
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK 

HERE TO EDIT) < 

 

1 

 

Abstract—The future Internet of Things (IoT) is expected to 

enable a new and wide range of decentralized systems (from 

small-scale smart homes to large-scale smart cities) in which 

“things” are able to sense/actuate, compute and communicate, 

and thus play a central and crucial role. The growing importance 

of such novel networked cyber-physical context demands suitable 

and effective computing paradigms to fulfill the various 

requirements of IoT systems engineering. In this paper, we 

propose to explore an agent-based computing paradigm to 

support IoT systems analysis, design, and implementation. The 

synergic meeting of agents with IoT makes it possible to develop 

smart and dynamic IoT systems of diverse scales. Our agent-

oriented approach is specifically based on the ACOSO (Agent-

based COoperating Smart Objects) methodology and on the 

related ACOSO middleware: they provide effective agent design 

and programming models along with efficient tools for the actual 

construction of an IoT system in terms of a multi-agent system. A 

case study concerning the development of a complex IoT system, 

namely a Smart University Campus, is described to show the 

effectiveness and efficiency of the proposed approach. 

 

Index Terms— Internet of Things, Cooperative Smart Objects, 

Multi-Agent Systems, Agent-Oriented Software Engineering 

I. INTRODUCTION 

 

HE Internet of Things (IoT) term refers to a loosely 

coupled, decentralized and dynamic system in which billions 

(even trillions) of everyday objects are globally 

interconnected and endowed with smartness, becoming active 

participants in business, logistics, information and social 

processes [1]. Such “things” can be commonly defined as 

smart objects (SOs) and, if supported by an “anywhere, 

anytime and anything connection” [2], they represent the 

fundamental building blocks for the IoT [3]. In fact, SOs are 

able to provide highly pervasive cyber-physical services to 

both humans and machines thanks to their communication, 

sensing, actuation, embedded processing, and even reasoning 

abilities. 
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The development of IoT systems, e.g., smart home [4], 

smart car, smart factory [5, 6], and smart city, their 

management as well as their integration in real applications, 

are complex and challenging, thereby requiring suitable 

models, methods/techniques and technologies. In this 

direction, several middleware solutions, tools and 

methodologies have been developed, facing notable challenges 

such as physical device virtualization [7], decentralized entity 

management [8], and guideline identification [9]. However, 

these solutions tend to tackle different specific issues, 

typically one at a time, without providing a full-fledged 

methodology to support the entire IoT system development 

process, from analysis to implementation. However, such 

partial approach results in poorly interoperable, poorly 

scalable or application-driven “Intranet of Things” systems, 

thus leading away from the original inclusive IoT vision. 

Therefore, by providing a full-fledged and application-neutral 

methodological approach for IoT systems development, we 

aim at concretely developing the IoT concept of a horizontal 

landscape of interoperable cyber, physical, and cyber-physical 

systems. 

To deal with such challenges, this work proposes the 

exploitation of the Agent-based Computing (ABC) paradigm 

[10], which is centered on the concept of Agent as a well-

defined software engineering and distributed computing 

abstraction, for designing, programming, deploying and 

managing IoT systems. The ABC paradigm allows modelling 

distributed software systems in terms of multi-agent systems 

(MASs), where agents are networked software entities that can 

autonomously perform specific tasks on behalf of a user by 

properly interacting with other agents and with their 

environment. Due to such reasons, agents have been 

effectively used in many application domains to develop 

robust and dynamic distributed systems/applications [11-13]. 

However, few research efforts are currently focused on 

defining methodologies and middleware to develop agent-

oriented IoT systems. In our view, the main agent features 

(autonomy, social ability, responsiveness, proactiveness, and 

mobility) perfectly fit the generic and specific requirements of 

IoT systems [14, 15]. 

This work first elicits and discusses main IoT system 

development requirements at both system and things levels 

(namely, requirements related respectively to the whole 

system or to its individual components), then proposes a full-

fledged approach to IoT system development based on our 
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called ACOSO-Meth for short, and its related middleware. 

ACOSO-Meth supports the SO development phases of 

analysis, design and implementation by means of metamodels 

featured by different levels of abstraction. Each metamodel is 

derived from the previous phase metamodel to allow a 

seamless transition from analysis to implementation phases as 

to enable an easy-to-do translation from analysis system 

models to implementation system models. The design and 

implementation phases are currently based on the ACOSO 

[17] middleware that provides an effective agent model and a 

JADE-based platform to program both basic SOs and more 

complex IoT systems. Finally, the application of ACOSO-

Meth to the development of a complex IoT system, including 

small-, medium-, and large-scale SOs, highlights the 

effectiveness as well as the efficiency of the proposed 

approach. 

This work contributes to the state-of-the-art in IoT system 

engineering with the following three main contributions: 

- A comparison framework comprising IoT fundamental 

development requirements, raised from a thorough state-

of-the-art analysis, has been designed. It inspired the 

ACOSO-Meth development but it can be reused to 

compare future work in the field. 

- ACOSO-Meth is the first application domain-neutral, 

full-fledged agent-based approach able to support the 

main engineering phases of IoT systems and 

applications, thus fulfilling the fundamental system-level 

and things-level requirements (by referring to our 

previous work, [16] presented preliminary and less 

detailed models, not structured according to the SO main 

features, while [68] presented functional and data models 

specifically conceived for smart environments and 

designed for natively supported edge computing). 

- ACOSO-Meth is applied to develop a complex Smart 

University campus, that have been tested according to 

our performance evaluation approach for IoT systems, 

specifically involving the concept of scale (small, 

medium, and large), the number of IoT devices and 

communication sub-networks (by referring to our 

previous work, [16] presented a case study but no 

running example, while [68] considered a single use 

case, with few devices and a single operation modality 

without any performance evaluation). 

 

As highlighted also by the Smart University Campus case 

study, IoT system outcomes are strongly influenced by many 

cyber-physical factors such that any performance analysis or 

variable optimization could be narrowed only to the evaluated 

application and its specific configuration (in every real 

scenario, device deployments, adopted protocols, and 

infrastructure design are notably constrained to a physical 

environment, different functional and non-functional 

requirements, resource availability, etc.). Due to such reasons, 

it is out of the scope of this work to select specific 

requirements or optimize variables purposely defined for a 

specific application. The rest of this paper is organized as 

follows. Section II discusses generic and specific requirements 

that IoT system development poses. How such requirements 

have been so far tackled by means of different approaches is 

surveyed in Section III. Section IV describes the proposed 

ACOSO-Meth and related middleware. Section V presents a 

Smart University Campus case study to exemplify the 

ACOSO-based approach and the related performance 

evaluation to show its effectiveness. Finally, Section VI 

summarizes this work’s research contributions, lessons learned 

and future work. 

II. IOT SYSTEM DEVELOPMENT REQUIREMENTS 

IoT systems are composed of many distributed and interacting 

components that are usually heterogeneous in terms of 

hardware devices, communication protocols, software 

interfaces, data, and semantics. To effectively support their 

development, general and specific requirements need to be 

defined [18]. While the general requirements allow effective 

and flexible middleware for facilitating IoT system 

programming, the specific requirements are purposely defined 

for a target IoT system by considering its specific application 

domain. In the following, we focus on the former that are 

common to all IoT systems. In particular, we group such 

requirements in two categories: System-level (Table I), which 

includes requirements related to the whole distributed system 

and its development, and Things-level (Table II), which 

encompasses requirements particularly referring to the 

“things” such as Radio Frequency Identification (RFID) items, 

smart objects, mobile devices, and robots, in an IoT system.  

Requirements listed in Tables I and II have been outlined 

after thoroughly analyzing the state-of-the-art of IoT 

middleware, architectures and platforms, focusing on their 

main features and extracting common keywords. Such 

requirements are not totally new, since they have been already 

studied in several fields of computer science and engineering. 

However, at both levels, they recur at the same time and with 

a substantial prominence within the IoT context and they 

allow accommodating all the most important features of IoT 

systems. Indeed, conventional computing devices and 

everyday things tend to converge in the IoT [1], requiring 

virtual networked alias (SLR1), software interfaces (SLR3) and 

communication/data abstractions (SLR2-SLR5) to 

synergistically cooperate, despite their heterogeneities (TLR1). 

To cope with such cyber-physical (SLR4) and dynamic 

scenario rich in continuously evolving (TLR4) and augmented 

(TLR2) things, proper methodologies are needed (SLR6) to 

fully support the IoT system development. Furthermore, 

decentralized management (TLR3) mechanisms are essential 

for making things autonomous and effectively integrated in 

their application contexts. Finally, at both system- and things-

levels, the cyber-physical nature of SOs introduces important 

novel elements in the characterization of SO-based systems, 

particularly with regard to the concept of “scale” (SLR7 and 

TLR5). In traditional distributed systems, the concept of scale 

is closely related to the number of involved computing nodes, 
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TABLE I 
 SYSTEM-LEVEL REQUIREMENTS (SLRS) 

Requirement Description 
SLR1: 

Hardware 
Devices 

(Virtualization) 

IoT systems typically comprise heterogeneous devices; 

in order to facilitate their use, abstractions are needed to 
virtualize and let them be used, as they are 

homogeneous by following a kind of a “plug&play” 

paradigm [8]. 
SLR2: 

Communication 

(Abstractions) 

Software components and devices need to communicate 

with each other. Communication abstractions are 

needed to make them interact and cooperate, 
independently from the available low-level network 

protocols [20]. 

