service of SmartDIMES,

and (3) smartWellness and the smartComfort services of

SmartSenSysCalLab.

Fig 16. JACOSO-based SmartBridge Metamodel at implementation phase.

TABLE VII
EXAMPLE OF A RULE EMBEDDED IN THE SMARTBRIDGE

INFERENCERULETASK

Rule# Description

1 Alarm←
currentVibration_transversalAxis>vibrationThreshold_transversalA

xis v

currentVibration_longitudinalAxis>vibrationThreshold_longitudina
lAxis

Fig 17. Interaction diagram of the Smart Bridge’s Smart Vibration service

1) smartVibration is based on the data gathered by 90

Crossbow MICA2 devices. Every 27 meters, two of them are

deployed facing each other and laying on a metallic beam that

transversally passes through the axis of the bridge (Fig. 18(a)).

Such network of Crossbow MICA2 devices is managed by 9

notebooks (placed in rooms in front of the bridge such that

each notebook can manage data of its closest 10 motes),

hosting the BMF application and collecting the data, while a

central PC acts as a main coordinator and hosts the

SmartBridge SO application. Each notebook works in a

different subnetwork and all the notebooks interact with the

main coordinator through an IP-based WiFi UniCal Intranet;

Crossbow MICA2 devices, instead, are connected to their

associated notebook through the 802.15.4 wireless protocol.

Totally, 20 non-overlapping subnetworks have been used to

realize this service.

2) smartMonitoring is based on 43 Telos-B-based indoor

environmental sensors, i.e., humidity, temperature, light, and

presence sensors, and on 20 Telos-B-based actuators (i.e.,

smart plugs) deployed within 18 DIMES rooms (Fig. 18(b)).

In detail, at least two devices (one sensor and one actuator)

have been deployed for each of the 18 monitored

environments, located in different cubes. Each monitored

environment is associated to a laptop (the environments

located at the same floor of the same cube share the same one)

hosting a base station and running the BMF application

(totally, ten laptops have been used and interconnected

through 10 overlapping subnetworks). Each laptop

interoperates with the associated sensors/actuators through the

BMFAdapter: it allows the collection of sensed data from the

sensing devices to the base station, and the forwarding of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

13

commands from a base station to actuating devices. The

SmartDIMES application is hosted in a separate laptop. The

SmartDIMES administrator, through such application, can

transparently manage all the environments and send both

request and configuration messages to the deployed Telos-B

motes and smart plugs.

3) smartWellness provides customized and real-time hints

to SenSysCal lab users by displaying notifications on their

personal smartphones and/or laptop monitors. Data coming

from 12 light/presence Telos-B sensors (one for each of the

ten SenSysCal desktops, one at the entrance and one in the

middle of the lab) and from 30 users wearable Shimmer

sensors (three for each user, placed at user wrist, waist and

leg) are forwarded by means of BMFAdapter (environment

data) and of SPINEAdapter (wearable data), to a base station.

The base station is a laptop running the SmartSenSysCalLab

application that collects the overall data, elaborates them and

sends back customized notifications to users (specifically, on

their Twitter profile or on the computer screen placed on their

desktop). The same base station, in the context of a

smartComfort service and through BMFAdapter, periodically

queries the light intensity value to every Telos-B sensor

deployed atop one of the 12 user desktops. In case of poor

lighting, the corresponding desktop lamp is switched on

through its smart plug. The aforementioned devices that

contribute to realize the SmartSenSysCalLab services (Fig.

18(c)) are connected to the local laboratory subnetwork.

E. Performance Evaluation of Smart UniCal

As presented in Section IV, ACOSO-Meth is based on a

JACOSO SO Metamodel for system implementation,

deployment and execution. In the following, the Smart UniCal

performance evaluation is presented to assess the suitability of

the ACOSO-Meth implementation phase in actually

supporting efficient small-, medium- and large-scale IoT

systems. Indeed, SmartBridge, SmartDIMES and

SmartSenSysCalLab SOs and their aggregated IoT devices,

are evaluated when providing their specific services (see

below). However, in order to define the proper scenario size

(number of SOs and their distribution in different

subnetworks) that effectively enables the developed services,

preliminary tests were conducted to evaluate SOs

performance, thus analyzing possible bottlenecks (Fig. 19) in

the information exchange (IE) phase. Please note that the

deployment stage and performance evaluation require a

significant effort, especially due to the number of SOs

involved: fortunately, we can leverage on our previous

experience in the fields of WSNs and cyber-physical systems

[45, 46, 68] to speed up the identification of operation

modalities and performance indices, as well as the SO

monitoring and data gathering.

In particular, we considered SOs exchanging 2KB fixed

length simple FIPA-compliant data messages by following

either a Client/Server (C/S) or a Peer-to-Peer (P2P) paradigm.

