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dDipartimento di Fisica dell’Università della Calabria and INFN, Gruppo collegato di Cosenza

Arcavacata di Rende, Cosenza, Italy

Abstract

We analyse the contribution of 2n scalars to the Operator Product Expansion series for MHV

gluon scattering amplitudes/polygonal Wilson loops in planar N = 4 SYM. Hence, we sum

up on 2n for large coupling λ: the logarithm of the amplitude is proportional to
√
λ, thus

competing, unexpectedly, with the famous classical contribution. We give explicit expressions

for the first terms at large λ in case of two and four scalars. For finalising this analysis, we

find profitable an explicit computation of the 2n-scalar term at any coupling by means of

Young tableaux, paralleling, under certain aspects, the Nekrasov-Okounkov expressions for

N = 2 SYM prepotential.

∗E-mail: bonini@bo.infn.it, fioravanti@bo.infn.it, piscaglia@th.phys.titech.ac.jp , rossi@cs.infn.it

1

http://arxiv.org/abs/1607.02084v3


Remarkably, scattering amplitudes between gluons in planar (Nc → ∞) N = 4 SYM have

recently been conjectured to be described by the same string as (expectation values of) null polyg-

onal Wilson loops (Wls), and thus behave at strong coupling as an exponential of the square root

of the ’t Hooft coupling λ = Ncg
2
YM (i.e. the classical string minimal area) [1]. On the other hand,

pursuing the idea of a non-local Operator Product Expansion (OPE) for the polygon when two

adjacent sides become aligned [2], this Wl has been importantly given an expression in terms of an

exact series over all GKP excitations [3, 4]. And this is the multi-particle Form Factor (FF) series

(cf. for instance [5] and references therein1) for a specific twist field P of the integrable theory with

non-relativistic scattering matrix on the GKP vacuum [6, 7, 8]: although simple, this observation

is crucial for the following strong coupling analysis. In fact, the square root or, more precisely,

the exact minimal area is furnished by a Thermodynamic Bethe Ansatz (TBA) [9], which, in its

turn, is exactly reproduced by the OPE series contributions of gluons and mesons only [8]: all the

other particles, including scalars, should, naively, intervene at sub-leading order [3, 4, 8, 10]. Yet,

[4] made the puzzling proposal that the strong coupling contribution of scalars should be of the

same order (
√
λ) as the semiclassical prediction: in fact, the low energy limit of string theory is

given by an O(6) non-linear sigma model (nlsm) [11], and the latter shows in the PP correlator the

peculiar scaling of a 2D CFT at short distances (as the dynamical mass gap goes to zero with the

coupling [11]). Moreover, this relevant scaling was corroborated by Monte Carlo simulations on

the few-particles terms of the series [4] (then refined by [12]). Nevertheless, what seems missing so

far is an analytical derivation of this simple square root behaviour directly from the OPE series.

This also supports the conjectural form [4] of its multi-particle terms and is the main contribution

of this letter. In fact, upon refining a method of FF theory [5] in case of asymptotically free

theories (here the O(6) nlsm), we easily extract, at fixed number of scalars, a
√
λ in front of any

connected term of the logarithm of the series. In this manner, we find an expression for the whole

coefficient in front of
√
λ and the explicit values of the first terms (proportional to

√
λ, lnλ and

λ0) of the two (and four) scalar contributions. To this purpose, we use the two-body product

for the dynamical part of the FF expression (with simplifications at large coupling) and also find

possible manipulations of the coupling-independent matrix part. This does not enjoys a two-body

form, but, thanks to its R-symmetry origin, allows us an explicit procedure of computation based

on sums over Young tableaux, an interesting resemblance with Nekrasov-Okounkov method for

instanton partition functions of N = 2 SYM [13].

1 Non-perturbative scalars in the Wilson loop

As anticipated, the OPE series is an infinite sum over the asymptotic states of particles (gluons,

fermions and scalars) [3] of the GKP scattering theory [6, 8]. As such, it is simple to single out

which contribution, W , the scalars give to the hexagonal2 Wilson loop by constraining the sum

only on them (2n is their number), and then to consider their non-perturbative strong coupling

1Although in the present non-relativistic case some of the FF properties change significantly.
2Generalisation to the other polygons goes along similar lines[14].
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regime, where they indeed decouple and form a relativistic O(6) nlsm [11]:

W =

∞∑

n=0

W (2n) , W (2n) =
1

(2n)!

