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Abstract—A novel class of discrete-time Frequency-Locked-Loop non-

linear (FLL) filters is introduced and their relevance for the on-line

estimation of the parameters of a possibly time-varying sinusoidal signal

is discussed. Continuous-time nonlinear FLL filters have been proposed
in the literature because of their circuital simplicity and ability to provide

unbiased estimates of the instantaneous frequency, phase and amplitude

of a time-varying sinusoidal signal simultaneously. It is shown in this note

that standard discretization techniques may fail to generate discrete-time
FLL filters exhibiting the same good properties of the continuous-time

domain. In particular, biased frequency estimates are usually produced

by these discrete-time filters. In this note, such a drawback is overcome
because the proposed discrete-time FLL filters are proved to enjoy semi-

globally exponential stability and their estimates are unbiased. A final

example is presented for assessment purposes where also comparisons

with other discrete-time filters, among which some synthesized by means
of standard discretization techniques, are provided.

I. INTRODUCTION

Frequency estimation of time-varying sinusoidal signals is an

important topic in science and engineering that has found applications

in many fields such as control engineering, signal processing, biomed-

ical engineering, navigation, instrumentation and measurement and

power engineering to mention a few, see e.g. [1], [2], [3], [4]

and references therein. In the scientific literature, a large variety

of algorithms for frequency estimation have been proposed, e.g.

multiple integrals methods [5], adaptive filters ([6], [7], [8], [9], [10]),

time-frequency representation (TFR) methods [12], phase-locked-

loop (PLL) methods, eigenspace tracking methods [13], extended

Kalman filters [14], internal model based methods ([2], [15]) and

hybrid observers ([16]).

In [17], a class of continuous-time nonlinear frequency-locked-

loop filters (FLL) has been presented that, unlike the aforementioned

methods, are capable of estimating all parameters of a time-varying

sinusoidal signal at the same time, that is its instantaneous frequency,

phase and amplitude. The FLL is composed of a Quadrature-Signals

Generator (QSG) equipped with an adaptive tuning mechanism for

the related resonant frequency. This approach has found applications

in power engineering problems in [18] where it has been used for

solving voltage synchronization problems in power-grids. Recent

improvements on the estimation accuracy and speed of convergence

for this class of filters have been reported in [19]. The method

uses modulating functions to adjust the resonant frequency of the

FLL filter so as to reduce the convergence time and improve the

accuracy of the parameters estimation. Further extensions are reported

in [20], where a FLL filter able to deal with biased sinusoidal

signals is proposed, and [21] where the structural properties of the

filter are discussed providing also a valuable method to estimate

the unknown parameters of a signal independently by the FLL filter

tuning parameters.

All authors are with the Dipartimento di Ingegneria Informatica, Modellis-
tica, Elettronica e Sistemistica (DIMES), Università degli Studi della Calabria,
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In this paper, discrete-time versions of the continuous-time FLL

filters proposed in [17] are presented and their properties fully ana-

lyzed. Discrete-time versions of the filters are more suitable in view of

their practical implementation in embedded systems. Although their

synthesis from direct discretization of continuous-time filters could

be believed a fairly straightforward task, on the contrary in this paper

it is shown that the discretization procedures in this case could not be

as trivial as expected if the resulting discrete-time filters are required

to preserve the same properties (global stability, convergence speed

and estimation accuracy) of their continuous-time counterparts and, at

the same time, exhibit low computational burdens. This issue has not

been dealt with in literature in a formal way. Only in [22], authors

address the problem of discretizing the continuous-time version of

the same QSG here used. In the latter work, the QSG is enclosed

in a control loop designed to track a certain current sinusoidal

profile. Several discretization methods have been compared from a

numerical perspective but any formal analysis about the stability and

convergence properties of the discretized QSGs has not been carried

out. Here, it is shown that all standard discretization techniques used

in [22] are not effective for discretizing the continuous-time FLL

filters presented in [17] because leading to biased estimates of the

unknown frequency to be identified. Such a bias is reduced only if

the working sampling time of resulting discrete-time filters is very

low with respect to the period of the signal to be estimated. As a

consequence for high frequency applications very expensive and fast

hardware (samplers, cpu, memories) should be used. In [23] such an

issue has been addressed and solved for a similar adaptive filter by

adding an offset computed on-line to the estimated frequency so as

to compensate the undesired error.