As some services are intrinsically centralized or distributed,

they can be implemented following either a C/S or a P2P

paradigm. Moreover, we considered IoT device data sources

(or simply data sources) with either stochastic normal

distribution (N, with mean = 0.5 msg/s and variance = 0.2

msg/s) or deterministic (D, 1 msg/s) message generation rate

(MGR) models. Given the communication paradigms and

MGR models, we focused on two fundamental network-

oriented performance indices for distributed SOs when

providing specific services collaborating with each other: (i)

message delivery ratio (MDR); and (ii) round trip time (RTT).

In Fig. 19, however, only the RTT values calculated in small-

(SmartSenSysCalLab), medium- (SmartDIMES), and large-

scale (SmartBridge) scenario are shown, as the MDR values

are always 100%, being JADE communications based on TCP

connections, thus fully reliable. Fig. 19(a) highlights how the

increase of the involved SOs in the small-scale scenario

adversely affects RTT, which rapidly grows due to the

network congestion. In Fig. 19(b), differently from Fig. 19(a),

where SOs are supported by just one network within a squared

grid of side 10 m, SOs are now distributed in 10 different sub-

networks within a squared grid of side 250 m. In such a

deployment area, it happens that adjacent networks interfere

with each other, since their coverage radii overlap.

Nevertheless, a better SO distribution implies less congestion

and lower RTT. For example, the RTT of 100 SOs distributed

in 10 subnetworks is definitively lower than the RTT of the

same number of SOs deployed in one network. Finally, in the

large-scale scenario of Fig. 19(c), the SOs are distributed in 20

non-overlapping subnetworks within a squared grid of side

1000 m. Differently from the small- and medium-scale

scenarios, in Fig 19(c), it can be noted that increasing the

number of SOs has a little impact on RTT. Compared to the

same configuration of a medium-scale scenario, RTT values

are lower. In fact, in a large-scale scenario, networks are

deployed in a wider area. Thus, they do not interfere with each

other and consequently both congestion and RTT decrease.

TABLE VIII

MAIN HW/SW CHARACTERISTICS OF THE IOT DEVICES USED TO
IMPLEMENT SMART UNICAL SOs AND THEIR SERVICES.

Device Main characteristics SO/Services

MICA2

OS: TinyOS.

CPU: Atmel Atmega 128L (8 bit bus,
8MHz clock).

Memory: 4K Ram 128K Flash 512K

EEPROM.
Radio: 802.15.4 compatible CC2420.

Expansion board (2-axis

accelerometers).
Battery: 2X AA batteries (4000-5000

mAh in total, depending on the cell)

SmartBridge/
smartVibration

Telos-B

OS: TinyOS.
CPU: TI MSP430F1611 (16-bit bus, 4-

8MHz clock).

Memory: 10K Ram 48K Flash 1M
EEPROM.

Radio: 802.15.4 compatible CC2420.

On-board sensors (humidity,
temperature light sensors).

Battery: 650 mAh

SmartDIMES/

smartMonitoring

SmartSenSysCalLab/

smartComfort

Shimmer

OS: TinyOS.

CPU: TI MSP430F1611 (16-bit bus, 4-
8MHz clock).

Memory: 10K Ram 48K Flash.

Radio: 802.15.4 compatible CC2420
On-board sensors (3-axis

accelerometer)

Battery: 650 mAh

SmartSenSysCalLab/

smartWellness

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

14

For example, given 50, 70 and 100 SOs, RTT values in the

large-scale scenario significantly decrease by comparing those

in the medium-scale scenario. The aforementioned SOs

performance evaluation has provided important insights to

define, for each SO and for each SO service, the best operation

modalities in the Smart UniCal ecosystem. Such modalities

are detailed in Table IX by specifying: the number of

embedded devices (#EDev), number of involved subnetworks

(#SubNets), evaluation time (EvTime), message length (ML)

and deterministic message generation rate (D-MGR). Given

the SOs and SO service operation modalities as shown in

Table IX, the Smart UniCal performances have been evaluated

in terms of MDR and RTT, IoT devices energy and memory

consumptions (base stations are powerful and less constrained

than motes and they are typically plugged to the mains

electricity, such that they can be easily recharged), and the

provided results reported in Table X. Such performance

indices have been chosen to characterize SO performance both

functionally and non-functionally: indeed, they provide useful

insights about services responsiveness and reliability

(according to the performance indices previously outlined to

describe the IE phase), but also about the required resources

(energy and memory, in particular). The latter is a relevant

aspect considering that most of the IoT devices are resource-

constrained.

(a) Smart Bridge: arrangement of two MICA2

motes (reported in the picture with the codes

MTS310#1 and MTS310#3) on the bridge axis,

with the goal of monitoring the bridge vibrations

generated by the transit of vehicles and pedestrians.

Sensed data are locally collected by a notebook

acting as a base station (MTS310#2).