SLR3: 

Software 
Interfaces 

As software interfaces are usually heterogeneous, they 

need to be generic and standardized through higher 
level mechanisms such that their use is straightforward. 

Thus, software components based on such high-level 

interfaces can be seamlessly accessed [21]. 

SLR4: 

Physicality  

(Self and  
Context 

Awareness) 

Hardware and software components in IoT systems and 

entire IoT systems themselves are intrinsically situated. 

This implies that they have static or dynamic locations 
and refer to one or multiple contexts during their 

lifecycle. Abstractions are therefore needed to capture 

the concepts of location and context, as they are useful 
in the design and implementation of IoT systems [22]. 

SLR5: 

Data 
(Abstraction) 

Different hardware and software components, e.g., 

sensors, machines, smart objects, and mobile apps, 
usually produce data according to different modalities, 

formats and types. Thus, abstractions are needed to 

formalize data streams generated by such components. 
Continuous data streams, discrete data and sporadic 

events should be defined under a common framework. 

Moreover, the representation of data types needs to be 
standardized as it would allow interoperability in data 

exchange among heterogeneous components [7]. 

SLR6: 

Development 
Process  

(Methodology) 

To analyze, design and implement IoT systems, suitable 

software engineering methods and tools need to be 
defined. They should be able to effectively model IoT 

systems by using high-level modelling abstractions and 

fully support their design, implementation, deployment 
and management [23]. 

SLR7: System’s 

Scale 
Characterization 

IoT systems can notably differ in terms of geographical 

extensions, network infrastructures and number of 
involved IoT devices. Hence, it is useful to define some 

criteria to facilitate the unambiguous characterization of 

their scale and possibly enable their comparison.  

 

their geographical distribution and logical organization among 

different administrative domains. Such domains usually have 

different configurations, policies and privileges, thus 

emphasizing the need of interoperability and coordination 

mechanisms [19]. In traditional agent-based systems, the scale 

concept usually overlaps with agent population [24] and 

agents distribution among host devices, regardless of their 

actual geographic location. Note that, one of the peculiarities 

of agents is their mobility. Finally, in Wireless Sensor 

Networks (WSNs) the concept of scale refers both to the 

number of involved devices and to their spatial collocation, as 

the radio communications are strongly susceptible to 

interferences and mutual collisions [25, 26]. It is just in the 

WSN context, indeed, that the concept of density, intended as 

the number of sensors per unit area, appears [25]. In 

conclusion, depending on the application contexts, the “scale” 

term is differently defined as well as its characterizations 

(large, medium, and small scale) can notably vary (a large 

scale WSNs very likely will differ from a large scale 

computational grid in terms of geographical extension,  

 
Fig. 1. Scale in IoT systems. 

population and density). Within the SO-based IoT context, 

therefore: 
i. It is handy to refer to well established concepts of “small-

medium-large scale” taken from traditional distributed 

systems, as long as such definitions are not exclusively 

attributable to geographical factors. Moreover it is convenient 

to take into account the network infrastructure, in particular 

the number of subnets involved, in order to better evaluate 

system performance; and  

ii. Since SOs are highly pervasive and mostly based on 

wireless interconnections, the density issue pointed out for 

WSNs strongly recurs. Although not only simple sensors but 

even other kinds of functionally heterogeneous devices are 

involved within SO-based IoT systems, the density remains a 

useful metric to characterize scenarios when the number of 

SOs changes. 

On the basis of such considerations, and specifically for an 

unambiguous characterization of the case studies of Section V, 

hereinafter we classify IoT systems and SOs in small-medium-

large scale on the basis of their physical dimension and 

density, as shown in Fig. 1. Similar criteria for scenario 

characterization are defined in [27, 28]. 

III. BACKGROUND 

A. ABC paradigm 

The ABC paradigm is centered around the concept of 

Agent, a sophisticated software abstraction that allows 

instilling smartness and autonomy within a single entity and 

consequently developing decentralized, cooperating and 

heterogeneous societies in terms of multi-agent systems 

(MASs) [31]. Indeed, this paradigm represents both a suitable 

design metaphor and an effective programming paradigm, 

providing specific methods, techniques and tools for 

effectively conceptualizing and developing dynamic, robust 

and distributed systems (TLR2, TLR4) within diverse cyber, 

physical, and cyber-physical application domains [10, 30]. It 

intrinsically contemplates high-level concepts (e.g., models, 

metaphors, and abstractions, SLR1), concrete mechanisms 

(e.g., shared interfaces, protocols, and ontology, SLR2, SLR3, 

and SLR5), and specific guidelines (SLR6) to support, at both 

things and system levels, interoperability among agents, other 

computing systems, the surrounding environment and its 

resources (TLR1, SLR1, and SLR4). 
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TABLE II 
THINGS-LEVEL REQUIREMENTS (TLRS) 

Requirement Description 
TLR1: 

Heterogeneity 
and 

Interoperability 

Applications that use “things” should be programmed 

independently from vendors-specific “things”. For 
instance, if an application is based on a “smart chair”, it 

should be able to use smart chairs built by different 

vendors. Moreover, applications should be able to 
exploit “things” to be built in the future. This implies to 

adopt a standardized approach or, if not applicable 

(standardization is a very long process), to exploit 
software layering-based dynamic adaptation techniques 

between application and the “things” levels [2]. 

TLR2: 
Augmentation 

Variation 

“Things” usually provide a set of devices and services 
that can vary in quantity and types both among 

different “things” and among similar “things”. In 

particular, different “things” can provide same services 
whereas two similar “things” can provide different 

services. Thus, “things” cannot be crisply classified 

only by their type and may expose non-standard 
interfaces. Augmentation variation of “things” is an 

important requirement as it defines how “things” can 

modify their augmentation by providing diversified 
services that can change during their lifecycle. This 

implies to design not only methods to dynamically 

add/modify/remove “things” services and devices but 
also how they are actually furnished [29]. 

TLR3: 

Decentralized 
Management 

An effective management of “things” is crucial in IoT 

applications where tons of distributed “things” could 
potentially interact with each other and/or be used to 

fulfill a final goal. Applications and “things” should be 

therefore able to dynamically adapt as “things” could 
continuously change for different purposes 

(augmentation variation, mobility, failures, etc.). Thus, 

the matching among “things” services and application 
requirements should be often done at run-time. 

Discovery services are therefore strategic in such a 

dynamic context to find and retrieve “things” according 
to their static and dynamic properties [20]. 

TLR4: 

Dynamic 

Evolution 

Applications and “things” should be simply and rapidly 

prototyped and upgraded through proper programming 

abstractions. The evolution can be driven by 
programming, learning, or both. In particular, evolution 

by learning is usually based on smart self-evolving 

components (application-level components and smart 
“things”) able to self-drive their evolution on the basis 

of some learning models [3]. 

TLR5: Thing’s 

Scale 

Characterization 

“Things” can notably differ in terms of physical 

dimensions and number of aggregated devices. Hence, 

it is useful to define some criteria to facilitate the 
unambiguous characterization of their scale and 

possibly enable their comparison. 

The fundamental characteristics of agents include: (i) 

Autonomy: agents should be able to perform the majority of 

their problem-solving tasks without the direct intervention of 

humans, and they should have a certain degree of control over 

their own actions and their own internal state (TLR3); (ii) 

Social ability: agents should be able to interact, when they 

deem appropriate, with other software agents and/or humans 

in order to complete their own tasks (TLR1); (iii) 

Responsiveness: agents should perceive the environment in 

which they are situated (SLR4), a physical world, an agent 

container, and Internet, and respond in a timely fashion to 

changes that may occur (TLR4); (iv) Proactiveness: agents 

should not simply act in response to their environment, but 

they should be able to exhibit opportunistic, goal-directed 

behavior and take the appropriate initiative; (v) Mobility: in 

order to fulfill distributed tasks, agents should be able to 

logically migrate from one machine to another (mobile 

software agents) and/or physically move in a targeted 

environment, like robots and drones. These features allow 

agents to be exploited in several crucial roles with various 

degrees of smartness [31]: 

- Decisional assignments: Agents are provided with different 

degrees of intelligence that permit them to autonomously 

reach their goals and to model their plans on the basis of 

their sensed contexts (TLR3, SLR4). So, an agent 

paradigm is often exploited as an enabling cognitive 

technology that allows choosing the best algorithm to 

apply, the most proper coordination model in the context 

of collaborative tasks, the most effective realization of 

user characterization mechanisms and pattern recognition 

[32]. 