∫ 2n∏

i=1

dθi
2π

G(2n)(θ1, · · · , θ2n) e
−z

2n∑

i=1

cosh θi
, (1.1)

with Bethe rapidities ui, via θi =
π
2
ui, and the parameter z = mgap

√
τ 2 + σ2, containing the two

conformal ratios σ, τ , proportional to their dynamically generated mass [11, 15],

mgap(λ) =
21/4

Γ(5/4)
λ1/8e−

√
λ/4(1 +O(1/

√
λ)) . (1.2)

At any coupling, each function G(2n) factorises into a coupling-dependent dynamical part, Π
(2n)
dyn ,

and a coupling-independent matrix one, Π
(2n)
mat , reflecting the structure of scalars under the internal

SO(6) symmetry [4]:

G(2n)(u1, · · · , u2n) = Π
(2n)
dyn (u1, · · · , u2n) Π

(2n)
mat (u1, · · · , u2n) . (1.3)

Interestingly, the dynamical part is a product over a two-particle function, which also becomes

relativistic at strong coupling (as already stated θi =
π
2
ui, and θ = π

2
u)

Π
(2n)
dyn (u1, · · · , u2n) = µ2n

2n∏

i<j

Π(ui−uj) , Π(u) =
8θ tanh

(
θ
2

)
Γ
(
3
4
+ iθ

2π

)
Γ
(
3
4
− iθ

2π

)

πΓ
(
1
4
+ iθ

2π

)
Γ
(
1
4
− iθ

2π

) , µ =
2Γ
(
3
4

)

√
πΓ
(
1
4

) .

(1.4)

On the contrary, the matrix part does not depend on λ, but only on differences of rapidities ui−uj ,

and has been conjectured to be this involved integral over the isotopic variables [4, 10],

Π
(2n)
mat (u1, . . . , u2n) =

1

(2n)!(n!)2

∫ +∞

−∞

n∏

k=1

dak
2π

2n∏

k=1

dbk
2π

n∏

k=1

dck
2π

× (1.5)

×

n∏

i<j

g(ai − aj)

2n∏

i<j

g(bi − bj)

n∏

i<j

g(ci − cj)

2n∏

j=1

(
n∏

i=1

f(ai − bj)

n∏

k=1

f(ck − bj)

2n∏

l=1

f (ul − bj)

) ,

with f(x) = x2 + 1
4
, g(x) = x2(x2 + 1). As this form entails our final results, which reproduce

CFT considerations of [4], it will receive strong confirmation. Moreover, it will imply a suggestive

alternative sum over Young tableaux in next section.

Now, the basic idea is to evaluate the logarithm of (1.1) by passing to the connected counterparts

of the G(2n). With this proposal in mind, we need to study the behaviour of G(2n) when we shift

m rapidities by a large amount Λ → ∞, while holding fixed the remaining 2n−m ones. We will

show that for even m the function G(2n) enjoys the asymptotic factorisation into the two functions

with fewer rapidities: Λ → ∞

G(2n) → G(m) G(2n−m) , 2 ≤ m ≤ 2n− 2 ; (1.6)
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on the other hand, if m is odd the function G(2n) goes to zero as 1/Λ2. Except for this power-like

behaviour, this is what has been shown in [5]: in fact, we shall adapt those ideas in the case of

asymptotic freedom and we will be general for these theories which – to the best of our knowledge

– have not been treated in this respect. First, the dynamical factor (1.4) (also considered for odd

number m of scalars) enjoys the factorisation

Π
(2n)
dyn (u1 + Λ, · · · , um + Λ, um+1, · · · , u2n) −→ Λ2m(2n−m)Π

(m)
dyn(u1, · · · , um)Π

(2n−m)
dyn (um+1, · · · , u2n) ,

(1.7)

as a consequence of the asymptotic behaviour Π(u) ≃ u2 when u → ∞. As it is more involved how

to deal with the matrix part (1.5), we would rather tackle, first, the simplest non trivial case, i.e.

