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Finite-Time Robust Admissible Consensus Control of
Multirobot System Under Dynamic Events

Anuj Nandanwar , Narendra Kumar Dhar , Dmitry Malyshev, Larisa Rybak, and Laxmidhar Behera

Abstract—This article addresses the problem of event-based
consensus in a leader–follower multiagent system framework prone
to external bounded disturbance. The proposed approach has
three parts. The first part defines a novel measurement error
based on sliding surface for super-twisting sliding-mode controller.
The Lyapunov stability analysis is then used to derive a dynamic
event-triggering condition for control updates. The event-based
control updates guarantee stability along with the desired consen-
sus amongst agents (robots). The second part derives a bound on
reaching time to the sliding surface, thereby guaranteeing finite-
time consensus control for each agent. The third part guarantees
the admissibility of event-based control updates for each agent.
The robustness of the proposed approach is validated through
simulation and real-time experiments using three Pioneer P3-DX
mobile robots in a multiagent framework. The real-time experi-
mental results prove the reduction in computational burden of the
entire system as control updates for two followers are found to be
approximately 28.33% and 23.33%, respectively, in the presence
of disturbances.

Index Terms—Admissibility, consensus control, event-trigger,
Lyapunov stability, sliding-mode control.

I. INTRODUCTION

IN THE recent two decades, distributed cooperative control
and consensus problem for multiagent systems (MASs) [1]

have garnered large attraction because of their wide-spread
application in various areas such as area coverage and ex-
ploration, search and rescue mission [2], synchronization [3],
and distributed optimization. Numerous works have been pro-
posed related to consensus of MAS such as heterogeneous
linear agent [3], first-order consensus with communication time-
delay [4], second-order consensus [5], and nonholonomic sys-
tem [6]. A very popular approach to achieve consensus has been
artificial potential function [5]. It has some limitations [7]: a)
local minima leading to traps, b) no way out when obstacles
are nearby, c) oscillations occurring near obstacles and narrow
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spaces, and d) cannot reach the goal if obstacles are near. The
work in [4] is simple, robust to time-delays during communi-
cation, and easy to implement in real-time applications. The
common feature of [3]–[7] is that they consider continuous
communication between the neighboring agents. The update of
control inputs occur at each sampling instant. During real-time
application, continuous communication and computational re-
sources are important concerns for multiagent systems.

The event-based control scheme [8], [9] is an effective way to
reduce the resource consumption in such system. Event-based
controllers generate control input in aperiodic manner based
on certain rule(s) or condition(s). In [10], an event-triggered
controller has been developed for linear stochastic system of
first-order. Based on distributed events, a self-triggered approach
has been used to save energy for the system [11]. Dimarogonas
et al. [12] have presented a preliminary work on event-based
controller for MAS. The event-triggering strategy is applied
to handle the problem of consensus in MAS with agents hav-
ing single-integrator dynamics [13], general linear model [14],
and second-order system dynamics [15]. Zhu and Jiang [16]
addressed the consensus problem among leader–follower with
general linear model and input delay, whereas Yu et al. [17]
investigated the consensus problem in leader–follower frame-
work using event-triggering for discrete first- and second-order
systems with packet losses and time-varying delay. The major
drawback of all these works is that they show consensus asymp-
totically but do not guarantee it in finite-time.

The event-based consensus of leader–follower and leaderless
MAS in finite-time has been presented in [18]. The work in [19]
studies time-triggered formation control of MAS in finite-time
with nonholonomic robots as agents. The works [18] and [19]
do not consider the effect of disturbance. An event-based H∞
control is designed for consensus of discrete time-varying MAS
with external disturbance [20]. This approach does not guarantee
consensus in finite-time.