- Operational assignments: Agents are able to autonomously 

perform their tasks and, at the same time, to interact with 

their environment in an active manner (TLR4). Among 

several operational tasks, in the IoT context, agents are 

often deputed to service discovery (a crucial task due to a 

large number and kinds of available services and 

providers, TLR2), intra-extra system communication 

(acting as a middleware layer by exploiting common 

languages and interfaces, SLR2, SLR5), and interaction 

with the real world, e.g. through cyber-physical SOs [33]. 
- Control assignments: Agents typically monitor the 

fulfillment of predefined goals and the respect of some 

thresholds, thus determining the safety and 

trustworthiness of system/components. In order to realize 

these tasks, agents optimize the parameters of given 

algorithms or inspect other entities’ behaviors. 

Particularly, considering that autonomous systems (whose 

spread is daily increasing in the IoT context, e.g. 

autonomous cars) contemplate several distinct decision 

makers, checking in real-time such agents’ choices 

through external monitoring agents is obviously 

appreciated. Moreover, different from humans, agents 

react much more quickly and are suitable for a plethora of 

time-critical applications [65]. Finally, with regard to 

security concerns, agents are often used in order to 

increase safety, define trustworthiness metrics, and ensure 

information and resource flow in dynamic and malicious 

IoT environments [34]. 

 

Exploiting the aforementioned capabilities and features, the 

ABC paradigm is able to fulfill the system-level (SLR) and 

things-level (TLR) requirements presented in Section II: 

therefore, several agent-based middleware and architectures 

[7], [8], [35]-[37], [66] were presented in the past years. 

Beside such contributions, a few IoT methodologies [10], [24], 

[38]-[40], far from the ABC paradigm, have been proposed. 

Table III shows at which development phase the related work 

to be introduced next and ACOSO-Meth are placed, and how 

(totally, partially or not at all) they support the SLRs and 

TLRs in Tables I and II. 
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TABLE III  

COMPARISON OF RELATED WORK (Y = totally supported, P = partially supported, Blank = not supported) 

  

Development phase 

(Analysis, Design, 

Implementation) 

System-Level Requirements Things-Level Requirements 

  A D I SLR1 SLR2 SLR3 SLR4 SLR5 SLR6 SLR7 TLR1 TLR2 TLR3 TLR4 TLR5 

Agent-oriented 

Middleware and 

Architectures 

[7] P Y  Y Y   Y P  Y  Y P  

[8] P Y  Y Y Y P  P  Y Y P   

[35]  Y P Y Y   Y P  Y   P  

[36]  Y P Y Y  Y  P  Y  Y   

[37] P Y  Y Y Y   P  Y P    

[66]  Y Y Y Y  P  P  Y  P P  

IoT 

Methodologies 

[9] Y P  Y Y   Y P  Y Y  Y  

[23] P Y  Y  Y Y Y P  Y P P   

[38] P  P   Y  Y P  Y Y    

[39] P  P   Y  Y P  Y Y    

[40] Y P  Y Y   Y P  Y Y  Y  

ACOSO-Meth  Y Y Y Y Y Y Y Y Y  Y Y Y Y  

 

In particular, it should be noted that ACOSO-Meth is the 

only contribution that, fully exploiting the ABC potential, 

fulfils all the listed requirements at the same time to our best 

knowledge. 

B. Agent-oriented Middleware and Architectures 

Agent technologies provide useful software abstractions, 

independent of a specific implementation (TLR1), which 

encourage the development of:  

- Agent-based middleware, in order to speed up system 

development and prototyping, as well as management and 

evolution (TLR4); 

- Agent-based architectures, for exploiting the ABC twofold 

roles: a technology integrator (agents interoperate at high-

level, hiding the underlying implementation details, 

protocols, etc.) and modelling paradigm (SLR6). 

 

In [7], [8], [35]-[37], [66] IoT entities, even deeply 

heterogeneous with each other, are virtualized and 

homogenized by an “agent” definition (SLR1). Each system 

component, e.g., everyday object, sensor, and robot, is 

represented by an agent: it communicates with other agents 

through well-known specifications (SLR2), and it may be 

enhanced with machine learning techniques, pattern 

recognition mechanisms and semantic technologies. The latter 

are used both for descriptive specifications (service and 

resource descriptions) and for prescriptive specifications 

(component behavioral control and coordination) [35]: in such 

a way, an agent is able to reason over the data, overcoming the 

heterogeneities of standards and data formats, which typically 

represent significant obstacles for system interoperability 

(SLR5). Such sort of “intelligence” makes the agent aware of 

its current status, abilities, goals, and environment. The 

capability of dynamically elaborating both explicit and 

implicit contextual information (SLR4) coming from sensors 

and actuators makes an agent indispensable for the provision 

of context-aware dynamic services [8]. Moreover, in order to 

minimize the human intervention and realize a decentralized 

management (see TLR3), an agent is often provided with 

autonomic capabilities [69] that allow it to self-protect, self-

heal, self-configure, self-govern and self-optimize. In [7], an 

entire toolkit is conceived around the notion of an autonomic 

agent aiming to provide adaptive, composite and situated 

intensive services. In [36], agents are able to self-compose, 

promoting the integration of different applications with the 

dynamic re-use of system resources: such issue is obviously 

relevant for the IoT scenario, in which there may exist many 

resource-constrained components. SOs and related services 

composition can be done by agents even through high-level 

software interfaces (SLR3), like RESTful web service API 

[37], thus avoiding the need for a specific agent-based 

middleware solution. In [66], every agent is provided with a 

generic plug-in for self-configuring its internal communication 

mechanisms and exploiting different communication 

protocols, according to the context and other agent 

technologies. To summarize, the briefly presented agent-

oriented middleware and architectures fulfill (often just one at 

a time) all the SLRs of Table I but they only partially satisfy 

SLR6, TLR2 and TLR4. In fact, they exploit the agent-based 

modelling but lack a comprehensive development 

methodology. 

C. IoT Engineering Methodologies  

Despite a variety of research efforts that tackle different 

specific issues within an IoT system development process, a 

full-fledged IoT methodology is missing. There are many 

studies which, instead of providing a proper methodology, 

collect domain-specific best practices, guidelines, checklists 

and templates. For example, Slama et al. [38] and Collins [39] 

build up a repository of technology-dependent solutions 

coming from the experience in the industrial/business world 

and specifically directed to the IoT makers and enterprises. In 

fact, they propose reference architectures and guidelines to 

make specific-purpose devices interoperable (TLR1) through 

abstract data models (SLR5) and high-level software interfaces 

(SLR3). Differently, some researchers present general-purpose 

approaches. IoT-A [9] is a systematic collection of 

architectures, reference models, common definitions and 

guidelines that can be used to derive a concrete IoT 
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architecture. By means of different views, perspectives and 

metamodels, IoT-A aims to offer a unified approach to the 

development of IoT systems, in order to promote cross-

domain interaction (SLR2), to support interoperability (TLR1) 

and to reduce fragmentation within an IoT context. Most of 

the indications provided by IoT-A have inspired the AIOTI 

(Alliance for the Internet of Things) [40] reference models, 

specifically the domain model. The latter describes IoT 

entities and their relationships, by eliciting all the TLRs in the 

SO analysis phase. Zambonelli [23] proposes a software 

engineering methodology centered on the main general-

purpose concepts related to the analysis, design and 

implementation phases of IoT systems and applications. Such 

concepts are used to identify the key software engineering 

abstractions (SLR1, and SLR3-SLR5) as well as a set of 

guidelines and activities that may drive the IoT systems 

development. The envisioned methodology, however, lacks 

the definition of models and tools to represent different 

conceptual and software artifacts. In brief, the existing 

methodologies neither completely support the TLRs and 

SLRs, nor cover the entire development process. 

IV. ACOSO METHODOLOGY 

As so far argued, SO development is a very complex and 

articulated process: in order to support the SO analysis, design 

and implementation phases, we present the ACOSO-Meth 

(Agent-based COoperating Smart Objects Methodology). It 

intends to integrate within a comprehensive methodology 

(SLR6) the ABC paradigm (whose features and related 

benefits satisfy the SLRs as argued in Section III-A) and the 

agent-oriented modelling and programming techniques 

provided by the ACOSO middleware [17], with a special 

attention to the TLRs of IoT device, e.g., TLR2 and TLR4. 

Doing so, all the IoT development requirements presented in 

Section II, at both system- and things-levels, are fulfilled, as 

shown in Table III and better elicited in Section IV.D. In 

particular, ACOSO-Meth aims to systematically support an 

SO development process by means of metamodels placed at 

different abstraction levels and completely decoupled from 

any specific application context. Such choice provides 

generality to the presented methodology and, considering the 

plethora of ever-changing IoT scenarios, it is a remarkable 

merit. As matter of facts, a less detailed version of the 

metamodels presented in the following, and specifically 

exploited in Section V to model a SmartBridge providing 

structural health monitoring services, has been 

straightforwardly used in [70] to model a SmartOffice 

(aggregating in its turn a SmartDesk, a SmartProjector and a 

SmartWhiteboard) supporting an officer during a user’s daily 

working activity. This demonstrates that the proposed 

metamodels are domain-neutral and suitable to be effectively 

exploited regardless the SO specific scale, purpose or 

application context. 