Π
(4)
mat → Π

(2)
matΠ

(2)
mat. When we shift by a large amount Λ two rapidities, say u1 → u1+Λ, u2 → u2+Λ,

then the integrals (1.5) receive the main contribution from the region in which one auxiliary variable

a, two b, and one c are large. Therefore, we can rewrite (1.5), upon shifting by Λ, for instance,

a1, b1, b2, c1 as

Π
(4)
mat(u1 + Λ, u2 + Λ, u3, u4) =

1

4!4

∫ +∞

−∞

da1db1db2dc1
(2π)4

g(b1 − b2)
2∏

i=1

f(a1 − bi)f(c1 − bi)

2∏

i,j=1

f(ui − bj)

×

×
∫ +∞

−∞

da2db3db4dc2
(2π)4

g(b3 − b4)
4∏

i=3

f(a2 − bi)f(c2 − bi)

4∏

i,j=3

f(ui − bj)

R(4,2)(a1, a2, b1, . . . , b4, c1, c2; Λ) ,

(1.8)

with

R(4,2)(a1, a2, b1, . . . , b4, c1, c2; Λ) =

2∏

i=1

4∏

j=3

g(bi − bj + Λ)

2∏

i=1

4∏

j=3

f(ui − bj + Λ)f(uj − bi − Λ)

×

× g(a1 − a2 + Λ)g(c1 − c2 + Λ)
4∏

i=3

f(a1 − bi + Λ)f(c1 − bi + Λ)
2∏

i=1

f(a2 − bi − Λ)f(c2 − bi − Λ)

. (1.9)

Now we can effectively perform the limit: in consideration of the expansion

R(4,2)(a1, a2, b1, . . . , b4, c1, c2; Λ) = Λ−8

[

1 +O

(
1

Λ

)]

, Λ → +∞ , (1.10)

and of all the possible exchanges of auxiliary variables (of the same type), i.e. a multiplicity factor
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24, we obtain

Π
(4)
mat(u1 + Λ, u2 + Λ, u3, u4) ≃ 24Λ−8 1

4!4

∫
da1db1db2dc1

(2π)4
g(b1 − b2)

2∏

i=1

f(a1 − bi)f(c1 − bi)
2∏

i,j=1

f(ui − bj)

×

×
∫

da2db3db4dc2
(2π)4

g(b3 − b4)
4∏

i=3

f(a2 − bi)f(c2 − bi)

4∏

i,j=3

f(ui − bj)

= Λ−8Π
(2)
mat(u1, u2)Π

(2)
mat(u3, u4) .

(1.11)

Assembling together (1.3), the four scalar asymptotic factorisation is then proven:

G(4)(u1 + Λ, u2 + Λ, u3, u4)
Λ→∞−→ G(2)(u1, u2)G

(2)(u3, u4) +O(Λ−2) . (1.12)

The O(1/Λ) correction vanishes thanks to a refined cancellation coming from the matrix part

(R(4,2)) and the dynamical one: this fact will be relevant in the following. We do not need to

change the scheme in the most general case ui → ui + Λ for 1 ≤ i ≤ m, but only to separate odd

m = 2k − 1 from even m = 2k. In a unified manner, we can describe the shifts aj → aj + Λ and

cj → cj + Λ for 1 ≤ j ≤ k, along with bi → bi + Λ for 1 ≤ i ≤ m, namely

Π
(2n)
mat (u1 + Λ, · · · , um + Λ, um+1, · · · , u2n) = (1.13)

=
1

(2n)!(n!)2

∫ k∏

i=1

daidci
(2π)2

m∏

i=1

dbi
2π

k∏

i<j, i=1

[g(ai − aj)g(ci − cj)]
m∏

i<j, i=1

g(bi − bj)

m∏

j=1

[
k∏

i=1

f(ai − bj)f(ci − bj)

m∏

l=1

f(ul − bj)

] ×

×
∫ n∏

i=k+1

daidci
(2π)2

2n∏

i=m+1

dbi
2π

n∏

i<j, i=k+1

[g(ai − aj)g(ci − cj)]

2n∏

i<j, i=m+1

g(bi − bj)

2n∏

j=m+1

[
n∏

i=k+1

f(ai − bj)f(ci − bj)
2n∏

l=m+1

f(ul − bj)

] R(2n,m)(a1, . . . , c2n; Λ) ,

with

R(2n,m)(a1, . . . , c2n; Λ) =

m∏

i=1

2n∏

j=m+1

g(bi − bj + Λ)

m∏

i=1

2n∏

j=m+1

f(uj − bi − Λ)f(ui − bj + Λ)

×

×

k∏

i=1

n∏

j=k+1

g(ai − aj + Λ)g(ci − cj + Λ)

m∏

j=1

n∏

i=k+1

f(ai − bj − Λ)f(ci − bj − Λ)