(b) SmartDIMES: arrangement of some Telos-B

motes (TB#06-TB#08) providing real-time

information about the presence around them and the

room lights’ current status (on/off). Sensed data are

locally collected by a notebook acting as a base

station (NB#02). The smart plug (SP#11) can switch

on/off the projector and the room lights in case of

energy waste.

(c) SmartSenSysCalLab: three Shimmer motes

(SH#10-SH#12) send their data to the BSN

coordinator (TT#02) to recognize current user

posture. The Telos-B mote (TB#01) placed atop

the user desktop provides information about the

current light intensity: if it is dim, the smart plug

(SP#01) turns the lamp on. All the sensed data

are collected by a base station.

Fig 18. Snapshot of the IoT devices of (a) SmartBridge, (b) SmartDIMES and (c) SmartSenSysCalLab

(a) Small Scale: RTT vs. SO number (b) Medium Scale: RTT vs. SO number (c) Large Scale: RTT vs. SO number

Fig 19. SmartSenSysCal, SmartDIMES, and SmartBridge performance evaluation considering different communication paradigms (C/S or P2P) and MGR

models (D or N)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

15

TABLE IX
 THE OPERATION MODALITIES OF THE SMART UNICAL SMART OBJECTS

SO Service #EDev #SubNets Operation Modality
EvTime

(h)

ML

(KB)

D-MGR

(msg/s)

SmartSenSysCalLab

(small scale)

smartComfort 25

1

Periodically (every minute), each desktop light

intensity is acquired and sent to the base station
8 2 1

smartWellness 42
Periodically (every minute), environmental and body

data are acquired and sent to the base station

SmartDIMES

(medium scale)
smartMonitoring 73 10

Periodically (every 30 seconds) environmental data

acquired and sent to the base station
12 2 1

SmartBridge

(large scale)
smartVibration 100 20

Both periodically (every minute) and occasionally

data are acquired and sent to the base station
12 2 1

TABLE X

SMART UNICAL PERFORMANCE EVALUATION

Service MDR
RTT

(s)

Residual

Energy

Residual

RAM-ROM

smartComfort

(SmartSenSysCalLab)
100% 0.046 85% 63%-28%

smartWellness

(SmartSenSysCalLab)
100% 0.059 57% 56%-17%

smartMonitoring

(SmartDIMES)
100% 0.513 48% 60%-26%

smartVibration

(SmartBridge)
100% 0.507 87% 78%-12%

The results reported in Table X confirm the RTT trends shown

in Fig. 19 and JADE message system’s high reliability, being

based on the TCP protocol. Then, the increase of #EDev

adversely affects both RTT, which grows due to the network

congestion, and energy consumption, especially if also the

evaluation time increases (in the case of smartVibration

services, the residual energy is only slightly nicked since

MICA2 capacity is bigger than those of Shimmer and Telos-B

ones). Moreover, EDev deployment on different SubNets

affects RTT more than #SubNets. In particular, by comparing

the RTT values of SmartSenSysCalLab and SmartDIMES, it

should be noted that when #EDev scarcely doubles, RTT

increases tenfold; however, if there is no overlapping among

the SubNets, then the performances are quite stable, even if

#EDev and #SubNets increase, as in the case of SmartBridge.

SO lifetimes varies depending on the provided service,

devices’ batteries, operation modalities and scenario

configurations as reported in Tables VIII and IX. In particular,

we have defined the Residual Energy of an SO X providing a

service s by exploiting (all or a set of) its different Di devices

as

RE (Xs)=min {batteryD1…..batteryDn}

where batteryDi is the amount of power currently left in a Di’s

battery that enables its correct working [71] in the context of

service provision. Given such definition, RE(Xs) can vary

from 100% (all SO devices involved in the service provision

are full of energy) to 0% (at least one SO device has an energy

shortage preventing it from correct working). With regard to

the Smart Unical and testing, for the sake of simplicity, each

SO in providing only a single service, SO service provision

varies from 18 hours (SmartSenSysCalLab providing only the

SmartWellness service) to 92 hours (SmartBridge providing

only the SmartVibration service). Finally, memory

consumption results highlight that IoT devices have enough

free memory to deploy other in-node services or customized

extensions.

VI. CONCLUSIONS

Using an engineering methodology is widely recognized as

a fundamental practice in any system development process,

since the manual and non-systematic application of complex

techniques, methods and frameworks would very likely reduce

effectiveness, increase development time and tend to be error-

prone. The need for a full-fledged development methodology

is particularly crucial in the case of IoT systems development,

which exposes specific requirements (both at system- and

things-level) to enable the dynamic cooperation among cyber-

physical SOs over heterogeneous networks and the provision

of even complex cyber-physical services. In this paper, such

requirements have been elicited and inserted in a comparison

framework (which may be notably reused to compare future

work in the field), showing that, according to the state-of-the-

art, a comprehensive methodology that systematically fulfils

the needs for the SO-based IoT systems development still

lacks. In such a context, agent-based computing represents a

very effective paradigm for the modelling of SO-based IoT

systems as well as an efficient technology for their

development.