As showed in Fig. 2 (diagrams are compliant with Object 

Management Group (OMG) Software Process Engineering  

 
Fig. 2. Relationships among ACOSO-Meth metamodels at different 

phases 

Modelling (SPEM) 2.0 [41]), ACOSO-Meth supports the 

analysis phase through a high-level model describing main 

basic SO features. Such model is specialized and better 

detailed, thus evolving at the design and implementation 

phases. In particular: 

- at the Analysis phase, a High-Level SO Metamodel is 

exploited; 

- at the Design phase, an ACOSO-based SO Metamodel 

specializes the analysis-level metamodel in order to 

model the functional components of the system, their 

relationships and interactions; and 

- at the Implementation phase, a JACOSO (JADE-based 

ACOSO) Metamodel specializes the ACOSO-based SO 

Metamodel with respect to a particular implementation 

based on the JADE platform [42]. 

 

Every phase introduces new features and a higher degree of 

detail in the metamodels, maintaining at the same time strong 

relations with the higher-level metamodels. This allows the 

straightforward transition from the analysis to implementation 

phases, seamlessly supporting the translation of high-level 

system models into design-level agent-oriented platform-

independent models that, in turn, may be refined into agent-

oriented implementation platform-dependent system models. 

A. System Analysis 

The metamodel portrayed in Fig. 3 is a very high level 

metamodel, since its components may characterize an 

ecosystem of SOs [70] in any application domain, e.g., smart 

cities, smart factories, and smart homes. In fact, it models the 

main aspects of a generic SO/SO ecosystem in a very 

straightforward way, sharing similar characteristics with IEEE 

P2413 [43], AIOTI [40] and IoT-A [9] reference models. As 

matter of fact, main coarse-grained SO concepts (namely SO 

physical / virtual representation, SO user, SO service, and SO 

device) recur in all the aforementioned models, as well as in 

the High-Level SO Metamodel, as shown in Table IV. 
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TABLE IV  
COMPARISON OF MAIN ENTITIES OF SO’s METAMODELS OF 

ACOSO-Meth, IEEE P2413, AIOTI and IoT-A. 
ACOSO-Meth 

High-Level 

 SO MM 

AIOTI 

SO MM 

IoT-A 

SO MM 

IEEE P2413  

SO MM 

SO Virtual Entity Virtual Entity Virtual Entity 

SO Physical 
Properties 

Thing Physical Entity Physical Entity 

SO Device IoT Device Device/Resource IoT Device 

SO Service IoT Service Service N/A 

SO User User User User 

 

To fully support the SO analysis phase, ACOSO-Meth 

High-Level Smart Object Metamodel exposes further features, 

reported by means of a UML class diagram in Fig. 3. These 

features describe both static (e.g., SO creator) and dynamic 

(mainly related to the services provided, e.g., quality-of-

service indicators) SO characteristics.  

They are categorized in five main groups: 

- SO BasicInfo comprises basic SO information. In detail, 

the Status contains a list of variables, given as pairs 

<name, value>, that capture the SO state; Location 

represents its geophysical position (expressed in absolute 

terms by specifying latitude and longitude and/or in 

relative terms through the use of location tags); 

PhysicalProperty describes a physical property of the 

original object without any hardware augmentation and 

embedded smartness (it contributes to determining its 

scale); FingerPrint comprises immutable SO information 

like the SO identifier (or Id, which allows its unique 

identification within an IoT system), SOCreator that 

creates the SO for personal use, business or research 

purposes, SOType represents an SO type, e.g., a smart 

pen, smart building, and smart city, and QoSParameters 

defines one or more QoS parameters associated to the SO, 

e.g., precision, reliability, and availability. 
- SO Service models a digital service provided by an SO. 

Each service is characterized by a name, description, type 

(e.g., sensing and actuation), input parameter type and 

return type. Each Service is implemented by one or more 

Operations and by zero or more QoSIndicators whose 

associated values are provided. In detail, an Operation, 

which defines an individual operation that may be 

invoked on a service, has a description, a set of input 

parameter types necessary for its invocation, and a return 

type related to its output value. 
- SO User identifies an entity using the services provided by 

an SO. In particular, SO Users can be humans 

(representing the classical man-machine use relationship), 

SmartObjects (representing a less conventional use 

relationship, in which SOs take advantage of services 

exposed by other SOs and vice versa) or DigitalSystems 

(representing a generic digital entity, like a web server, 

software agent, robot or a more complex system). 

- Augmentation defines the hardware and software 

characteristics of a device that allows augmenting the 

physical object and making it smart. A device can be 

specialized in one of the following three categories: (i) 

Computer, which represents the features of a processing  

 
Fig. 3. Analysis Phase: High-Level SO Metamodel 

- unit of the SO, e.g., PC, smart-phone, and embedded 

computer; (ii) Sensor, which models the characteristics of 

a sensor node of the SO; and (iii) Actuator, which models 

the characteristics of an actuator node of the SO.  

- SO Aggregation supports aggregation among SOs. In 

particular, a complex SO (e.g., a Smart City) may 

physically or logically aggregate other SOs to provide 

more advanced and integrated services. 

B. System design  

A High-Level SO Metamodel at the analysis level is refined 

to obtain an ACOSO-based SO Metamodel (Fig. 4), which 

allows, at the design level, agent-based modelling of the 

functional components of an IoT system, their relationships 

and interactions. An ACOSO-based SO Metamodel is suitable 

for modelling both basic IoT building blocks (e.g., basic 

devices as sensors and actuators, and smart objects) and more 

complex IoT components (e.g., WSNs and RFID systems) and 

represents the cornerstone of ACOSO [17], a middleware for 

the development, management and deployment of agent-

oriented Cooperating Smart Objects (CSOs). ACOSO 

middleware provides an agent-oriented programming model 

for effectively realizing CSOs in any IoT application context 

requiring distributed computation, proactivity, knowledge 

management and interaction among SOs/sensors/actuators, 

thus fulfilling both system- and things-levels requirements 

identified before. According to the ACOSO-based SO 

Metamodel, an SO is modelled as an event-driven, lightweight 

and platform-neutral agent, whose lifecycle is specified in 

terms of Behavior. Behavior consists of one or more state 

machine-based components named Tasks. They can refer to 

internal system operations (SystemTask, e.g., SO 

shutdown/reboot/standby) required for the management of the 

agent lifecycle, or to user-defined operations 

(UserDefinedTask) defining specific SO-oriented and/or 

application-oriented functionalities of different SOs. SO Tasks 

are driven by Events according to the following model [17]: 

whenever the SO has to be notified (e.g., an incoming message  
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Fig. 4. Design Phase: ACOSO-based SO Metamodel 

or a user request has arrived, an internal system operation is 

over), a specific event is created; hence, the event activates 

one or more Tasks according to its own event type and event 

source. Events are classified into: (i) InternalEvent (the event 

source is an SO internal component), raised to notify 

information/request/error messages coming from an internal 

SO module; (ii) ExternalEvent (the event source is an SO 

external entity), raised to notify information/request/error 

messages sent from entities external to the SO; (iii) 

DeviceEvent (the event source is an SO device), raised to 

notify information/error messages produced by the SO 

sensors, actuators, etc.; and (iv) ServiceEvent, raised from 

internal, external or device event sources, which specifically 

drives UserDefinedTasks to define application-oriented 

functionalities. The ACOSO-based SO metamodelling entities 

(Fig. 4) are categorized into four main groups: 

- SO Basic Info: Basic information is spread between the SO 

itself and KBManagementSubsystem. The latter handles 

information pertaining its global current state, inference 

rules and other useful data that can be shared among 

tasks. 

- SO Service: Services provided by SOs are 

encapsulated/implemented in specific application-level 

UserDefinedTasks. They are highly customizable, easily 

programmable, and interact with other SO components 

through ServiceEvents. 

- Augmentation: the DeviceManagement Subsystem allows 

the management of sensors, actuators and devices 

embedded into SO. The interactions with such 

augmentation devices, regardless of their specific 

technology or protocol, are conducted through 

DeviceEvents.  

- SO Communication: the 

CommunicationManagementSubsystem provides a 

common interface enabling communication toward the 

SO itself (through InternalEvents) or toward external 

entities (by means of ExternalEvents).  