2n∏

j=m+1

k∏

i=1

f(ai − bj + Λ)f(ci − bj + Λ)

. (1.14)
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In general R(2n,m) ≃ Λ4(n−k)(2k−m)Λ−4k(2n−m), hence the following factorisation of the matrix part

(1.13), with even m = 2k,

Π
(2n)
mat (u1 + Λ, · · · , u2k + Λ, u2k+1, · · · , u2n) −→ Λ−2m(2n−m)Π

(2k)
mat(u1, · · · , u2k)Π

(2n−2k)
mat (u2k+1, ··, u2n)

(1.15)

can be put together with (1.7). This entails G(2n)(u1 +Λ, · · · , um +Λ, um+1, · · · , u2n) weighted by

a factor Λ−2(m−2k)2 , which means, for odd m = 2k− 1, the suppression G(2n) ≃ Λ−2. Furthermore,

for even m = 2k, the asymptotic factorisation (1.6) is eventually achieved:

G(2n)(u1+Λ, · · · , u2k+Λ, u2k+1, · · · , u2n)
Λ→∞−→ G(2k)(u1, · · · , u2k)G

(2n−2k)(u2k+1, · · · , u2n)+O(Λ−2) .

(1.16)

Subtly, for obtaining this formula we had to consider all the possible shifts of the auxiliary vari-

ables (for given 2k and 2(n − k) particle rapidities) within the integrand (1.13), and produced a

multiplicity factor
(
n
k

)2(2n
2k

)
, which, once combined with the present factorials, as 1

(2n)!(n!)2

(
n
k

)2(2n
2k

)
=

1
(2k)!(k!)2

1
(2n−2k)!((n−k)!)2

, reproduces the correct factorials of G(2k) and G(2n−2k). Actually, we need,

in addition to (1.16), a guessable extension of it with different large shifts Λi (we will prove it

in details [14]): for this new necessity is a consequence of the power like correction (physically

ascribable to asymptotic freedom) in place of the exponential one of [5]. Now, we can profitably

pass to the 2n connected functions g(2n)

F = lnW =
∞∑

n=1

F (2n) =
∞∑

n=1

1

(2n)!

∫ 2n∏

i=1

dθi
2π

g(2n)(θ1, · · · , θ2n)e−z
∑

2n
i=1

cosh θi . (1.17)

A well-known combinatorial definition tells us that the original multi-particle functions G(2n) are

expressed in terms of the connected ones, g(2k), as a sum over all the possible ways, {mk}, to
arrange 2n particles in subgroups of (even) particles3:

G(2n) =
∑

{mk}

∑

d.e.

n∏

k=1

g(2k) · · · g(2k)
︸ ︷︷ ︸

mk terms

, (1.18)

where mk, k = 1, · · · , n, is the number of g(2k), depending on different rapidities (thus with

the constraint
∑n

k=1 2kmk = 2n) and any different exchange (d.e.) is an exchange between

two rapidities belonging to two different g(2k) and producing a different term. Their num-

ber is (
∏n

k=1 1/mk!) (2n)!/
∏n

k=1((2k)!)
mk . First examples are G

(2)
12 = g

(2)
12 , G

(4)
1234 = g

(4)
1234 +

g
(2)
12 g

(2)
34 + g

(2)
13 g

(2)
24 + g

(2)
14 g

(2)
23 = g

(4)
1234 + (g

(2)
12 g

(2)
34 + 2 d.e.), G

(6)
123456 = g

(6)
123456 + (g

(2)
12 g

(4)
3456 + 14 d.e.) +

(g
(2)
12 g

(2)
34 g

(2)
56 +14 d.e.). Conversely, the first examples of connected functions g(2m) in terms of G(2n)

are: g
(2)
12 = G

(2)
12 , g

(4)
1234 = G

(4)
1234 − G

(2)
12 G

(2)
34 − G

(2)
13 G

(2)
24 − G

(2)
14 G

(2)
23 = G

(4)
1234 − (G

(2)
12 G

(2)
34 + 2 d.e.),

g
(6)
123456 = G

(6)
123456 − (G

(2)
12 G

(4)
3456 + 14 d.e.) + 2(G

(2)
12 G

(2)
34 G

(2)
56 + 14 d.e.). These formulæ have no dif-

ference w.r.t. the previous ones, but for the presence of signs and an additional factor: this is a

general feature for the inverse expression [14]

g(2n) =
∑

{mk}
f({mk})

∑

d.e.