The sliding-mode control (SMC) is a very popular robust con-
trol technique and it rejects bounded disturbances and matched
uncertainties. The second-order SMC (SOSMC) very efficiently
fulfills this purpose. It belongs to the class of higher order
SMC (HOSMC). One such controller is super-twisting SMC
(STSMC) [21]. This approach steers the sliding variable to
zero without using its time derivative for systems with relative
degree of two. The approach proposed in [22] shows exponential
convergence for linear systems, whereas there is no guarantee of
finite-time convergence for higher order systems as the SOSMC
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algorithm lacks local lipschitzness at origin. The SMC ap-
proach [23] handles tracking problem in finite-time for systems
showing lipschitzness in their dynamics and prone to external
disturbances. An integral SMC approach achieves consensus
in finite-time for distributed second-order MAS with bounded
disturbances [24]. Liu et al. [25] proposed a second-order super-
twisting algorithm for the leader–follower MAS with system un-
certainties and external disturbances. Yang et al. [26] proposed
a methodology which is simple to design and reduces the com-
putational burden during practical applications. It guarantees
finite-time reachability and fault identification during operation
even in the presence of stochastic noise, disturbance in output,
and time delays. The simultaneous reconstructions of faults and
states are achieved using reduced-order sliding-mode observer
for time-delayed Markovian jump systems in [27]. Apart from
simultaneous reconstructions, the methodology in [28] annuls
the switching issue of sliding surfaces and avoids the necessity
of reachability assay. All these works follow time-triggered
approaches.

An event-based SMC technique seems to be the best-suited
approach for disturbance rejection as well as reduction in com-
munication and computational cost in a complex MAS. It is
very difficult to derive a triggering strategy for finite-time con-
sensus in the presence of nonlinear consensus protocol. For this,
Behera and Bandhopadhay [29] assumed a nonlinear function
in the locally Lipschitz continuous-time system dynamics with
a unique equilibrium point. Nair et al. [30] have proposed an
event-based integral SMC for multirobot consensus but the
events for control updates are obtained through static threshold.
As compared to HOSMC, integral SMC in [30] ignores the
reaching phase. It forces the entire system response to pass
through sliding mode. Though it reduces the sliding function
to zero, it cannot do so with the derivatives of higher order.
It cannot guarantee all the states to be finite-time stable. The
other limitation of [30] is the chattering phenomena due to dis-
continuities generated by the control law. Though the approach
in [31] considers heterogeneous agents for leader-tracking prob-
lem using dynamic controller, the triggering rule is again a static
one. The transmission of information is affected by time-varying
communication delays. The approach in [32] investigates dy-
namic event-triggered leader–follower consensus problem with
matched and unmatched disturbances using traditional sliding-
mode controller in finite-time. The approach does not consider
HOSMC. Apart from this, an infinite number of switching occurs
in finite time, i.e., Zeno behavior [33], a major issue to be taken
care of in an event-based technique. To solve this problem, the
control protocol should ensure that the interevent intervals have
a strictly positive lower bound value. Wang et al. [34] devised
an approach for consensus of asynchronously distributed MAS.
It is a periodic event-based strategy which effectively removes
Zeno behavior during sampling of data.

Motivated by the aforementioned discussion, the work pre-
sented in this article aims to design and implement an event-
triggered STSMC for finite-time robust consensus in MAS
prone to disturbances. The controller is applied to a real-time
leader–follower MAS framework. In summary, this article has
the following contributions:

Fig. 1. Schematic of robot model.

1) design of dynamic event-based STSMC methodology for
consensus in MAS;

2) the guarantee of finite-time consensus and stability of
MAS;

3) the guarantee of lower bound on interevent execution time
for admissibility of control updates; and

4) the real-time desired consensus in leader-follower frame-
work with directed graph topology.

The rest of this article is organized as follows. The pre-
liminaries and problem formulation are given in Section II.
Section III has three subsections. The first one derives dynamic
event-triggering condition. The second and third subsections
present finite-time consensus and admissibility of event-based
control, respectively. Section IV presents simulations, real-time
experiments, and comparative analyses. The conclusions are
drawn in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Multiagent System Framework

A distributed MAS framework is considered for p robots as
agents. These agents have single-integrator dynamics. They can
interact and transmit data among each other. The communication
topology between them is assumed to be a directed and weighted
graph devoid of self-loops, G = (V, E ,A) [30].

Notation: For any vector ε = [ε1, ε2, . . ., εn]
T , a) sgn(ε) =

[sgn(ε1), sgn(ε2), . . ., sgn(εn)]T , b) |ε|η = [|ε1|η, . . ., |εn|η]T ,
and c) |ε|ηsgn(ε) = [|ε1|ηsgn(ε1), . . ., |εn|ηsgn(εn)]T . The pa-
rameter η ∈ R. The norm used in the article is defined as
||ε|| =

√
εT ε.