 
- Fig. 5. JACOSO three-layered architecture 

C. System Implementation 

In order to obtain the metamodel for supporting the 

implementation phase, we have implemented the ACOSO-

based SO metamodel by using the JADE platform [42]. JADE 

is selected mainly for the following reasons: (i) it is an FIPA-

compliant, well-known and Java-based agent middleware; (ii) 

it is open-source, has a spread community and, over the years, 

has evolved (e.g., JADEX [67], JADE-LEAP) to run atop 

novel and heterogeneous computing systems such as Java 

Micro Edition-enabled and Android-supported devices, as well 

as on sensor nodes constituting heterogeneous WSNs (Fig. 5); 

(iii) its middleware provides an effective agent-oriented 

management/communication infrastructure, that comprises an 

Agent Management System (AMS), ACL-based message 

transport system and Directory Facilitator (DF). In particular, 

DF supports agent service discovery, and has been extended 

with an agent-oriented interface [44] to allow SOs to register, 

index, and search on the basis of their specific functional 

and/or non functional features (e.g., Location, FingerPrint, and 

provided Services) introduced in the High-Level SO 

Metamodel of Section IV-A (these features are represented 

through metadata descriptions in a JSON format, which is 

lightweight, easy to read and to manually write, as well as to 

analyze and to automatically generate). Indeed, differently 

from general-purpose JADE agents, SOs have a strong 

“situatedness” and may seamlessly appear and disappear, but 

they may also evolve on the basis of some learning models or 

extemporary interactions with other SOs. An enhanced 

Directory Facilitator, providing a dedicated and dynamic SO 

discovery service, is thus fundamental. The metamodel shown 

in Fig. 6 refers to JADE-based implementation of the 

ACOSO-based SO Metamodel, named hereafter JACOSO. 

Considering the inheritance relationship from the ACOSO-

based SO model and the JADE components, hereinafter we 

present only the implementation components that characterize 

the JACOSO SO metamodel with reference to the related 

macro-components: 

- SO Basic Info: JACOSO SO basic information is spread 

between the JADE-based agent itself and an internal 

knowledge base. The latter contains also the current 

values of the variables constituting the inference rules 

required for an SO decision-making process. Information, 

inference rule variables and configurations that need to be 
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provided at the SO instantiation (e.g. for the JACOSO SO 

devices), are set by ConfiguratorTask. 

- SO Service: services are defined as UserDefinedTasks 

implemented as JADE-based behaviors. The application 

logic encapsulated in UserDefinedTasks can exploit the 

JACOSO SO inference rules required for the SO decision-

making process by interacting with InferenceRuleTask. 

- Augmentation: DeviceManager, by means of different 

DeviceAdapters, interfaces JACOSO SO with 

heterogeneous augmentation devices. In particular, 

BMFAdapter and SPINEAdapter allow the management 

of Wireless Sensor and Actuator Networks (WSANs) and 

Body Sensor Network (BSN) respectively through BMF 

(Building Management Framework) [45] and SPINE 

(Signal Processing In-Node Environment) [46] 

frameworks. BMF is a domain specific framework, 

expressly conceived for the management of WSAN in the 

context of environment monitoring and building 

automation; while SPINE is designed for efficient 

management of BSNs. Both SPINE and BMF comprise 

networks of heterogeneous devices (e.g., Shimmers, 

Telos-B and MICA2 sensor motes, Android-based 

devices, and conventional computers) based on typical 

IoT standards (e.g., IEEE 802.15.4, ZigBee, 6LowPan, 

Bluetooth) and they interact with JACOSO by means of 

the related deviceAdapters. 

- SO Communication: CommunicationManager enables 

JACOSO SO to flexibly support different communication 

patterns by just implementing appropriate 

CommunicationAdapters. In particular, 

ACLCommunicationAdapter allows a direct message 

passing of ACLMessages [42] between a sender and 

receiver; TopicPSAdapter, instead, realizes an 

asynchronous one-to-may communication in which 

ACLMessages sent by a publisher are only received from 

those who have subscribed the related topic and operate 

in the same platform. JACOSO guarantees high 

versatility, allowing the implementation of SOs and IoT 

systems of different scales and within different 

application scenarios just by re-using and/or re-

implementing some components. Such components that 

can model new SO functionalities are indicated as hot 

spots and are (i) ConfiguratorTask that sets up specific 

SO Basic Info, SO components and Tasks at the SO 

instantiation time; (ii) UserDefinedTasks that encapsulate 

a specific SO application logic; (iii) 

CommunicationManager, because it should be set up to 

handle new CommunicationAdapters realizing other 

communication patterns (e.g., web services and sockets) 

beside or instead of the existing ones (direct message 

passing and publish/subscribe); and (iv) DeviceManager 

if other DeviceAdapters are introduced to interface 

JACOSO SO with specific devices. On the opposite, 

JACOSO architectural blocks that do not need to be 

changed are the so-called frozen spots. 

 
Fig. 6. Implementation phase: JACOSO SO Metamodel  

D. Discussion 

From analysis to implementation, SO-related concepts 

evolve, being refined from high-level abstractions to 

implementable software components. In Table V, such 

concepts are listed and hence their mapping to different 

development phases of analysis, design and implementation is 

presented. First, it should be noted that an SO at the analysis 

phase is described as a very abstract entity, becoming an agent 

only at the design phase: since the High-Level SO Metamodel 

is unbound from any paradigm, it may be used as a reference 

model, similar to AIOTI [38] and IoT-A [18] ones. Moreover, 

the abstract SO User introduced at the analysis phase is further 

replaced by an agentified user (ACOSO SO, if it aggregates 

and exploits other SOs) at the design phase and by a JADE 

agent at the implementation phase (JACOSO SO, if it 

aggregates and exploits other SOs). SO Basic Info, 

individually described in a High-Level SO Metamodel, is 

spread between the SO itself and its knowledge base in the 

design and implementation phases. Regarding the 

augmentation, SO devices are simply reported at the analysis 

phase while their management (DeviceManagementSubsystem 

and DeviceEvent) and actual interfacing (DeviceAdapters and 

DeviceManager) are elicited respectively in the ACOSO-

based and JACOSO SO metamodels. SO communication 

features, not explicitly highlighted in a High-Level SO 

Metamodel, are introduced at the design and implementation 

phases. Indeed, an ACOSO-based SO Metamodel presents a 

CommunicationManagementSubsystem exploiting 

ExternalEvents and InternalEvents while a JACOSO-based 

SO Metamodel introduces the CommunicationManager, 

customizable CommunicationAdapters, and FIPA-compliant 

ACLMessages infrastructures. Finally, an SO Service concept 

is first abstractly presented in terms of operations and QoS 

indicators at the analysis phase and then refined as an 

application-level UserDefinedTask and ServiceEvents in the 

design and implementation phases.  
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TABLE V  
EVOLUTION OF THE SO MAIN CONCEPTS FROM THE ANALYSIS TO THE IMPLEMENTATION PHASE 

Concept 

High-Level SO 

Metamodel  

(Analysis Phase) 

ACOSO-based SO Metamodel  

(Design Phase) 

JACOSO SO Metamodel 

(Implementation Phase) 

SmartObject 
High-level (conceptual) 

entity 
ACOSO Agent, Behavior, Task JADE Agent, JADE Behaviors, Task 

User SO, human, digital system Agentified user, ACOSO SO JADE Agent, JACOSO SO 

SO Basic Info 
FingerPrint, Location, 

Status, PhysicalProperty 
(Agent) SmartObject, KBManagementSubsystem 

(JADE Agent) SmartObject,  

InferenceRuleTask variables 

Augmentation Device DeviceManagementSubsystem, DeviceEvent BMFAdapter, SPINEAdapter, DeviceManager 

SO 

Communication 
Not explicitly highlighted 

CommunicationManagementSubsystem, InternalEvent, 

ExternalEvent 

TopicPSAdapters, ACLCommunicationAdapter, 

CommunicationManager, ACL Messages 

SO Service Service UserDefinedTask, ServiceEvent 
UserDefinedTask, InferenceRuleTask, 

ServiceEvent 

 

With regard to the SLRs and TLRs fulfilment, ACOSO-

Meth provides a systematic and full-fledged approach (SLR6) 

to the SO development, exploiting (i) the agent abstraction to 

virtualize and homogenize the different SOs to be developed 

(SLR1); (ii) a flexible and modular communication 

infrastructure (comprising at design phase the 

CommunicationManagementSubsystem and at implementation 

phase the Communication Manager with its 

CommunicationAdapters) to enable voluntary communication 

among different paradigms and data formats (SLR2 and SLR5); 

(iii) a customizable augmentation infrastructure (comprising 

the DeviceManagementSubsystem at design phase and 

DeviceManager with its DeviceAdapters) to enable 

interoperability among heterogeneous IoT devices (TLR1); 

(iv) well-known FIPA-compliant interfaces and ontology in 

order to straightforwardly access SO functionality, historical 

and contextual information (leveraging at the design phase on 

the KBManagementSubsystem and at the implementation 

phase on SO internal knowledge bases, SLR3 and SLR4); (v) 

the ACOSO-middleware (in particular its domain-neutral 

metamodels and programming techniques) and the JADE 

facilities (e.g., AMS and DF) to speed up SO prototyping and 

evolution (TLR4), and support their augmentation variation 

(TLR2) and decentralized management (TLR3); and (vi) a 

revised scale concept to unambiguously characterize SO-based 

IoT systems and possibly enable their comparison (SLR7 and 

TLR5). 