n∏

k=1

G(2k) · · ·G(2k)
︸ ︷︷ ︸

mk terms

, (1.19)

3A similar formula holds without the parity constraint.
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where every product carries the factor f({mk}) = (−1)pp!, p =
∑n

k=1mk−1. Now, a crucial obser-

vation enters the stage: factorisation (1.16) implies that the connected functions vanish (rapidly

enough to ensure their integrability, see below) whenever a subset of rapidities is sent far away

from all the others by a great quantity Λ, i.e.

lim
Λ→∞

g(2n)(θ1 + Λ, · · · , θm + Λ, θm+1, · · · , θ2n) ≃
1

Λ2
→ 0 , for m < 2n . (1.20)

This follows from the specific combinatorial form of the r.h.s. of (1.19) once manipulated by means

of the factorisation (1.16) to give rise to peculiar cancellations. Conversely, (1.20) entails the

factorisation (1.16) via (1.18), thus establishing the equivalence of the two properties. Clearly, the

limit (1.20) decides the small z behaviour of the logarithm of the Wilson loop, and, in particular, its

power-like decay (due to asymptotic freedom) implies the presence of a ln(ln 1/z) term. Actually,

we need again (and can prove [14]), an extension of (1.20) with different large shifts Λi.

To derive the conformal limit at small z, we shall consider the multi-integral I(2n) = (2n)!(2π)nF (2n)

in the generic term of the series (1.17), and integrate on the connected function g(2n) which depends

only on the differences αi = θi+1− θ1, i = 1, . . . , 2n− 1. Thus, upon isolating the integration on θ1

I(2n) =

∫

dθ1

2n−1∏

i=1

dαi exp
[

−z cosh θ1−z

2n∑

i=2

(cosh θ1 coshαi−1 + sinh θ1 sinhαi−1)
]

g(2n)(α1, . . . , α2n−1) ,

(1.21)

we notice the convenient definitions a = 1 +
∑2n

i=2 coshαi−1 = ξ cosh η and b =
∑2n

i=2 sinhαi−1 =
ξ sinh η for some real η (depending on the αi, but not on θ1), because of the identity a2 − b2 =
2n+ 2

∑2n
i=2 coshαi−1 + 2

∑2n
i=2

∑2n
j=i+1 cosh(αi−1 − αj−1) = ξ2 > 0. As a consequence

I(2n) =

∫ 2n−1∏

i=1

dαig
(2n)(α1, . . . , α2n−1)

∫

dθ1 exp
[

−zξ cosh(θ1+η)
]

= 2

∫ 2n−1∏

i=1

dαig
(2n)(α1, . . . , α2n−1)K0(zξ) .

(1.22)

We would be tempted to expand (inside) for small argument K0(zξ) = − ln z − ln ξ + ln 2 − γ +

O(z2 ln z), with γ = 0.5772... the Euler-Mascheroni constant. Subtly, because of the weak decay

(1.20), we need to restrict the integral to the region in which the argument is small and then

expand

I(2n) = −2 ln z

∫ 2n−1∏

i=1

dαig
(2n)(α1, . . . , α2n−1)− 2

∫

zξ<1

2n−1∏

i=1

dαig
(2n)(α1, . . . , α2n−1) ln ξ +O(1) ,

(1.23)

where we remove the cut-off only in the first integral since the function g(2n) is integrable, whilst

the second one diverges (as ln ln(1/z)). This mechanism will be even clearer when we analyse later

the two particles case (g(2)(θ) ∼ θ−2). For n > 1 factorisation (1.16) allowed us with (1.20) to

prove that the function g(2n)(α1, . . . , α2n−1) goes to zero when some of the rapidity differences αi

are large, but to be integrable we also need a stronger decay when the rapidities go to infinity in

different ways. This is an involved matter which also determines the sub-leading behaviour and

deserves extended evidence in a longer paper [14]: here we will analyse it up to four particles.
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Eventually, the large coupling expansion for the contribution of scalars to the polygonal Wl/MHV

scattering amplitude (1.17) can be systematically set down and gives at first order

lnW =

√
λ

4π

+∞∑

n=1

1

(2n)!

∫ 2n−1∏

i=1

dαi

2π
g(2n)(α1, . . . , α2n−1) +O(ln

√
λ) , (1.24)

where we remembered that ln(1/z) ∼ − lnmgap ∼
√
λ
4
. In fact, the (divergent) sub-leading term

in (1.23) can be obtained, although without a closed formula because of the new presence of a

necessary cut-off w.r.t. [5]. The latter gives rise to the particular (ln 1/z)s factor in the two point

2D CFT correlation function [4].