Here such a problem is solved from the outset by introducing a

novel discrete-time FLL filter. Such a filter keeps the same structure

of its continuous-time counterpart. Moreover, it preserves semi-

globally exponential stability and is able to converge to the true values

of the signal parameters regardless of their initial conditions when

both initial estimates and true values are contained in a prefixed but

arbitrarily large compact set. On the contrary, it is shown that FLL

filters discretized via the standard discretization techniques, are stable

but give rise to biased estimates. Such an approach has been already

presented in a preliminary form in [26], where, however, several

important details and formal proofs were missing. Here all theoretical

results and proofs have been included along with a numerical analysis

of the robustness of the filter estimates against the presence of

measurement noise. For a recent application of the proposed class

of filters please refer to [27].

The note is organized as follows. In section II, we introduce the

discrete-time QSG. In section III the overall structure of the FLL

is presented and its main properties investigated. In Section IV, the

effectiveness of the proposed filter is shown in a final example where

also comparisons of filters designed with both other discretization

techniques and approaches are reported.

II. A DISCRETE-TIME QSG

The proposed FLL filter consists of the discrete-time QSG with

gain Ks and a resonant frequency equal to ωs shown in Fig. 1 and

an adaptive tuning mechanism introduced in next section. In Figure

1, z denotes the forward-shift operator for signal sequences y(kTs),
namely y((k+1)Ts) := zy(kTs). The QSG is a four-order dynamical

system characterized by a resonant frequency ωs and gain Ks. It is

assumed that the filter is fed by the following sinusoidal input

v(kTs) = Ac sin(ωckTs + φc) (1)

where Ts is the sampling period chosen according to the following

requirement
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Fig. 1. Discrete-time QSG.

Assumption 1: According to the Nyquist-Shannon Theorem, the

sampling period Ts and frequencies ωc, and ωs satisfy the following

conditions

ωc < π/Ts, ωs < π/Ts

✷

Notice that the choice of the sampling period implicitly defines also

the workable range of frequencies (0, π
Ts

) for the allowable sinusoidal

signals which can be handled by the discrete-time filter without

aliasing problems.

For input signals of type (1) the QSG provides two orthogonal sig-

nals v1(k) and v2(k) according to the following difference equations

v1(k + 1) = −v1(k) + µ(k) (2)

v2(k + 1) = v2(k) + tan

(

ωsTs

2

)

µ(k) (3)

with

µ(k) =
tan

(

ωsTs

2

)

(Ks(v(k) + v(k + 1)) − 2v2(k))+2v1(k)

1 + tan
(

ωsTs

2

)(

Ks + tan
(

ωsTs

2

)) (4)

and tan(·), cot(·) representing the tangent and the cotangent trigono-

metric functions respectively. Pleas notice that the trigonometric term

tan
(

ωsTs

2

)

is always finite thanks to Assumption 1. The above model

has been derived from a second-order continuous-time QSG ([17]) by

means of Tustin discretization (bilinear) transform with pre-warping

frequency ωs presented in [26].

In the z-domain the above filter can be described by the following

transfer functions, mapping the input sequence v(k) in v1(k) and

v2(k) respectively.