V. CASE STUDY: SMART UNIVERSITY CAMPUS 

In this section, we present the application of ACOSO-Meth 

for engineering a complex Smart University Campus IoT 

ecosystem, specifically prototyped at the University of 

Calabria and named Smart UniCal. Several references to 

Smart University/Smart Campus scenarios are available in the 

literature [47-53] and, regardless of particular goals or 

implementations, they all present “comfortable and user-

tailored environments, rich in innovative services”.  

Our Smart UniCal system (Fig. 13) is an aggregated SO 

composed by a Smart Bridge (dotted yellow bordered area) 

and Smart Departments (yellow bordered area), spanning 

multiple adjacent buildings, which contains smart rooms such 

as Smart Lab and Smart Office. Smart UniCal SOs have been 

characterized respectively in “L”arge (i.e., the SmartBridge), 

“M”edium (i.e., the SmartDIMES) and “S”mall scale (i.e., the 

SmartSenSysCalLab) SOs, according to the considerations 

reported in Section II. In particular, Table VI reports the list of 

services provided by Smart UniCal SOs: 

- SmartBridge provides a cyber-physical service for a 

structural health monitoring [54] purpose; 

- SmartDIMES (Department of Informatics, Modelling, 

Electronics and Systems Engineering), namely a Smart 

Department, provides a cyber-physical service to 

remotely control department spaces and facilities, e.g., 

HVAC and lights, aiming to save energy; and 

- SmartSenSysCalLab, namely a Smart Lab, provides cyber-

physical services to laboratory users who are supported in 

their daily activities. 

It should be noted that the domain-neutrality of the 

ACOSO-Meth and ACOSO middleware allows supporting the 

development of the different kinds of Smart Unical’s SOs and 

related services by keeping the same methodological approach 

and by exploiting the same metamodels and programming 

techniques. In the following, the descriptions of the 

SmartBridge in the analysis, design and implementation 

phases are provided according to the ACOSO-Meth. Finally, 

the Smart UniCal performance evaluation is presented.  

A. Analysis 

Smart Bridge (Fig. 14) is a large-scale SO physically based 

on the “Pietro Bucci” bridge, which crosses the Unical campus 

for 1.22 Km, linking together all the 14 university departments 

(spread among different building units called cubes). Its 

Administrator can query its status, specifically the currently 

recorded vibration, or use the smartVibration service for 

monitoring the bridge’s structural health [54]. Service 

smartVibration allows the analysis of the vibrations generated 

by the transit of vehicles and pedestrians upon the bridge.  
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TABLE VI 
SMART OBJECTS CONSTITUTING SMART UNICAL ALONG WITH 

THEIR PROVIDED SERVICES 

Scale Smart Object Service Description 

S SmartSenSysCalLab 

smartWellness 
Correct lifestyle 

suggestions 

smartComfort 

Workplace 

conditions 
improvement 

M Smart DIMES smartMonitoring 

Indoor 

environmental 

monitoring 

L Smart Bridge smartVibration 
Bridge vibrations 

monitoring 

 

 
Fig. 13. The Smart UniCal infrastructure: the SmartBridge part (dotted 

yellow bordered area) which crosses the SmartDIMES (yellow bordered 

area with building identification codes). 

Fig 14. High-Level SmartBridge Metamodel at analysis phase. 

Fig 15. ACOSO-based SmartBridge Metamodel at design phase. 

If the sensed vibrations reach warning thresholds, the service 

notifies such event to the Administrator. In order to provide 

such service, SmartBridge is augmented through different 

devices, including accelerometer sensor nodes and laptop base 

stations,coordinated by a PC acting as a main coordinator. In 

more details, smartVibration service has two basic operations: 

getVib that exploits accelerometer sensors on the bridge to 

accurately sense the vibrations, and vibAnalysis that exploits 

SmartBridge’s computing devices to elaborate the raw 

vibration data acquired and to compare them with the defined 

thresholds.The getVib operation has a response time in the 

order of second while vibAnalysis detects all the vibrations 

exceeding the warning thresholds with 100% accuracy. 

B. Design 

SmartBridge’s High-Level metamodel is refined at the 

design phase, resulting in Smart Bridge’s ACOSO-based 

metamodel as shown in Fig. 15. In particular, SmartBridge is 

modeled as an ACOSO-based agent and SO Users as generic 

agents. The smartVibration service and the vibAnalysis and 

getVib related operations are modeled as UserDefinedTasks 

(smartVibrationTask, vibAnalysisTask and getVibTask 

respectively) driven by the corresponding ServiceEvents 

(getVibEvent and vibAnalysisEvent). The 

vibrationSensingEvent, instead, allows interfacing the 

accelerometer sensors with SmartBridge, e.g., providing the 

raw vibration sensed data. 

C. Implementation 

Smart Bridge’s ACOSO-based metamodel is refined at the 

implementation phase, resulting in Smart Bridge’s JACOSO-

based metamodel (Fig. 16). In particular, in this phase the 

generic agentified SmartBridge is specialized into a JADE-

based agent, as well as the agentified SO User. 

ACLCommunicationAdapter allows SmartBridge exploiting a 
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direct ACL-based messages exchange mechanism. 

SmartBridgeInferenceRuleTask contains both inference rules 

required for a SmartBridge decision-making process (Table 

VII) and current values of the variables constituting such 

inference rules. UserDefinedTasks (smartVibrationTask, 

vibAnalysisTask and getVibTask) implementing 

smartVibration and related events (vibAnalysisEvent and 

getVibEvent) are modeled as JADE Behaviour, while 

BMFAdapter interfaces SmartBridge with its devices. 

Interaction diagram of Fig. 17 illustrates the methods realizing 

the Smart Bridge’s Smart Vibration service. 

D. Technical implementation 

In the following, some key technical implementation details 

of the Smart UniCal system, related to the used IoT devices 

and to the implemented JACOSO-based software components, 

are described. In particular, Fig. 18 (a-c) shows some technical 

deployment snapshot of the IoT devices of SmartBridge, 

SmartDIMES and SmartSenSysCalLab. Table VIII shows the 

characteristic of main hardware/software devices. Such 

heterogeneous IoT devices along with Android-based devices 

and conventional computers adopting different technologies 

(e.g., IEEE 802.15.4, Wifi, and Bluetooth) and managed by 

different frameworks (i.e., SPINE and BMF) have been made 

interoperable through the related deviceAdapters provided by 

the ACOSO middleware, independently from low-level 

network protocols or different communication paradigms 

through the exploitation of the related 

communicationAdapters. We focus on the implementation of 

the following services: (1) smartVibration service of 

SmartBridge, (2) smartMonitoring service of SmartDIMES, 

and (3) smartWellness and the smartComfort services of 

SmartSenSysCalLab. 

 

Fig 16. JACOSO-based SmartBridge Metamodel at implementation phase. 

TABLE VII 
EXAMPLE OF A RULE EMBEDDED IN THE SMARTBRIDGE 

INFERENCERULETASK 

Rule# Description 

1 Alarm← 
currentVibration_transversalAxis>vibrationThreshold_transversalA

xis v 

currentVibration_longitudinalAxis>vibrationThreshold_longitudina
lAxis 

 

Fig 17. Interaction diagram of the Smart Bridge’s Smart Vibration service 

 

1) smartVibration is based on the data gathered by 90 

Crossbow MICA2 devices. Every 27 meters, two of them are 

deployed facing each other and laying on a metallic beam that 

transversally passes through the axis of the bridge (Fig. 18(a)). 

Such network of Crossbow MICA2 devices is managed by 9 

notebooks (placed in rooms in front of the bridge such that 

each notebook can manage data of its closest 10 motes), 

hosting the BMF application and collecting the data, while a 

central PC acts as a main coordinator and hosts the 

SmartBridge SO application. Each notebook works in a 

different subnetwork and all the notebooks interact with the 

main coordinator through an IP-based WiFi UniCal Intranet; 

Crossbow MICA2 devices, instead, are connected to their 

associated notebook through the 802.15.4 wireless protocol. 

Totally, 20 non-overlapping subnetworks have been used to 

realize this service. 

2) smartMonitoring is based on 43 Telos-B-based indoor 

environmental sensors, i.e., humidity, temperature, light, and 

presence sensors, and on 20 Telos-B-based actuators (i.e., 

smart plugs) deployed within 18 DIMES rooms (Fig. 18(b)). 