Thus, in this paper, the agent-oriented ACOSO-Meth

methodology is presented and applied for engineering SO-

based IoT systems of different complexities and scales. At the

analysis phase, ACOSO-Meth provides a High-Level SO

Metamodel that shares main features with emerging IoT

architectural standards such as IEEE P2430, AIOTI and IoT-A

domain models. At the design phase, the agent-oriented

ACOSO-based SO Metamodel derived from the High-Level

SO Metamodel is used. The ACOSO-based SO Metamodel

supports an agent-based modelling of functional system

components, their relationships and interactions. Finally, at the

implementation phase, JACOSO (the JADE-based version of

the ACOSO-based SO Metamodel) is exploited to implement

SO-based systems through the well-known JADE platform. In

this paper, ACOSO-Meth has been used (from the high-level

system design to the concrete JACOSO-based

implementation) to develop the Smart UniCal IoT system.

Smart UniCal is a complex case study as it comprises

heterogeneous SOs of different scales, is deployed in a real

scenario (the University of Calabria in Italy) and provides

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

16

cyber-physical services related to structural, indoor space and

wellness monitoring. In particular, the systematic application

of ACOSO-Meth has significantly facilitated and speeded up

all the Smart UniCal development phases: (a) the High-Level

SO Metamodel supports the abstract analysis of the main

Smart UniCal SO features and functionalities, facilitating their

identification; (b) the agent-oriented design provides the

adequate flexibility and effectiveness to fulfil the fundamental

requirements at both system- and things- levels of Smart

UniCal; finally, (c) the JADE-based implementation allows a

rapid and efficient prototyping of the Smart UniCal

ecosystem; this just demands the only effort of programming

(by extension) the application-specific JACOSO hotspots that

represent only 25% of the overall lines of code constituting the

Smart UniCal software. It follows that, because of such

modular and extensible approach, most of the code does not

need to be customized according to the particular application

requirements, but it can be directly reused. In brief, the

ACOSO-Meth and its related ACOSO middleware provide

effective and domain-neutral design and programming models

along with efficient tools for the actual and full-fledged

engineering of the Smart Unical in terms of a multi-agent

system, significantly facilitating and speeding up all the

development phases. Such benefits are not affected by the

hand-made transitions among the analysis, design and

implementation phases: an automatic transition, whenever

possible, may speed up the ACOSO-Meth application while

keeping the same effectiveness. Moreover, we have carried

out a thorough performance evaluation of the Smart UniCal

system. The performance evaluation provides (i) general

results, highlighting significant issues related to the number of

SOs and to the distribution of SOs among the subnetworks of

the whole system, and (ii) specific results, acknowledging the

efficiency of JACOSO middleware for the development of

SO-based IoT systems. Moreover, the result analysis indicates

that the definition of SO operating modes (e.g., tuning of

system parameters, and choice of communication paradigms)

should take into account the target scenario, by following

therefore an application-driven approach.

Our on-going work is devoted to the development of the

following strategic Smart UniCal services: an RFID-based

people counting/identification system (smartTrack service) for

SmartBridge, an RFID-based inventory system for

SmartDIMES valuable stuff (smartInventory service), and an

NFC-based system to automatically record SenSysCal users'

attendances and their daily timetable (smartAttendance

service). Future work is already planned towards six main

directions: (i) Extending the current ACOSO-based approach

to support the BDI paradigm [67], the topic-based

communication among different platforms [42] by means of

dedicated “mediator” agents, and creation of a tool for the

automatic models instantiation and code generation; (ii)

Integrating Cloud/Edge computing with the ACOSO-based

approach to enhance system scalability and enable more

critical real-time system responses [55, 72, 74]; (iii) Defining

a simulation-driven phase after the design phase to assess an

ACOSO-based design (both from functional and non-

functional perspectives) before its actual implementation and

deployment [56, 57]; (iv) Incorporating formal methods, e.g.,

Petri nets [58]-[63], for systematic design and property

verifications of IoT systems into our design phase; (v)

Defining mechanisms to automatize, where possible, the

transition among the different phases constituting the

methodology, thus speeding up the ACOSO-Meth application

while keeping the same effectiveness, and (vi) Using data

validation models for IoT domains [64, 73].

ACKNOWLEDGMENT

This work has been carried out under the framework of

INTER-IoT, Research and Innovation action - Horizon 2020

European Project, Grant Agreement n.687283, financed by the

EU.