B. System Dynamics and Control Input

The nonholonomic mobile robots in the MAS framework
move on a X–Y plane. Each agent of the group has the same
built and dynamics. The kinematic model of any agent i as per
Fig. 1 is similar to [35]

˙̄xi = vi cos(θi), ˙̄yi = vi sin(θi), θ̇i = ωi (1)

where x̄i = [x̄i ȳi]
T and θi represent position vector and turn

angle, respectively. vi and ωi are linear and angular velocities,
respectively.

An off-axis point Q is considered as the point of operation
for robot i. The kinematic model (1) is first transformed to
single-integrator form. The off-axis point is located at (xi, yi),
where xi = x̄i + l cos(θi) and yi = ȳi + l sin(θi) with distance
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l between center of gravity and Q. The agent dynamics based
on off-axis point is

ẋi = vi cos θi − lωi sin θi

ẏi = vi sin θi + lωi cos θi. (2)

The linear and angular velocities are defined as

vi = uix cos θi + uiy sin θi

ωi = (−1/l)(uix sin θi − uiy cos θi) (3)

where ui = [uix uiy]
T is the control input vector generating

these velocities. On using (3), (2) is simplified as

ẋi = uix ẏi = uiy. (4)

The robot is prone to external disturbances (dix, diy). Hence,
the dynamics (4) on incorporating the disturbance becomes

ẋi = uix + dix ẏi = uiy + diy. (5)

The dynamics (5) can be written compactly in the single-
integrator model form as

ẋi = ui + di (6)

where xi = [xi, yi]
T and di = [dix, diy]

T represent position
vector and lumped uncertainty for external disturbances and
unmodeled dynamics, respectively. The control input ui for
agent i is computed using event-based STSMC proposed in
Section III.

The leader and follower robot dynamics in MAS framework
based on (6) are therefore defined as

ẋi(t) = ui(t) + di(t), i = 1 . . . p

ẋ0(t) = u0(t) (7)

where xi(t) ∈ Rn, ui(t) ∈ Rn, and di(t) ∈ Rn represent po-
sition, control input, and bounded disturbance, respectively of
the ith follower robot. x0(t) ∈ Rn and u0(t) ∈ Rn are position
and control input, respectively, of leader robot. The leader
dynamics is assumed to be not affected by disturbance. Let
x̃i(t) = xi(t)− x0(t) + Δi and ũi(t) = ui(t)− u0(t) be the
deviations in position and control input of follower i from the
leader, respectively. Δi is the desired position separation of
follower i from leader. The relative dynamics of agent i based
on the above deviations and (7) can be presented as

˙̃xi(t) = ũi(t) + di. (8)

The STSMC sliding surface defined for an agent i in the MAS
framework is

Si(t) = x̃i(t)−
∫ t

0

qαi (t)dt, i = 1 . . . n (9)

where

qi(t) = − γi
pi + 1

∑
j∈pi

aij{(xi(t)− x0(t) + Δi)

− (xj(t)− x0(t) + Δj)}+ bi(xi(t)− x0(t) + Δi))

= − γi
pi + 1

∑
j∈pi

aij(x̃i(t)− x̃j(t)) + bix̃i(t). (10)

Fig. 2. Block schematic of the proposed approach.

Si(t) = [s1(t), s2(t), . . . sn(t)]
T and qi is the consensus com-

ponent in (9). α ∈ (0, 1) determines the rate of consensus,
γi (γi > 0) is a constant parameter, aij and bi are the connection
weights between the agents, and pi (1 ≤ pi < p) is the number
of agents neighboring to ith agent. With the onset of sliding
phase, Si(t) = 0. To achieve the desired consensus, we have
considered a super-twisting control law

ũi(t) = qαi (t)−K1|Si(t)| 12 sgn(Si(t)) + �i(t)

where �̇i(t) = −K2sgn(Si(t)). (11)

The gain matrices K1 = diag{k11, k12, . . . , k1n} and K2 =
diag{k21, k22, . . . , k2n}, with each of their elements being posi-
tive gains. The control law ũi(t) in (11) is updated only at events
(described in Section-III) and it remains the same until the next
event triggers. The control law ∀ t (tik ≤ t < tik+1) is