In detail, at least two devices (one sensor and one actuator) 

have been deployed for each of the 18 monitored 

environments, located in different cubes. Each monitored 

environment is associated to a laptop (the environments 

located at the same floor of the same cube share the same one) 

hosting a base station and running the BMF application 

(totally, ten laptops have been used and interconnected 

through 10 overlapping subnetworks). Each laptop 

interoperates with the associated sensors/actuators through the 

BMFAdapter: it allows the collection of sensed data from the 

sensing devices to the base station, and the forwarding of 
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commands from a base station to actuating devices. The 

SmartDIMES application is hosted in a separate laptop. The 

SmartDIMES administrator, through such application, can 

transparently manage all the environments and send both 

request and configuration messages to the deployed Telos-B 

motes and smart plugs. 

3) smartWellness provides customized and real-time hints 

to SenSysCal lab users by displaying notifications on their 

personal smartphones and/or laptop monitors. Data coming 

from 12 light/presence Telos-B sensors (one for each of the 

ten SenSysCal desktops, one at the entrance and one in the 

middle of the lab) and from 30 users wearable Shimmer 

sensors (three for each user, placed at user wrist, waist and 

leg) are forwarded by means of BMFAdapter (environment 

data) and of SPINEAdapter (wearable data), to a base station. 

The base station is a laptop running the SmartSenSysCalLab 

application that collects the overall data, elaborates them and 

sends back customized notifications to users (specifically, on 

their Twitter profile or on the computer screen placed on their 

desktop). The same base station, in the context of a 

smartComfort service and through BMFAdapter, periodically 

queries the light intensity value to every Telos-B sensor 

deployed atop one of the 12 user desktops. In case of poor 

lighting, the corresponding desktop lamp is switched on 

through its smart plug. The aforementioned devices that 

contribute to realize the SmartSenSysCalLab services (Fig. 

18(c)) are connected to the local laboratory subnetwork. 

 

E. Performance Evaluation of Smart UniCal 

As presented in Section IV, ACOSO-Meth is based on a 

JACOSO SO Metamodel for system implementation, 

deployment and execution. In the following, the Smart UniCal 

performance evaluation is presented to assess the suitability of 

the ACOSO-Meth implementation phase in actually 

supporting efficient small-, medium- and large-scale IoT 

systems. Indeed, SmartBridge, SmartDIMES and 

SmartSenSysCalLab SOs and their aggregated IoT devices, 

are evaluated when providing their specific services (see 

below). However, in order to define the proper scenario size 

(number of SOs and their distribution in different 

subnetworks) that effectively enables the developed services, 

preliminary tests were conducted to evaluate SOs 

performance, thus analyzing possible bottlenecks (Fig. 19) in 

the information exchange (IE) phase. Please note that the 

deployment stage and performance evaluation require a 

significant effort, especially due to the number of SOs 

involved: fortunately, we can leverage on our previous 

experience in the fields of WSNs and cyber-physical systems 

[45, 46, 68] to speed up the identification of operation 

modalities and performance indices, as well as the SO 

monitoring and data gathering. 

In particular, we considered SOs exchanging 2KB fixed 

length simple FIPA-compliant data messages by following 

either a Client/Server (C/S) or a Peer-to-Peer (P2P) paradigm. 

As some services are intrinsically centralized or distributed, 

they can be implemented following either a C/S or a P2P 

paradigm. Moreover, we considered IoT device data sources 

(or simply data sources) with either stochastic normal 

distribution (N, with mean = 0.5 msg/s and variance = 0.2 

msg/s) or deterministic (D, 1 msg/s) message generation rate 

(MGR) models. Given the communication paradigms and 

MGR models, we focused on two fundamental network-

oriented performance indices for distributed SOs when 

providing specific services collaborating with each other: (i) 

message delivery ratio (MDR); and (ii) round trip time (RTT). 

In Fig. 19, however, only the RTT values calculated in small- 

(SmartSenSysCalLab), medium- (SmartDIMES), and large-

scale (SmartBridge) scenario are shown, as the MDR values 

are always 100%, being JADE communications based on TCP 

connections, thus fully reliable. Fig. 19(a) highlights how the 

increase of the involved SOs in the small-scale scenario 

adversely affects RTT, which rapidly grows due to the 

network congestion. In Fig. 19(b), differently from Fig. 19(a), 

where SOs are supported by just one network within a squared 

grid of side 10 m, SOs are now distributed in 10 different sub-

networks within a squared grid of side 250 m. In such a 

deployment area, it happens that adjacent networks interfere 

with each other, since their coverage radii overlap. 

Nevertheless, a better SO distribution implies less congestion 

and lower RTT. For example, the RTT of 100 SOs distributed 

in 10 subnetworks is definitively lower than the RTT of the 

same number of SOs deployed in one network. Finally, in the 

large-scale scenario of Fig. 19(c), the SOs are distributed in 20 

non-overlapping subnetworks within a squared grid of side 

1000 m. Differently from the small- and medium-scale 

scenarios, in Fig 19(c), it can be noted that increasing the 

number of SOs has a little impact on RTT. Compared to the 

same configuration of a medium-scale scenario, RTT values 

are lower. In fact, in a large-scale scenario, networks are 

deployed in a wider area. Thus, they do not interfere with each 

other and consequently both congestion and RTT decrease.  

TABLE VIII 

MAIN HW/SW CHARACTERISTICS OF THE IOT DEVICES USED TO 
IMPLEMENT SMART UNICAL SOs AND THEIR SERVICES. 

Device Main characteristics SO/Services 

MICA2 

OS: TinyOS. 

CPU: Atmel Atmega 128L (8 bit bus, 
8MHz clock). 

Memory: 4K Ram 128K Flash 512K 

EEPROM. 
Radio: 802.15.4 compatible CC2420. 

Expansion board (2-axis 

accelerometers). 
Battery: 2X AA batteries (4000-5000 

mAh in total, depending on the cell) 

SmartBridge/ 
smartVibration 

Telos-B 

OS: TinyOS. 
CPU: TI MSP430F1611 (16-bit bus, 4-

8MHz clock). 

Memory: 10K Ram 48K Flash 1M 
EEPROM. 

Radio: 802.15.4 compatible CC2420. 

On-board sensors (humidity, 
temperature light sensors). 

Battery: 650 mAh 

SmartDIMES/ 

smartMonitoring 
 

SmartSenSysCalLab/ 

smartComfort 

Shimmer 

OS: TinyOS. 

CPU: TI MSP430F1611 (16-bit bus, 4-
8MHz clock). 

Memory: 10K Ram 48K Flash. 

Radio: 802.15.4 compatible CC2420 
On-board sensors (3-axis 

accelerometer) 

Battery: 650 mAh 

SmartSenSysCalLab/ 

smartWellness 
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For example, given 50, 70 and 100 SOs, RTT values in the 

large-scale scenario significantly decrease by comparing those 

in the medium-scale scenario. The aforementioned SOs 

performance evaluation has provided important insights to 

define, for each SO and for each SO service, the best operation 

modalities in the Smart UniCal ecosystem. Such modalities 

are detailed in Table IX by specifying: the number of 

embedded devices (#EDev), number of involved subnetworks 

(#SubNets), evaluation time (EvTime), message length (ML) 

and deterministic message generation rate (D-MGR). Given 

the SOs and SO service operation modalities as shown in 

Table IX, the Smart UniCal performances have been evaluated 

in terms of MDR and RTT, IoT devices energy and memory 

consumptions (base stations are powerful and less constrained 

than motes and they are typically plugged to the mains 

electricity, such that they can be easily recharged), and the 

provided results reported in Table X. Such performance 

indices have been chosen to characterize SO performance both 

functionally and non-functionally: indeed, they provide useful 

insights about services responsiveness and reliability 

(according to the performance indices previously outlined to 

describe the IE phase), but also about the required resources 

(energy and memory, in particular). The latter is a relevant 

aspect considering that most of the IoT devices are resource-

constrained.

 

   
(a) Smart Bridge: arrangement of two MICA2 

motes (reported in the picture with the codes 

MTS310#1 and MTS310#3) on the bridge axis, 

with the goal of monitoring the bridge vibrations 

generated by the transit of vehicles and pedestrians. 

Sensed data are locally collected by a notebook 

acting as a base station (MTS310#2). 

(b) SmartDIMES: arrangement of some Telos-B 

motes (TB#06-TB#08) providing real-time 

information about the presence around them and the 

room lights’ current status (on/off). Sensed data are 

locally collected by a notebook acting as a base 

station (NB#02). The smart plug (SP#11) can switch 

on/off the projector and the room lights in case of 

energy waste. 

(c) SmartSenSysCalLab: three Shimmer motes 

(SH#10-SH#12) send their data to the BSN 

coordinator (TT#02) to recognize current user 

posture. The Telos-B mote (TB#01) placed atop 

the user desktop provides information about the 

current light intensity: if it is dim, the smart plug 

(SP#01) turns the lamp on. All the sensed data 

are collected by a base station. 