REFERENCES

[1] M. Zhou, G. Fortino, W. Shen, J. Mitsugi, J. Jobin, and R.
Bhattacharyya, “Guest Editorial Special Section on Advances and

Applications of Internet of Things for Smart Automated Systems,” IEEE

Trans on Automation Science and Engineering, vol. 13, no. 3, pp. 1225-
1229, July 2016.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010
[3] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart

objects as building blocks for the Internet of things,” IEEE Internet

Computing, vol. 14, no. 1, pp. 44–51, Jan. 2010.
[4] M. Bal, W. Shen, Q. Hao, and H. Xue, “Collaborative Smart Home

Technologies for Senior Independent Living: A Review,” Proc. of 2011

15th Int’l Conf. on Computer Supported Cooperative Work in Design
(CSCWD 2011), Lausanne, Switzerland, pp. 481-488, June 8-10, 2011.

[5] C. Yang, W. Shen, X. Wang, “Internet of Things in Manufacturing: An

Overview,” IEEE SMC Magazine, 2016.

[6] F. Zhang, F. Liu, M. Zhou, A. Shami, W. Shen, “An IoT Based

Monitoring System Framework for Continuous Casting,” IEEE Internet
of Things Journal, 2016.

[7] A. Katasonov, et al., “Smart Semantic Middleware for the Internet of

Things,” ICINCO-ICSO 8, pp. 169-178, 2008.
[8] P. Vlacheas, et al., “Enabling smart cities through a cognitive

management framework for the internet of things,” Communications

Magazine, IEEE, vol. 51, no.6, pp. 102–111, 2013.
[9] A. Bassi, et al., “Enabling things to talk,” Springer, 2013.

[10] M. Luck, P. McBurney, C. Preist, “A manifesto for agent technology:

Towards next generation computing,” Autonomous Agents and Multi-
Agent Systems, vol. 9, pp. 203–252, 2004.

[11] M. Pipattanasomporn, F. Hassan, and S. Rahman, “Multi-agent systems

in a distributed smart grid: Design and implementation”, Power Systems
Conference and Exposition, 2009. PSCE'09. IEEE/PES. IEEE, 2009.

[12] E. Oliveira, K. Fischer, and O. Stepankova. “Multi-agent systems: which

research for which applications,” Robotics and Autonomous Systems

vol. 27, no.1, pp. 91-106, 1999.

[13] F. Maturana, W. Shen, and D.H. Norrie, “MetaMorph: An Adaptive

Agent-Based Architecture for Intelligent Manufacturing,” Int’l Journal
of Production Research, vol. 37, no.10, pp. 2159-2174, 1999.

[14] A. Rogers, D. Corkill, and N.R. Jennings, N. R. “Agent technologies for

sensor networks,” IEEE Intelligent Systems, vol. 24, pp. 13-17, 2009
[15] G. Fortino, A. Guerrieri, and W. Russo, “Agent-oriented smart objects

development,” in Proc. of IEEE 16th Int’l Conf. on Computer Supported

Cooperative Work in Design (CSCWD), 2012, pp. 907–912.
[16] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Towards a

Development Methodology for Smart Object-Oriented IoT Systems: A

Metamodel Approach,” Systems, Man, and Cybernetics (SMC), IEEE
Int’l Conf. on. IEEE, pp. 1297-1302, 2015.

[17] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, and W. Russo, “An

Agent-based Middleware for Cooperating Smart Objects”, in Highlights
on Practical Applications of Agents and Multi-Agent Systems,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

17

Communications in Comp. and Inform. Science (CCIS), vol. 365, pp.
387-398, Springer, 2013.

[18] The IoT-A Unified Requirements list, http://www.iot-

a.eu/public/requirements/copy_of_requirements
[19] B. C. Neuman, “Scale in distributed systems,” in Casavant, T. L. and

Singhal, M., editors, Readings in Distributed Computing Systems, IEEE

CS Press, Los Alamitos, CA, USA, 1994, pages 463–489.
[20] D. Miorandi, et al., “Internet of things: Vision, applications and research

challenges,” Ad Hoc Networks, vol. 10, no.7, pp. 1497-1516, 2012.

[21] D. Bandyopadhyay, and J. Sen, “Internet of things: Applications and
challenges in technology and standardization,” Wireless Personal

Communications, vol. 58, no. 1, pp. 49-69, 2011.

[22] C. Perera, et al., “Context aware computing for the internet of things: A
survey,” Communications Surveys & Tutorials, IEEE, vol. 16, no. 1, pp.

414-454, 2014.

[23] F. Zambonelli, “Towards a General Software Engineering Methodology
for the Internet of Things,” arXiv preprint arXiv:1601.05569, 2016

[24] E. Cortese, et al. “Scalability and performance of jade message transport

system,” AAMAS Workshop on AgentCities, Bologna, vol. 16, 2002,
pp. 28.

[25] S. Galzarano, et al., “Gossiping-based AODV for Wireless Sensor

Networks,” Systems, Man, and Cybernetics (SMC), 2013 IEEE Int’l

Conf. on. IEEE, 2013.

[26] M. Esseghir and N. Bouabdallah, “Node density control for maximizing
wireless sensor network lifetime,” Int’l Journal of Network

Management, vol. 18, no. 2, p. 159170, 2008.