F1(z) :=
Kstan

(

ωsTs

2

)

z2 −Kstan
(

ωsTs

2

)

D(z)
(5)

F2(z) :=
Kstan2

(

ωsTs

2

)

(z + 1)2

D(z)
(6)

and where

D(z) :=
(

1+Kstan
(

ωsTs

2

)

+tan2
(

ωsTs

2

))

z2+
(

2tan2
(

ωsTs

2

)

−2
)

z

+1−Kstan2
(

ωsTs

2

)

+ tan2
(

ωsTs

2

)

Thus, if the sinusoidal excitation (1) were applied under a constant

resonant frequency ωs, the QSG would generate the following two

orthogonal sinusoidal signals under permanent conditions

v∞1 (k)=
∣

∣

∣F1

(

ejωcTs

)∣

∣

∣Ac sin (ωck + φc + φ) (7)

v∞2 (k)=−cot

(

ωcTs

2

)

tan

(

ωsTs

2

)

∣

∣

∣
F1

(

ejωcTs

)
∣

∣

∣
Accos(ωck+φc+φ)(8)

where

φ := arg
{

F1

(

ejωcTs

)}

= arctan

{

2(cos (Tsωc)− cos (Tsωs)

Ks sin (Tsωc) sin (Tsωs)

}

(9)

Moreover, if the resonant frequency ωs were the same of the

unknown ωc, then the signal v∞1 (k) would coincide with the unbiased

sinusoidal input, while v∞2 (k) would be a sinusoidal signal with a

phase shift of π
2

with respect to v∞1 (k). That is, in such a case, the

QSG output sequences would assume the following form

v∞1 (k) =
∣

∣

∣
F1

(

ejωcTs

)∣

∣

∣
Ac sin(ωck + φc) (10)

v∞2 (k) = −
∣

∣

∣
F1

(

ejωcTs

)∣

∣

∣
Ac cos(ωck + φc) (11)

III. ADAPTIVE TUNING OF RESONANT FREQUENCY ωs AND

PARAMETERS ESTIMATION

In this section a discrete-time adaptive updating law for the

resonant frequency ωs(k) of the QSG filter is investigated, along

with its exponential stability property. Such an adaptive updating law

is based on the following function to be evaluated at each time instant

β(ωs(k)) := ωs(k)−γ tan

(

ωs(k)Ts

2

)

(v(k)−v1(k))v2(k) (12)

and it is given by

ωs(k + 1) = max{ε, β(ωs(k))} (13)

with ωs(0) > 0 and ε ∈ (0, ωc) an arbitrarily small scalar. Please

notice that (12)-(13) account for the following recurrent tuning law

for ωs

ωs(k+1) = ωs(k)−γ tan

(

ωs(k)Ts

2

)

(v(k)− v1(k))v2(k) (14)

incorporating in addition a condition for avoiding ωs(k) to become

either 0 or negative when starting from a positive initial value. This

event, although rare in practice, could occur if the parameter γ is

badly chosen. In such undesiderable case (13) simply re-initializes

the adaptation law (14) to the safe value ωs(k) = ε and it allows

ωs(k) to converge to the correct value ωc when k → ∞ as proved

in the next section.

Since ωs(k) is a time-varying parameter, the QSG filter described

by equations (2)-(4) becomes a nonlinear filter. For small enough

values of γ, with γ > 0, it is possible to prove the exponential

convergence property of such a law by using the averaging theory

[25]. Once ωs reaches its equilibrium point, i.e. ωs is tuned on ωc,

the amplitude of v(t) can be estimated by considering the following

function

α(k) := −v2(k) + jv1(k)cot

(

ωcTs

2

)

tan

(

ωsTs

2

)

(15)

It easily results that

|α(k)| = cot

(

ωcTs

2

)

tan

(

ωsTs

2

)

∣

∣

∣
F1

(

ejωcTs

)∣

∣

∣
Ac (16)

arg{α(k)} = ωck + φc + φ (17)

From the above expressions, once an estimate of ωc is obtained, it

is straightforward to compute estimates of Ac and φc as

Âc =
|α(t)|

cot
(

ωcTs

2

)

tan
(

ωsTs

2

)

|F1(ejωcTs)|
, (18)

φ̂c = argα(t)− ω̂ct− φ (19)

In fact, it can be proved that
∣

∣F1

(

ejωcTs

)∣

∣ → 1 when ωs → ωc.