ũi(t) = qαi (t
i
k)−K1|Si(tik)|

1
2 sgn(Si(t

i
k)) + �i(t

i
k) (12)

where tik is the latest event instant.
Remark 1: The superscript (i = 1, . . . , p) and subscript (k =

1, 2, . . .) in tik are agent and event number, respectively. �
A novel measurement error (event-triggered error) ei for each

agent i has been defined to derive the event-triggering condition.
The event-triggered error is defined as

ei(t) = |Si(t)| 12 sgn(Si(t))− |Si(t
i
k)|

1
2 sgn(Si(t

i
k))

=

⎡
⎢⎢⎣
|si1(t)|

1
2 sgn(si1(t))− |si1(tik)|

1
2 sgn(si1(t

i
k))

...

|sin(t)|
1
2 sgn(sin(t))− |sin(tik)|

1
2 sgn(sin(t

i
k))

⎤
⎥⎥⎦ (13)

where Si(t) and Si(t
i
k) are sliding surfaces at current instant (t)

and latest event-instant (tik), respectively.
Using (8), (9), and (12), the surface dynamics ∀ t (tik ≤ t <

tik+1) is

Ṡi(t)=qαi (t
i
k)−K1|Si(tik)|

1
2 sgn(Si(t

i
k)) + �i(t

i
k)+di − qαi (t).

(14)
A schematic of the proposed approach is shown in Fig. 2. The
event-based STSMC block first verifies whether event-triggering
occurs or not. If yes, it then transmits control input ũi to agent
i. The ZOH (zero-order hold) block holds the control input
until the next transmission occurs. The sampling time of ZOH
is the same as that for the system operation. The following
three assumptions have been considered while deriving the
event-based control input.
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Assumption 1: For the agent dynamics (7), the unmodeled
dynamics/disturbance lumped together as di is assumed to be
bounded, i.e., di ≤ δ|Si| 12 sgn(Si), where δ ∈ R.

Assumption 2: The difference Δqi = (qαi (t
i
k)− qαi (t))

∀ t (tik ≤ t < tik+1) is bounded as Δqi ≤ Φi where Φi ∈ R.
Assumption 3: The event-triggered error magnitude ∀ t (tik ≤

t < tik+1) of any agent i is bounded as ‖ei‖ ≤ etr.
Remark 2: The consensus component qi is defined using the

difference of position of agents which change finitely based on
velocity inputs. Hence, Δqi in Assumption 2 is considered to
be bounded in interevent duration. The event-triggered error
depends on difference of sliding surfaces as per (13). The
magnitude of this difference is finite for interevent duration and
hence validates Assumption 3. �

C. Problems

The solution to the following three problems are integral to the
design of the proposed finite-time robust admissible consensus
control in the presence of external bounded disturbance.

Problem 1: Given the agent dynamics (7), derive the dy-
namic event-triggering condition for each agent i such that the
event-based control input from STSMC achieves consensus and
renders the system stable.

Problem 2: Guarantee the finite-time consensus by having
finite reaching time to the sliding surface for each agent?

Problem 3: Guarantee the admissibility of event-based control
law for each agent?

The solutions have been presented in the following section.

III. EVENT-TRIGGERED CONSENSUS CONTROL

The proposed methodology has three parts. The first part
derives the dynamic event-triggering condition necessary for
updating control inputs of respective agents in the MAS. The
second part guarantees finite reaching time to the sliding surface
while the third part guarantees admissibility of event-based
control.

A. Event-Triggering Condition

Theorem 1 presents event-triggering condition required for
control input updates of agents. The approach will ensure con-
sensus among agents and their stability.

Theorem 1: Consider the dynamics of agent i (7) with its
event-based control law (12). If the condition

‖ei‖ >
∥∥∥z2 − |Si(t

i
k)|

1
2 sgn(Si(t

i
k))

∥∥∥

where z2 =
−κ+

√
κ2 − 4βρ

2β
(15)

is satisfied, then an event triggers and control input for the
agent i is updated at that instant. The gradual events result
in its consensus with other agents of MAS in the presence of
disturbance and further ensure stability.