[27] Yoneki, Eiko. “Evolution of ubiquitous computing with sensor networks
in urban environments.” Ubiquitous computing conference, metapolis

and urban life workshop Proc., 2005.

[28] J. Gubbi, et al., “Internet of Things (IoT): A vision, architectural
elements, and future directions,” Future Generation Computer Systems,

vol. 29, no.7, pp. 1645-1660, 2013.

[29] F. Kawsar, et al., “Design and implementation of a framework for
building distributed smart object systems,” The Journal of

Supercomputing, vol. 54, no.1, pp. 4-28, 2010.

[30] W. Shen, Q. Hao, H.J. Yoon, D. H. Norrie, “Applications of agent-based
systems in intelligent manufacturing: An updated review,” Advanced

engineering INFORMATICS, vol. 20, no.4, pp. 415-431, 2006.

[31] M. Wooldridge, and N. R. Jennings, “Intelligent agents: Theory and

practice,” Knowledge engineering review, vol. 10, no.2, pp. 115-152,

1995.

[32] S. Russell, and P. Norvig, “Artificial Intelligence: a modern approach,”
Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995): 27.

[33] D. Uckelmann, M. Harrison, and F. Michahelles, “An architectural

approach towards the future internet of things,” Springer Berlin
Heidelberg, 2011.

[34] M. Fisher, L. Dennis, and M. Webster, “Verifying autonomous

systems,” Communications of the ACM, vol. 56, no.9, pp. 84-93, 2013.
[35] S. Bandyopadhyay, et al., “Role of middleware for internet of things: A

study,” Int’l Journal of Computer Science and Engineering Survey, vol.

2, no.3, 2011, pp. 94-105.
[36] A. Manzalini, F. Zambonelli, “Towards autonomic and situation-aware

communication services: the cascadas vision,” in: Distributed Intelligent

Systems: Collective Intelligence and Its Applications, 2006. IEEE
Workshop on, IEEE, pp. 383–388, 2006.

[37] T. Leppänen, et al, “Mobile agents-based smart objects for the internet

of things,” Internet of Things Based on Smart Objects. Springer
International Publishing, pp. 29-48, 2014.

[38] D. Slama, F. Puhlmann, J. Morrish, R. Bhatnagar, “Enterprise Internet of

Things,” available at http://enterprise-Internet of
Things.org/book/enterprise-Internet of Things/

[39] T. Collins, “A Methodology for Building the Internet of Things”,

http://www.iotmethodology.com/.
[40] AIOTI- Report on High-Level Architecture (HLA)

http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_i

d=11812.
[41] Software & Systems Process Engineering Metamodel™ Specification

(SPEM™), Version 2.0, Release Date: April 2008. Available at

http://www.omg.org/spec/SPEM/2.0/
[42] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent

systems with JADE,” Intelligent Agents VII Agent Theories

Architectures and Languages. Springer Berlin Heidelberg, pp. 89-103,
2000.

[43] IEEE PROJECT P2413 - Standard for an Architectural Framework for
the Internet of Things (IoT)-

https://standards.ieee.org/develop/project/2413.html

[44] G. Fortino, et al., “A discovery service for smart objects over an agent-
based middleware,” Internet and Distributed Computing Systems.

Springer Berlin Heidelberg, pp. 281-293, 2013.

[45] G. Fortino, et al., “A flexible building management framework based on
wireless sensor and actuator networks,” Journal of Network and

Computer Applications, vol. 35, no. 6, pp. 1934-1952, 2012.

[46] G. Fortino, et al., “Enabling effective programming and flexible
management of efficient body sensor network applications,” Human-

Machine Systems, IEEE Trans on, vol. 43, no.1, pp. 115-133, 2013.

[47] A. Rehman, A. Abu Zafar, and A. S. Zubair, “Building a smart
university using RFID technology,” Computer Science and Software

Engineering, 2008 Int’l Conf. on. vol. 5, IEEE, pp. 641-644, 2008.

[48] H. I. Wang, “Constructing the Green Campus within the Internet of
Things Architecture,” Int’l Journal of Distributed Sensor Networks,

2014.

[49] L. Tan, and W. Neng, “Future internet: The internet of things,”
Advanced Computer Theory and Engineering (ICACTE), 2010 3rd Int’l

Conf. on. vol. 5. IEEE, 2010, pp. V5-376.

[50] M. Cata, “Smart university, a new concept in the Internet of Things,”

RoEduNet Int’l Conf.-Networking in Education and Research

(RoEduNet NER), 2015 14th. IEEE, pp. 195-197, 2015.
[51] T. G. Stavropoulos, et al. “System architecture for a smart university

building,” Artificial Neural Networks–ICANN 2010. Springer Berlin

Heidelberg, pp. 477-482, 2010.
[52] J. Bohli, P. Langendorfer, and A. F. Skarmeta, “Security and privacy

challenge in data aggregation for the iot in smart cities,” Internet of

Things: Converging Technologies for Smart Environments and
Integrated Ecosystems, pp. 225-244, 2013.