Remark 1: It is worth commenting that the above proposed filter

has been derived from the continuous-time FLL filter of [17] by

means of the particular Tustin (bilinear) discretization method with

an adaptive pre-warping mechanism presented in [26]. Note also

that by strictly following that approach the updating equation would

result different from (14). In fact, in [26] the following discrete-time

equivalent tuning law was achieved

ωs(k + 1) = ωs(k)
ωs(k) cot

(

ωs(k)Ts

2

)

− ξ(k)

ωs(k) cot
(

ωs(k)Ts

2

)

+ ξ(k + 1)
(20)

with ξ(k) = γ(v(k) − v1(k))v2(k), that however may present a

singularity whenever ωs(k) cot
(

ωs(k)Ts

2

)

= −ξ(k + 1). In order

to remove from the outset both such a singularity problem and

the occurrence of zero or negative values for ωs(k), the slightly

modified adaptive tuning law (12)-(13) is here proved to enjoy nice

convergence properties free of singularities.

Remark 2: The introduction of equation (14) is needed in the

special cases where either ω(0) or ωc are very close to 0. In these

situations, if γ is badly chosen, the updating law (14) can output

during the iterations either a negative or 0 value leading the QSG

system to instability. There is not any particular algorithm to choose

ε, but it is convenient in practice to select values for it that are three

or four order of magnitudes lower than the possible spanning range

for ωc, usually known in many applications.

A. Averaging discrete-time methods

For the convergence and stability analysis of system (2),(3),(13)

we resort to the averaging theory for discrete-time systems [25]. In

particular, recurrent equations (2), (3) and (13) can be seen to be in

the form

y(k + 1) = A(x(k))y(k) + γg(k, x(k), y(k), γ) (21)

x(k + 1) = x(k) + γf(k, x(k), y(k)) (22)

where x(k) ∈ IRn stands for the slow state and y(k) ∈ IRm for

the fast one. Notice that in our case v1(k) and v2(k) behave as

fast oscillatory dynamics and hence they will assume the role of

fast states. On the contrary, the evolution of ωs(k) may be made

arbitrarily slow by acting on the parameter γ that can be chosen

arbitrarily close to 0.

The averaged version of equation (22) turns out to be as follows

xav(k + 1) = xav(k) + γfav(xav(k)) (23)

where fav is the limit

fav(x) = lim
T→∞

1

T

s+T
∑

k=s+1

f(k, x, 0) (24)

Standard methods may be employed to analyze the stability properties

of the equilibrium points of such a system. Stability of the averaged

and the original systems are related by the following Proposition

(Please refer to [25] for details)

Proposition 1: Let g(k, x, y, γ) and f(k, x, y) be Lipschitz func-

tions for (k, x, y, γ) ∈ [0,∞)×X0 × Y0 × [0, γ0] in every compact

sets X0 ⊂ X ⊂ IRn and Y0 ⊂ Y ⊂ IRm. Assume also that f and

g are T-periodic in k for some T > 0. Let x(k) and xav(k) denote

the solutions for the original and, respectively, the averaged systems.

Then

1) for any k̄ ∈ ZZ+, there exist bk̄ > 0, 0 < γk̄ < γ∗ and a class

K function Ψ(γ) such that

‖x(k)− xav(k)‖ ≤ Ψ(γ)bk̄ (25)

for all k ∈ [0, k̄/γ], 0 < γ < γk̄ ([25], Theorem 2.2.3).

2) Assume that fav(x) has continous and bounded derivative in

x. If xeq is an exponential stable equilibrium for the averaged

system (23), then there exists 0 < γ2 < γ0 such that xeq is

also an exponential stable equilibrium for the original system

(21)-(22) for all 0 < γ < γ2 ([25], Theorem 2.2.4).