Proof: The Lyapunov function considered for the agent i is

Vi = ζTi Piζi (16)

where ζi = [ |Si|
1
2 sgn(Si)
�i

] and Pi =
1
2 [

4K2+K2
1−K1

−K1

2I ].

The time derivative of Lyapunov function in (16) is

V̇i = ζ̇Ti Pζi + ζTi P ζ̇i (17)

where ζ̇i = [ 12 |Si|− 1
2 (ϕi + di) −K2sgn(Si)]

T and ϕi =

qαi (t
i
k)−K1|Si(t

i
k)|

1
2 sgn(Si(t

i
k)) + �i(t

i
k)− qαi (t). The com-

ponent ζ̇Ti Pζi in (17) is

ζ̇Ti Pζi =
[
1
2 |Si|− 1

2 (ϕi + di) −K2sgn(Si)
]

× 1

2

[
4K2 +K2

1 −K1

−K1 2I

][
|Si| 12 sgn(Si)

�i

]

=
1

2

[
1
2 |Si|− 1

2 (ϕi + di) −K2sgn(Si)
]

[
4K2|Si| 12 sgn(Si) +K2

1 |Si| 12 sgn(Si)−K1�i

−K1|Si| 12 sgn(Si) + 2�i

]

=
1

4
|Si|− 1

2

[
(ϕi + di)(4K2|Si| 12 sgn(Si)

+K2
1 |Si| 12 sgn(Si)− K1�i) + 2K1K2|Si|

− 4K2�i|Si| 12 sgn(Si)
]
. (18)

Similarly, the component ζTi P ζ̇i of V̇i is

ζTi P ζ̇i =
[
|Si| 12 sgn(Si) �i

]

× 1

2

[
4K2 +K2

1 −K1

−K1 2I

][
1
2 |Si|− 1

2 (ϕi + di)

−K2sgn(Si)

]

=
1

4
|Si|− 1

2

[
(ϕi + di)(4K2|Si| 12 sgn(Si)

+K2
1 |Si| 12 sgn(Si)−K1�i) + 2K1K2|Si|

− 4K2�i|Si| 12 sgn(Si)
]
. (19)

Using (18) and (19), (17) can be written as

V̇i =
1

2
|Si|− 1

2

[
ϕi(4K2|Si| 12 sgn(Si) +K2

1 |Si| 12 sgn(Si)

− K1�i) + di(4K2|Si| 12 sgn(Si) +K2
1 |Si| 12 sgn(Si)

− K1�i) + 2K1K2|Si| − 4K2�i|Si| 12 sgn(Si)
]
. (20)

On applying disturbance bound as per Assumption 1 in (20)

V̇i ≤ 1

2
|Si|− 1

2

[
4K2ϕi|Si| 12 sgn(Si) +K2

1ϕi|Si| 12 sgn(Si)

−K1ϕi�i + 4K2δ|Si|+K2
1δ|Si| −K1�iδ|Si| 12 sgn(Si)

+ 2K1K2|Si| − 4K2�i|Si| 12 sgn(Si)
]
. (21)

Let zi = |Si| 12 sgn(Si). On expressing (21) in terms of zi

V̇i ≤ 1

2
|Si|− 1

2

[
4K2ϕizi +K2

1ϕizi −K1ϕi�i + 4K2δz
2
i

+ K2
1δz

2
i −K1�iδzi + 2K1K2z

2
i − 4K2�izi

]
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=
1

2
|Si|− 1

2

[
z2i (4K2δ +K2

1δ + 2K1K2) + zi(4K2ϕi

+ K2
1ϕi −K1�iδ − 4K2�i) + (−K1ϕi�i)

]

=
1

2
|Si|− 1

2

[
βz2i + κzi + ρ

]
(22)

where β = 4K2δ +K2
1δ + 2K1K2, κ = 4K2ϕi +K2

1ϕi −
K1�iδ − 4K2�i, and ρ = −K1�iϕi. For stability, V̇i ≤ 0.