[53] M. Nati, et al., “Smartcampus: A user-centric testbed for internet of

things experimentation,” Wireless Personal Multimedia
Communications (WPMC), 2013 16th International Symposium on.

IEEE, pp. 1-6, 2013.

[54] A. Sabato, M.Q. Feng, Y. Fukuda, D.L. Carni, G. Fortino, “A Novel
Wireless Accelerometer Board for Measuring Low-Frequency and Low-

Amplitude Structural Vibration,” IEEE Sensors Journal, vol. 16, no. 9,

pp. 2942-2949, 2016.

[55] G. Fortino, et al., “Integration of agent-based and cloud computing for

the smart objects-oriented iot,” Computer Supported Cooperative Work

in Design (CSCWD), Proc. of the 2014 IEEE 18th Int’l Conf. on. IEEE,
2014.

[56] G. Fortino, and W. Russo, “ELDAMeth: An agent-oriented

methodology for simulation-based prototyping of distributed agent
systems,” Information and Software Technology, vol. 54, no.6, pp. 608-

624, 2012.

[57] G. Fortino, W. Russo, and C. Savaglio, “Agent-oriented Modelling and
Simulation of IoT Networks,” Proc. of the 10th International Workshop

on “Multi-Agent Systems and Simulation” (MAS&S’16), Gdansk,

Poland, 11-14 September, 2016.
[58] L. Pan, Z. Ding and M. C. Zhou, “A Configurable State Class Method

for Temporal Analysis of Time Petri Nets,” IEEE Trans. on Systems,

Man, and Cybernetics: Systems, vol. 44, no. 4, pp. 482-493, April 2014.
[59] W. Liu, Y. Du, M. C. Zhou, and C. Yan, “Transformation of Logical

Workflow Nets,” IEEE Trans. on Systems, Man, and Cybernetics:

Systems, vol. 44, no. 10, pp. 1401-1412, Oct. 2014.
[60] J. Luo, H. Ni and M. C. Zhou “Control Program Design for Automated

Guided Vehicle Systems via Petri Nets,” IEEE Trans. on Systems, Man,

and Cybernetics: Systems, vol. 45, no. 1, pp. 44-55, Jan. 2015.
[61] C. Liu, Q. Zeng, H. Duan, M. C. Zhou, F. Lu and J. Cheng, “E-Net

Modelling and Analysis of Emergency Response Processes Constrained

by Resources and Uncertain Durations,” IEEE Trans. on Systems, Man,
and Cybernetics: Systems, vol. 45, no. 1, pp. 84-96, Jan. 2015.

[62] Z. Ding, Y. Zhou, M. Jiang, and M. C. Zhou “A New Class of Petri Nets

for Modelling and Property Verification of Switched Stochastic
Systems,” IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol.

45, no. 7, pp. 1087–1100, July 2015.

[63] Z. Ding, Y. Zhou and M. C. Zhou, “Modelling Self-Adaptive Software
Systems with Learning Petri Nets,” IEEE Trans. on Systems, Man, and

Cybernetics: Systems, vol. 46, no. 4, pp. 483-498, April 2016.

[64] P. Yang, D. Stankevicius, V. Marozas, Z. Deng, E. Liu, A.
Lukosevicius, F. Dong, L. Xu, and G. Min, “Lifelogging Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK

HERE TO EDIT) <

18

Validation Model for Internet of Things Enabled Personalized
Healthcare,” IEEE Trans on Systems, Man, and Cybernetics, vol. PP,

issue 99, July 2016, pp. 1-15, July 2016.

[65] J. Vicente, and V. Botti, “Developing real-time multi-agent systems,”
Integrated Computer-Aided Engineering, vol. 11, no. 2, pp. 135-149,

2004.

[66] I. Ayala, Amor M., and L. Fuentes, “The Sol agent platform: Enabling
group communication and interoperability of self-configuring agents in

the Internet of Things,” Journal of Ambient Intelligence and Smart

Environments, vol. 7, no. 2, pp. 243-269, 2015.
[67] L. Braubach, A. Pokahr, and W. Lamersdorf, “Jadex: A short overview,”

Main Conference Net. ObjectDays, vol. 2004, pp. 195-207, 2004.

[68] F. Cicirelli, G. Fortino, A. Guerrieri, G. Spezzano, and A. Vinci,
“Metamodelling of Smart Environments: from design to

implementation,” Advanced Engineering Informatics, 2016.

[69] C. Savaglio, and G. Fortino, “Autonomic and Cognitive Architectures
for the Internet of Things,” Int’l Conf. on Internet and Distributed

Computing Systems. Springer, Cham, 2015.