3) Assume that fav(x) has continous and bounded derivative in

x. If xeq is an unstable equilibrium for the averaged system

(23), then xeq is also an unstable equilibrium for the original

system (21)-(22) provided that 0 < γ < γ0 ([25], Theorem

4.2.2).

B. Main Results

Before stating the main properties of the proposed FLL filter, it

is worth observing that when the evolution of ωs(k) is remarkably

slower than those of the time-varying signals v1(k) and v2(k), the

following equivalent expression can be derived for the evolution of

β(k) in (12)

β(ωs(k)) = ωs(k)− γ tan

(

ωs(k)Ts

2

)

(1 − F1(z))F2(z)v
2(k) (26)

In this case the averaged version of (26) takes this structure

βav(ωs(k))=

(

1−γ
A2

c

2
Re

{(

1−F1

(

ejωcTs

))

F̃2

(

e−jωcTs

)}

)

ωs(k) (27)

with

F̃2

(

e−jωcTs

)

= F2

(

e−jωcTs

) tan
(

ωs(k)Ts

2

)

ωs

that can be recast into the following different equation

βav(k) =
(

1 + γq(ωs(k))h(ωs(k))
)

ωs(k) (28)

where

h(ωs) := −
8A2

cKs cos
2
(

Tsωc

2

)

sin2
(

Tsωs

2

)

tan
(

Tsωs

2

)

4ωsq2(ωs) +K2
sωs sin

2 (Tsωc) sin
2 (Tsωs)

(29)

and

q(ωs) := (cos (Tsωc)− cos (Tsωs)) (30)

From equation (28) it is trivial to see that ωc is an equilibrium

solution in (ε, π
Ts

) for the following average version of recurrent

equation (13)

ωs,av(k + 1) = max{ε, βav(ωs,av(k))} (31)

Moving from the above considerations, we present the following

Lemma 1 that is instrumental for the main result of this work

Lemma 1: Consider the following function

V (ωs) := (ωs − ωc)
2

(32)

and its increment evaluated on βav

∆V (βav(ωs), ωs) := V (βav(ωs))− V (ωs) (33)

Then, there exists positive scalars ǫ1, ǫ2, such that

ǫ1(ωs − ωc)
2 ≤ V (ωs) ≤ ǫ2(ωs − ωc)

2
(34)

Moreover, there exists scalars γ∗ and ǫ3 such that for all 0 < γ < γ∗,

and ωs, ωc > 0 satisfying Assumption 1

∆V (βav(ωs), ωs) ≤ −ǫ3(ωs − ωc)
2, (35)

Proof : It is trivial to see that 0 < ǫ1 < 1 and ǫ2 > 1 satisfy

(34), while, in order to prove the existence of ǫ3, a deeper inves-

tigation is required. To this end, please notice that the increment

∆V (β(ωs), ωs) takes the following form

∆V (βav(ωs), ωs) = γh(ωs)ωs

[

2(ωs − ωc)q(ωs) + γh(ωs)ωsq2(ωs)
]

(36)



and h(ωs) < 0 under Assumption 1. Then, a necessary and sufficient

condition to ensure (35) to hold true is that

2 (ωs − ωc) q(ωs) + γh(ωs)ωsq2(ωs)≥− ǫ3
γh(ωs)

(ωs−ωc)
2

ωs

(37)

In fact, if (37) holds true, a trivial way to obtain (35) is to multiply

both sides of (37) by the negative term γh(ωs,av)ωs,av . Next, because

we want to investigate the function (32) for ωs 6= ωc, things can

be simplified by dividing all factors in the inequality (37) by the

positive term ωsq
2(ωs). As a result, after further simple algebraic

manipulations, one arrives to the following equivalent inequality to

be satisfied

−γh(ωs) − ǫ3
γh(ωs)q2(ωs)

(ωs−ωc)
2

ω2
s

≤ 2
q(ωs)

ωs−ωc

ωs

(38)