Nevertheless, our procedure is very effective for computing the analytic expressions of the three

leading terms in case of two scalars (improving the Monte Carlo findings of [4] and [12]4). In fact,

we shall simply specialise (1.5) and (1.4)

F (2) = W (2) =
3π

16

Γ2(3
4
)

Γ2(1
4
)

∫ +∞

−∞
dθ1

∫ +∞

−∞
dθ2

Π(θ1 − θ2)

((θ1 − θ2)2 +
π2

4
)((θ1 − θ2)2 + π2)

e−z cosh θ1−z cosh θ2 ,

(1.25)

change variables x = θ1 + θ2, θ = θ1 − θ2 and integrate on x, so to obtain

F (2) =

∫ +∞

0

dθh(θ)K0

(

2z cosh
θ

2

)

, h(θ) =
3π

4

Γ2(3
4
)

Γ2(1
4
)

Π(θ)

(θ2 + π2

4
)(θ2 + π2)

. (1.26)

As depicted before in general, we must use the large cut-off 2 ln(1/z):

F (2) =

∫ −2 ln z

0

dθh(θ)K0

(

2z cosh
θ

2

)

+

∫ +∞

−2 ln z

dθh(θ)K0

(

2z cosh
θ

2

)

= I1 + I2 (1.27)

Of course, I2 → 0 when z → 0. Then, as illustrated in general above, we expand K0(2z cosh
θ
2
)

I1 = −J (2) ln z −
∫ −2 ln z

0

dθh(θ) ln

(

cosh
θ

2

)

− J (2)γ + ln z

∫ ∞

−2 ln z

dθh(θ) +O(1/ ln z) , (1.28)

with J (2) =
∫∞
0

dθh(θ). The first contribution is the leading term, proportional to − ln z, while

the fourth term yields a finite contribution −C/2 with C = 3Γ2(3/4)/(πΓ2(1/4)) because of the

asymptotic expansion h(θ) = Cθ−2 + O(θ−4) at large θ. Which also entails that the second term

still contains a (subleading) divergence as it decomposes into

−
∫ 1

0

dθh(θ) ln

(

cosh
θ

2

)

−
∫ −2 ln z

1

dθ

[

h(θ) ln

(

cosh
θ

2

)

− C

2θ

]

− C

2

∫ −2 ln z

1

dθ

θ
. (1.29)

For the second addendum above is finite (for −2 ln z → ∞), but the third one shows a peculiar

double log divergence. Eventually, we can argue the general form of

F = J ln(1/z) + s ln ln(1/z) + t+O(1/ ln z) , (1.30)

4The latter gives the (two scalars) leading term an analytical expression.
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with these estimates for the two scalar case F (2): J (2) = 0.03109..., s(2) = −C/2 = −0.05454.....
and

t(2) = −J (2)γ − C

2
(1 + ln 2)−

∫ 1

0
dθh(θ) ln

(

cosh
θ

2

)

+

∫ ∞

1
dθ

[
C

2θ
− h(θ) ln

(

cosh
θ

2

)]

≃ −0.008.

Furthermore, it is not difficult to evaluate the correction coming from the explicit expression of the

four scalar connected function g(4) [14]. For instance, we simply integrate it with Mathematica
R©

and, according to (1.24), obtain a correction to J of (1.30) by an amount δJ = (−3.44±0.01)·10−3,

i.e. J (4) ≃ 0.02765: this value differs from the 2D-CFT prediction J = 1
36

= 0.027̄ [4, 12] by just

0.5%.

2 SO(6) Matrix part and Young Tableaux

This brief section is devoted to the matrix structure of scalars. It encodes the SO(6) symmetry and

does not depend on the coupling constant, therefore it is a quite general object, to some extent,

independent of the theory (with specific symmetry) and the operator. Besides, many considerations

can be repeated for other groups. In concrete, we will show that a systematic evaluation of Π
(2n)
mat

(1.5) by residues is possible, despite its cumbersome appearance. Inspiration for this has been

borrowed from the random partition method of N = 2 SYM theories [13]. By residues, we can

perform the integrals over the auxiliary variables a,c and obtain

Π
(2n)
mat (u1, · · · , u2n) =

4n2

(2n)!(n!)2

∫ 2n∏

i=1

dbi
2π

[δ2n(b1, . . . , b2n)]
2

2n∏

i,j

f(ui − bj)