[70] G. Fortino, A. Rovella, W. Russo, and C. Savaglio, “Towards
Cyberphysical Digital Libraries: Integrating IoT Smart Objects into

Digital Libraries,”. in Management of Cyber Physical Objects in the

Future Internet of Things, pp. 135-156, Springer International

Publishing, 2016.

[71] T.S. López, et al., “Adding sense to the Internet of Things,” Personal
and Ubiquitous Computing, vol. 16, no .3, pp. 291-308, 2012.

[72] Cai, Hongming, et al., “IoT-based big data storage systems in cloud

computing: Perspectives and challenges,” IEEE Internet of Things
Journal, vol. 4, no. 1, pp. 75-87, 2017.

[73] Cai, Hongming, et al., IoT-based configurable information service

platform for product lifecycle management. IEEE Trans on Industrial
Informatics, vol. 10, no. 2, pp. 1558-1567, 2014.

[74] Liu, Yang, et al., “Review on cyber-physical systems,” IEEE/CAA

Journal of Automatica Sinica, vol. 4, no. 1, pp. 27-40, 2017.

Giancarlo Fortino (M’01-SM’12) is a

Professor of Computer Engineering at the

Dept. of Informatics, Modeling,

Electronics and Systems (DIMES) of the

University of Calabria (Unical), Italy. He

has a Ph. D. degree and Laurea (MSc+BSc)

degree in Computer Engineering from

Unical. He holds the Italian Scientific

National Habilitation for Full Professorship and is High-end

Foreign Expert of China, Adjunct Professor at the Wuhan

University of Technology (China). His main research interests

include agent-based computing, Internet of Things, body area

networks, wireless sensor networks, pervasive and cloud

computing. He is currently the deputy coordinator and STPM

of the EU-funded H2020 INTER-IoT project. He authored

about 350 publications in journals, conferences and books. He

is the founding editor of the Springer Book Series on “Internet

of Things”, and currently serves (as associate editor) in the

editorial board of IEEE T. on Affective Computing, IEEE T.

on Human-Machine Systems, IEEE Sensors Journal, IEEE

Access, JNCA, EAAI, Information Fusion. He is the recipient

of the 2014 Andrew P. Sage SMC Trans Paper award. He is

the Chair of the IEEE SMC Italian Chapter.

Wilma Russo received her Laurea

(BSc+MSc) degree in Physics from

University of Naples, Italy. She is a Full

Professor of Computer Engineering at the

Dept. of Informatics, Modeling,

Electronics and Systems (DIMES) of the

University of Calabria (Unical), Italy. Her

research interests include distributed computing and systems,

software agents, multimedia networks, and the Internet of

Things. She authored over 100 papers in journals, conferences

and books.

Claudio Savaglio (SM’16) received his

B.S. and M.S. degrees in Computer

Engineering in 2010 and 2013 from the

University of Calabria, Italy, where he is

currently pursuing the Ph.D. degree in

ICT. In 2013 he was Visiting Researcher

at University of Texas at Dallas (TX,

U.S.A.), in 2016 at New Jersey Institute

of Technology, (NJ, U.S.A.), and in 2017

at Universitat Politècnica de València (Valencia, Spain). His

research interests include the Internet of Things, network

simulation, and agent-oriented middleware and development

methodologies.

Weiming Shen (F’13) is a Senior

Research Scientist at the National

Research Council Canada and an Adjunct

Professor at Tongji University, China, and

University of Western Ontario, Canada.

He received his Bachelor and Master’s

degrees from Northern (Beijing) Jiaotong

University, China and his PhD degree

from the University of Technology of

Compiegne, France. His recent research interest includes

agent-based collaboration technology and applications,

Internet of Things, and Big Data Analytics. He has published

several books and over 450 papers in scientific journals and

conferences in the related areas. His work has been cited over

10,000 times with an h-index of 47. He has been invited to

provide over 80 invited lectures/seminars at different

academic and research institutions over the world and keynote

presentations/tutorials at various Int’l conferences.

MengChu Zhou (S’88-M’90-SM’93-F’03)

received his B.S. degree in Control

Engineering from Nanjing University of

Science and Technology, Nanjing, China in

1983, M.S. degree in Automatic Control

from Beijing Institute of Technology,

Beijing, China in 1986, and Ph. D. degree

in Computer and Systems Engineering from

Rensselaer Polytechnic Institute, Troy, NY

in 1990. He joined New Jersey Institute of Technology (NJIT),

Newark, NJ in 1990, and is now a Distinguished Professor of

Electrical and Computer Engineering. His research interests

are in Petri nets, intelligent automation, Internet of Things, big

data, web services, and intelligent transportation. He has over

700 publications including 12 books, 390+ journal papers

(over 280 in IEEE Trans), 11 patents and 28 book-chapters.

He is the founding Editor of IEEE Press Book Series on

Systems Science and Engineering. He is a recipient of the

Norbert Wiener Award from IEEE Systems, Man and

Cybernetics Society.