Moreover, because ωs and ωc are scalar quantities, we can redefine

ωs as

ωs := ρωc (39)

for 0 < ρ < π
Tsωc

. In this way, if we impose ǫ3 = γ2, inequality

(38) takes the following form

−γ
(

h(ρωc) +
1

h(ρωc)q2(ρωc)

(

ρ−1
ρ

)

2
)

≤ 2
q(ρωc)

ρ−1
ρ

(40)

Notice that the term q(ρωc) is strictly negative if ρ < 1 while strictly

positive if ρ > 1. Furthermore,

lim
ρ→1

1

q(ρωc)

ρ− 1

ρ
=

1

Tsωc sin (Tsωc)
> 0 (41)

Hence, the right-hand side of (40) is always strictly positive. There-

fore, there surely exists an arbitrarily small γ∗ satisfying (40). ✷

The following result, representing the main contribution of this

note, ensures that the tuning law (13) for ωs semi-globally exponen-

tially converges to the actual signal frequency ωc.

Theorem 1: Assume v(k) is as in (1) and Assumption 1 holding

true. Let the resonant frequency ωs(k) be updated on the basis of

(2), (3) and (13). Then for all 0 < ωs(0) < π
Ts

and 0 < ωc < π
Ts

the constant solution ωs(k) ≡ ωc is the unique exponentially stable

equilibrium in (0, π
Ts

).
Proof : In order to investigate the exponential stability property of

the equilibrium ωc for system (31), consider the candidate Lyapunov

function V (ωs,av(k)) with V (ωs) already defined in (32) and try to

determine positive scalars ǫ1, ǫ3, ǫ3 such that

ǫ1(ωs,av(k)− ωc)
2 ≤ V (ωs,av(k)) ≤ ǫ2(ωs,av(k)− ωc)

2
(42)

∆V (max{ε, βav(ωs,av(k))}, ωs,av(k)) ≤ −ǫ3(ωs,av(k)− ωc)
2

(43)

Lemma 1 guarantees that scalars ǫ1 and ǫ2 exist satisfying condition

(42). Moreover when βav(ωs,av(k)) ≥ ε, leading to the one-step

ahead evolution for ωs,av(k) given by ωs,av(k+1) = βav(ωs,av(k)),
condition (43) takes the same form of condition (35). Then, thanks

to Lemma 1, the existence of a scalar ǫ3 fulfilling (43) is ensured.

The same ǫ3 can be proved to satisfy condition (43) also in the case

βav(ωs,av(k)) < ε, corresponding to a state transition of the type

ωs,av(k + 1) = ε. To this end, since

∆V (βav(ωs,av(k)), ωs,av(k)) < −ǫ3(ωs,av(k)− ωc)
2

it is sufficient to prove that

∆V (ε, ωs,av(k)) < ∆V (βav(ωs,av(k)), ωs,av(k)) (44)

The above inequality holds true because

βav(ωs,av(k))− ωc < ε− ωc (45)

In fact, because βav(ωs,av(k)) < ε ≤ ωc, both sides of the latter

inequality are negative. Then, if we square them, the following new

inequality is obtained

(ε− ωc)
2 < (βav(ωs,av(k))− ωc)

2
(46)

and, in turn,

(ε− ωc)
2 −(ωs,av(k)− ωc)

2 < (47)

(βav(ωs,av(k))− ωc)
2 − (ωs,av(k)− ωc)

2

Then, (44) simply follows. Finally, the results stated in item 1)-2) of

Proposition 1 complete the proof. ✷

IV. SIMULATION RESULTS

A. Example 1: Comparison with discretized FLL filters

The aim of this section is to show the effectiveness of the above

proposed discrete-time FLL filter. The simulation results will involve

the following time-varying sinusoidal signal whose instantaneous

frequency has to be estimated (see Figure 2 black solid line)

v(t) = A sin

(

2π

∫ 3.5

0

fc(t)dt+
π

2

)