Fig 18. Snapshot of the IoT devices of (a) SmartBridge, (b) SmartDIMES and (c) SmartSenSysCalLab

 

   
(a) Small Scale: RTT vs. SO number (b) Medium Scale: RTT vs. SO number (c) Large Scale: RTT vs. SO number 

Fig 19. SmartSenSysCal, SmartDIMES, and SmartBridge performance evaluation considering different communication paradigms (C/S or P2P) and MGR 

models (D or N) 
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TABLE IX 
 THE OPERATION MODALITIES OF THE SMART UNICAL SMART OBJECTS  

SO Service #EDev #SubNets Operation Modality 
EvTime 

(h) 

ML 

(KB) 

D-MGR 

(msg/s) 

SmartSenSysCalLab 

(small scale) 

smartComfort 25 

1 

Periodically (every minute), each desktop light 

intensity is acquired and sent to the base station 
8 2 1 

smartWellness 42 
Periodically (every minute), environmental and body 

data are acquired and sent to the base station 

SmartDIMES 

(medium scale) 
smartMonitoring 73 10 

Periodically (every 30 seconds) environmental data 

acquired and sent to the base station 
12 2 1 

SmartBridge  

(large scale) 
smartVibration 100 20 

Both periodically (every minute) and occasionally 

data are acquired and sent to the base station 
12 2 1 

 
TABLE X  

SMART UNICAL PERFORMANCE EVALUATION 

Service MDR 
RTT 

(s) 

Residual 

Energy 

Residual 

RAM-ROM 

smartComfort 

(SmartSenSysCalLab) 
100% 0.046  85% 63%-28% 

smartWellness 

(SmartSenSysCalLab) 
100% 0.059  57% 56%-17% 

smartMonitoring 

(SmartDIMES) 
100% 0.513  48% 60%-26% 

smartVibration 

(SmartBridge) 
100% 0.507  87% 78%-12% 

 

The results reported in Table X confirm the RTT trends shown 

in Fig. 19 and JADE message system’s high reliability, being 

based on the TCP protocol. Then, the increase of #EDev 

adversely affects both RTT, which grows due to the network 

congestion, and energy consumption, especially if also the 

evaluation time increases (in the case of smartVibration 

services, the residual energy is only slightly nicked since 

MICA2 capacity is bigger than those of Shimmer and Telos-B 

ones). Moreover, EDev deployment on different SubNets 

affects RTT more than #SubNets. In particular, by comparing 

the RTT values of SmartSenSysCalLab and SmartDIMES, it 

should be noted that when #EDev scarcely doubles, RTT 

increases tenfold; however, if there is no overlapping among 

the SubNets, then the performances are quite stable, even if 

#EDev and #SubNets increase, as in the case of SmartBridge. 

SO lifetimes varies depending on the provided service, 

devices’ batteries, operation modalities and scenario 

configurations as reported in Tables VIII and IX. In particular, 

we have defined the Residual Energy of an SO X providing a 

service s by exploiting (all or a set of) its different Di devices 

as  

RE (Xs)=min {batteryD1…..batteryDn} 

where batteryDi is the amount of power currently left in a Di’s 

battery that enables its correct working [71] in the context of 

service provision. Given such definition, RE(Xs) can vary 

from 100% (all SO devices involved in the service provision 

are full of energy) to 0% (at least one SO device has an energy 

shortage preventing it from correct working). With regard to 

the Smart Unical and testing, for the sake of simplicity, each 

SO in providing only a single service, SO service provision 

varies from 18 hours (SmartSenSysCalLab providing only the 

SmartWellness service) to 92 hours (SmartBridge providing 

only the SmartVibration service). Finally, memory 

consumption results highlight that IoT devices have enough 

free memory to deploy other in-node services or customized 

extensions. 

VI. CONCLUSIONS 

Using an engineering methodology is widely recognized as 

a fundamental practice in any system development process, 

since the manual and non-systematic application of complex 

techniques, methods and frameworks would very likely reduce 

effectiveness, increase development time and tend to be error-

prone. The need for a full-fledged development methodology 

is particularly crucial in the case of IoT systems development, 

which exposes specific requirements (both at system- and 

things-level) to enable the dynamic cooperation among cyber-

physical SOs over heterogeneous networks and the provision 

of even complex cyber-physical services. In this paper, such 

requirements have been elicited and inserted in a comparison 

framework (which may be notably reused to compare future 

work in the field), showing that, according to the state-of-the-

art, a comprehensive methodology that systematically fulfils 

the needs for the SO-based IoT systems development still 

lacks. In such a context, agent-based computing represents a 

very effective paradigm for the modelling of SO-based IoT 

systems as well as an efficient technology for their 

development.  

Thus, in this paper, the agent-oriented ACOSO-Meth 

methodology is presented and applied for engineering SO-

based IoT systems of different complexities and scales. At the 

analysis phase, ACOSO-Meth provides a High-Level SO 

Metamodel that shares main features with emerging IoT 

architectural standards such as IEEE P2430, AIOTI and IoT-A 

domain models. At the design phase, the agent-oriented 

ACOSO-based SO Metamodel derived from the High-Level 

SO Metamodel is used. The ACOSO-based SO Metamodel 

supports an agent-based modelling of functional system 

components, their relationships and interactions. Finally, at the 

implementation phase, JACOSO (the JADE-based version of 

the ACOSO-based SO Metamodel) is exploited to implement 

SO-based systems through the well-known JADE platform. In 

this paper, ACOSO-Meth has been used (from the high-level 

system design to the concrete JACOSO-based 

implementation) to develop the Smart UniCal IoT system. 

Smart UniCal is a complex case study as it comprises 

heterogeneous SOs of different scales, is deployed in a real 

scenario (the University of Calabria in Italy) and provides 
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cyber-physical services related to structural, indoor space and 

wellness monitoring. In particular, the systematic application 

of ACOSO-Meth has significantly facilitated and speeded up 

all the Smart UniCal development phases: (a) the High-Level 

SO Metamodel supports the abstract analysis of the main 

Smart UniCal SO features and functionalities, facilitating their 

identification; (b) the agent-oriented design provides the 

adequate flexibility and effectiveness to fulfil the fundamental 

requirements at both system- and things- levels of Smart 

UniCal; finally, (c) the JADE-based implementation allows a 

rapid and efficient prototyping of the Smart UniCal 

ecosystem; this just demands the only effort of programming 

(by extension) the application-specific JACOSO hotspots that 

represent only 25% of the overall lines of code constituting the 

Smart UniCal software. It follows that, because of such 

modular and extensible approach, most of the code does not 

need to be customized according to the particular application 

requirements, but it can be directly reused. In brief, the 

ACOSO-Meth and its related ACOSO middleware provide 

effective and domain-neutral design and programming models 

along with efficient tools for the actual and full-fledged 

engineering of the Smart Unical in terms of a multi-agent 

system, significantly facilitating and speeding up all the 

development phases. Such benefits are not affected by the 

hand-made transitions among the analysis, design and 

implementation phases: an automatic transition, whenever 

possible, may speed up the ACOSO-Meth application while 

keeping the same effectiveness. Moreover, we have carried 

out a thorough performance evaluation of the Smart UniCal 

system. The performance evaluation provides (i) general 

results, highlighting significant issues related to the number of 

SOs and to the distribution of SOs among the subnetworks of 

the whole system, and (ii) specific results, acknowledging the 

efficiency of JACOSO middleware for the development of 

SO-based IoT systems. Moreover, the result analysis indicates 

that the definition of SO operating modes (e.g., tuning of 

system parameters, and choice of communication paradigms) 

should take into account the target scenario, by following 

therefore an application-driven approach. 

Our on-going work is devoted to the development of the 

following strategic Smart UniCal services: an RFID-based 

people counting/identification system (smartTrack service) for 

SmartBridge, an RFID-based inventory system for 

SmartDIMES valuable stuff (smartInventory service), and an 

NFC-based system to automatically record SenSysCal users' 

attendances and their daily timetable (smartAttendance 

service). Future work is already planned towards six main 

directions: (i) Extending the current ACOSO-based approach 

to support the BDI paradigm [67], the topic-based 

communication among different platforms [42] by means of 

dedicated “mediator” agents, and creation of a tool for the 

automatic models instantiation and code generation; (ii) 

Integrating Cloud/Edge computing with the ACOSO-based 

approach to enhance system scalability and enable more 

critical real-time system responses [55, 72, 74]; (iii) Defining 

a simulation-driven phase after the design phase to assess an 

ACOSO-based design (both from functional and non-

functional perspectives) before its actual implementation and 

deployment [56, 57]; (iv) Incorporating formal methods, e.g., 

Petri nets [58]-[63], for systematic design and property 

verifications of IoT systems into our design phase; (v) 

Defining mechanisms to automatize, where possible, the 

transition among the different phases constituting the 

methodology, thus speeding up the ACOSO-Meth application 

while keeping the same effectiveness, and (vi) Using data 

validation models for IoT domains [64, 73]. 
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