∏

i<j

b2ij
(b2ij + 1)

, (2.1)

where δ2n is a known (though involved) symmetric polynomial depending only on the bi differences

[14]. This formula shares many similarities with the integral representation of the 2n-instanton

contribution to the Nekrasov partition function in a N = 2 U(2n) SYM theory: we may loosely

relate the rapidities ui to the U(2n) scalar VEVs and the bi to the instanton coordinates. In

practice, it is well known that a representation as a sum over Young Tableaux configurations exists

for the Nekrasov partition functions [13], due to the particular pattern of poles and zeroes of the

integrand: a very similar pattern appears here and motivates the following outcome. The main

observation is that many residue configurations give the same contribution or are related to each

other by permutation; so that we can write

Π
(2n)
mat (u1, · · · , u2n) =

∑

l1+···+l2n=2n,li<3,li≥li+1

(l1, · · · , l2n)s =
∑

|Y |=2n,li<3

(Y )s , (2.2)

where the residues in bj are encoded in the Young tableaux (lj ≥ lj+1) Y = (l1, · · · , l2n) with lj
piled boxes (rows)5 at the j = 1, ..., 2n column. Yet, to complete the sum we need to add all the

5The constraint lj < 3 comes from the properties of δ2n.
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permutations of columns (a vector of Young columns without the property lj ≥ lj+1), i.e. all the

symmetric contributions in the rapidities ui

(l1, · · · , l2n)s = (l1, · · · , l2n) + perm.. (2.3)

In detail, the vector (l1, · · · , l2n) represent a by-residue evaluation at 2n integrand poles bj (endowed

with a multiplicity factor (2n)! for permutation of the integration variables), with lj of them starting

from uj + i/2 and displaced by i at the j-th column6. The first examples should clarify: for n = 1

we produce

Π
(2)
mat(u1, u2) = (2, 0)s + (1, 1)s (2.4)

where

(1, 1)s = (1, 1) =
4

[(u1 − u2)2 + 1]2

(2, 0)s = (2, 0) + (0, 2) =
1

(u1 − u2)(u1 − u2 + i)2(u1 − u2 + 2i)
+ {u1 ↔ u2} . (2.5)

In (1, 1) one residue is taken in b1 = u1+i/2 and the other in b2 = u2+i/2 (times 2! permutations),

while for (2, 0) in b1 = u1 + i/2 and b2 = u1 + 3i/2 (times 2!). The first non-trivial case is n = 2

with four particles

Π
(4)
mat = (1, 1, 1, 1)s + (2, 1, 1, 0)s + (2, 2, 0, 0)s (2.6)

with

(1, 1, 1, 1) = 4 [δ4(u1, u2, u3, u4)]
2

4∏

i<j

1

(u2
ij + 1)2

(2, 1, 1, 0) = [δ4(u1, u1 + i, u2, u3)]
2

3∏

i<j

1

(u2
ij + 1)2

(u12 + i)2

(u12 + i)2 + 1

(u13 + i)2

(u13 + i)2 + 1
×

1
4∏

j=2

(u1 − uj + i)(u1 − uj + 2i)
3∏

j=1

(uj − u4)(uj − u4 + i)

(2, 2, 0, 0) =
1

2∏

i=1

4∏

j=3

(ui − uj)(ui − uj + i)2(ui − uj + 2i)

(2.7)

where δ4 is a known symmetric polynomial depending on differences; the other contributions are

obtained from (2.7) by permutations of ui (e.g. (2, 2, 0, 0)s = (2, 2, 0, 0) + (2, 0, 2, 0) + (2, 0, 0, 2) +

(0, 2, 2, 0)+ (0, 2, 0, 2)+ (0, 0, 2, 2)). An explicit formula for any (l1, · · · , l2n) with more details will

be given in a forthcoming publication [14]. There we will also show how this educated guess of the

6So to say, any column j is associated to the real rapidity uj .
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polar structure (P2n is a polynomial, partially fixed by (1.16))

Π
(2n)
mat =

P2n(u1, · · · , u2n)
2n∏

i<j

(u2
ij + 1)(u2

ij + 4)

(2.8)

can be proven by means of the factorisation (1.16). For the time being, we need to highlight

how this explicit method of computation is much useful also for the calculation of the connected

functions.
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