(48)

where A = 10 and

fc(t) =







20 Hz, 0s ≤ t ≤ 0.5s,
16t+ 16 Hz, 0.5s < t ≤ 3s,
60 Hz, 3s < t ≤ 3.5s

The above signal has been sampled with a period of Ts = 2.5×10−3s

(400 [Hz]) and processed by the proposed discrete-time FLL filters

with parameters Ks = 1.5, γ = 0.9 and ε = 10−5 . To put in

evidence the performance of the proposed filter, comparisons with

other discrete-time FLL filters achieved by directly discretizing the

continuous-time FLL filter in [17] have been carried out. In particular

we have taken into account the following discretization methods

• Forward-Euler (Ks = 2, γ = 0.5);

• Tustin with a pre-warping frequency ωp = 30
2π

rad/s (Ks = 1.5,

γ = 0.5);

• 4th order Runge-Kutta (Ks = 1.5, γ = 0.5).

In the simulations all filters have been initialized in ε = ωs(0) =
10
2π

rad/s. The results are depicted in Figure 2. Except for the

transient phases, the graph related to the frequency estimated by the

proposed FLL filter (green dashed line), is indistinguishable from

the true frequency fc(t) and in this case the filter achieves the best

performance. On the contrary all other filters produce biased estimates

making them not suitable to be used in this kind of applications.

Notice also that the performance related to these latter methods could

be improved if the sampling period Ts were reduced. In this respect,

we have carried out a further analysis where the above simulations

have been repeated with several increasing sampling frequencies 1
Ts

.

In particular, we have quantified the estimation error by introducing

the following performance index

EN :=
1

N

N
∑

k=0

E(k) (49)

where E(k) represents the percentage relative error between the

actual frequency fc(k) and the estimated frequency fs(k) = ωs(k)
2π

computed with a simulation step k = t/Ts, i.e.

E(k) :=
|fc(k)− fs(k)|

fc(k)
× 100 (50)

Table I reports, for each discretization method, the values of EN

for several values of the sampling frequency 1
Ts

. In Tables II and
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Fig. 2. Example 1: Estimated input signal frequency profile.

1/Ts[Hz] Forward Tustin Proposed Runge
Euler pre-warping FLL Kutta

200 49.85 18.96 2.25 17.23
400 14.44 4.04 2.24 4.01
800 5.10 2.24 2.24 2.26

1000 4.03 2.24 2.24 2.26
12000 2.25 2.24 2.24 2.26

TABLE I
EXAMPLE 1: RELATIVE ESTIMATION ERROR EN [%]

III, the instantaneous values of the error E(k) at time k = 0.5
Ts

and

k = 3.5
Ts

respectively, are reported in order to investigate the steady-

state behavior of the proposed FLL filter. It results that, whenever

Assumption 1 hold true, the performance of the proposed discrete-

time FLL filter do not seem to depend remarkably on the sampling

time Ts. On the contrary, the errors pertaining to all other discrete-

time FLL filters, that are considerable especially at high frequencies

(Table 2), diminish when 1/Ts increases. However, in order to obtain

comparable performance, it would be needed to work with a sampling

frequency 100 times greater then the Nyquist frequency (120[Hz]

in our case), a case which would require considerable computing

resources.

Further simulations have been carried out in order to verify the

robustness of the proposed filter when the same signal v(t) considered

1/Ts[Hz] Forward Tustin Proposed Runge
Euler pre-warping FLL Kutta

200 11.58 3.23 2.71×10−4 1.62

400 2.87 0.78 7.33×10−4 0.25

800 0.71 0.19 7.71×10−4 0.001

1000 0.45 0.12 7.89×10−4 0.001

12000 0.05 7.86×10−4 1.41×10−4 5.06×10−4

TABLE II

RELATIVE ESTIMATION ERROR E(k)[%] AT TIME 0.5 s.
(

k = 0.5
Ts

)

1/Ts[Hz] Forward Tustin Proposed Runge
Euler pre-warping FLL Kutta

200 89.25 45.76 2.41×10−10 42.62

400 26.17 8.07 1.27×10−7 8.04

800 6.47 1.88 1.88×10−6 0.18

1000 4.41 1.19 2.33×10−6 0.04

12000 0.02 0.008 1.57×10−6 0.0011

TABLE III
EXAMPLE 1: RELATIVE ESTIMATION ERROR E(k)[%] AT TIME 3.5 s.

(

k = 3.5
Ts

)

SNRdB 30 20 10 5 0 -5 -10

Proposed FLL 2.23 2.31 2.38 2.54 3.04 3.41 4.78

Runge-Kutta 2.26 2.52 2.6 2.61 3.23 3.56 4.82

TABLE IV
EXAMPLE 1: RELATIVE ESTIMATION ERROR EN [%] IN THE PRESENCE OF

NOISE

in (48) is corrupted by a zero-mean white gaussian noise η(t) ∼
WN(0, σ), i.e. ṽ(t) = v(t)+η(t), with the variance σ characterizing

the Signal-to-Noise Ratio expressed as SNRdB = 20 log(A/σ).
Figure 4 shows some frequency estimations performed by the

proposed discrete-time FLL filter with a sampling period of Ts =
1.25× 10−3 (800 [Hz]). The results seem satisfactory for SNRdB ≥
−5. Notice however that an increment of the sampling frequency can

lead to lower estimation errors. Comparisons have been undertaken

between the filter discretized by means of Runge-Kutta method.

In Table IV, for each discretization policy, the values of EN have

been reported for several values of SNRdB . In all cases, the filter

discretized by means of the proposed method achieves the best

performance.
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B. Example 2: Comparison with an alternative adaptive PLL filter

approach

In order to further investigate the effectiveness of the proposed

discrete-time FLL filter design approach, comparisons with the

discrete-time adaptive Phase-Look Loop (PLL) based estimation

technique introduced in [28], namely PLL-TD, are presented. In this

case, the goal of the experiment is to estimate the amplitude and

frequency of the signal

v(t) = A sin (2πfc(t)t) (51)



where A = 1 and

fc(t) =

{

2 Hz, 0s ≤ t ≤ 30s,
10 Hz, 30s < t ≤ 60s

The above signal has been sampled with a period of Ts = 0.03s

(33.33 [Hz]) and processed by the proposed discrete-time FLL filter,

namely FLL-TD, with parameters Ks = 5, γ = 29 and ε = 10−5.

The PLL-TD has been tuned with parameters gω = 0.0396, zα =
0.9005, kα = 10.05 and gm = 0.01. In Figure 5 the estimated

frequency and amplitude are depicted for both schemes. From that

figure it clearly results that both methods behave similarly during

the first transient while, after the frequency step change, PLL-TD

presents a slower response.
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Fig. 5. Example 2: (left) frequency estimates, (right) amplitude estimates

V. CONCLUSIONS

A novel effective discrete-time FLL nonlinear filter has been

derived starting from their continuous-time counterparts. The latter

class of filters enjoy suitable features in terms of semi-global stability,

convergence speed and estimation accuracy and have been used in

several applications involving the instantaneous estimation of the

frequency, phase and amplitude of a time-varying sinusoidal signal.

The proposed discrete-time FLL filter results semi-globally ex-

ponentially stable and unbiased. In particular, it has been proved

that such a filter is able to converge to the true values of the

signal parameters regardless of its initial conditions when both the

initial estimates and the true values of them are contained in a

prefixed but arbitrarily large compact set. On the contrary, it has

been demonstrated that standard discretization techniques, although

giving rise to stable filters, usually lead to biased estimates.

Final examples are provided where the proposed discrete-time FLL

filter is used as a frequency tracker of a time-varying sinusoidal signal

even in presence of noise. The responses of several discrete-time FLL

filters synthesized via other discretization techniques are also reported

for allowing comparisons. Further comparisons with a discrete-time

PLL alternative scheme have confirmed the effectiveness of the

approach.
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