Hence

1

2
|Si|− 1

2

[
βz2i + κzi + ρ

] ≤ 0

⇒ βz2i + κzi + ρ ≤ 0 ⇒ (zi − z1)(zi − z2) ≤ 0

where (z1, z2) =
−κ±

√
κ2 − 4βρ

2β
. (23)

Remark 3: For z1 and z2 to have real values, κ2 − 4βρ ≥ 0.
This is ensured by the parameters considered for the agents. Let
for agent i, z1 ≤ z2. �

Since z1 ≤ z2, the sufficient condition for system stability is

(zi − z2) ≤ 0 ⇒ zi ≤ z2. (24)

On substituting the expression for zi in (24)

|Si| 12 sgn(Si) ≤ z2. (25)

From (13)

|Si| 12 sgn(Si) = ei + |Si(t
i
k)|

1
2 sgn(Si(t

i
k)). (26)

On rewriting (25) using (26)

ei + |Si(t
i
k)|

1
2 sgn(Si(t

i
k)) ≤ z2

⇒ ei ≤ z2 − |Si(t
i
k)|

1
2 sgn(Si(t

i
k)). (27)

The system is stable for the condition obtained in (27). The above
condition can be further written as

‖ei‖ ≤
∥∥∥z2 − |Si(t

i
k)|

1
2 sgn(Si(t

i
k))

∥∥∥ . (28)

Remark 4: The components on both sides of (27) are vector
quantities. Hence, a simplified form is written in (28). �

On the contrary, an event is triggered when

‖ei‖ >
∥∥∥z2 − |Si(t

i
k)|

1
2 sgn(Si(t

i
k))

∥∥∥ . (29)

Equation (29) is therefore the event-triggering condition for
agent i. All the agents will have similar condition like (29).

Remark 5: (a) Equation (29) presents a dynamic condition
as the parameters on right-hand side (RHS) change value at
different time instants. (b) For smooth implementation of (29)
in real-time scenario, the “>” symbol is replaced by “≥.” �

B. Finite-Time Consensus Control

For real-time consensus applications, the sliding phase should
start in finite time, or, in other words, reaching time to the sliding
surface should be finite. The describing point of an agent then
moves along its sliding surface. Theorem 2 guarantees finite-
time consensus control by STSMC.

Theorem 2: For the triggering condition (15) and the event-
based control law (12), the reaching timeTr to the sliding surface
is finite and upper bounded by

Tr =
2

δ

[∣∣∣
∣∣∣− |Si(tS0

)| 12 sgn(Si(tS0
))

− ςi
δ

ln
(
−δ|Si(tS0

)| 12 sgn(Si(tS0
))
) ∣∣∣

∣∣∣
]
. (30)

Proof: From (9), the sliding surface dynamics can be given
by

Ṡi = ˙̃xi − qαi . (31)

Equation (31) can be further written using (8) as

Ṡi = ũi + di − qαi . (32)

On using the control input ũi from (12) at t = tS0
in (32)

Ṡi = qαi (tS0
)−K1|Si(tS0

)| 12 sgn(Si(tS0
))+�i(tS0

)+di−qαi
(33)

where Si(tS0
) is the initial value (at t = tS0

) when agent i starts
toward the sliding surface. As per Assumptions 1 and 2, (33)
can be expressed as

Ṡi ≤ Φi −K1|Si(tS0
)| 12 sgn(Si(tS0

)) + �i(tS0
)

+ δ|Si| 12 sgn(Si). (34)

Let ςi = Φi −K1|Si(tS0
)| 12 sgn(Si(tS0

)) + �i(tS0
) for sim-

plicity of expression. Inequality (34) can be written as

Ṡi =
dSi

dt
≤ δ|Si| 12 sgn(Si) + ςi. (35)

The maximum rate of change of sliding surface is

dSi

dt
= δ|Si| 12 sgn(Si) + ςi. (36)

Remark 6: Equation (36) has vector components on the left-
and right-hand sides. To proceed further, L2 norm has been
used. �

The maximum reaching time can therefore be obtained from
(36) as ∥∥∥∥∥

∫ Si(tSf
)

Si(tS0
)

dSi

δ|Si| 12 sgn(Si) + ςi

∥∥∥∥∥ =

∫ tSf

tS0

dt (37)

where Si(tSf
) is the value (at t = tSf

) when agent i reaches the
sliding surface.

Remark 7: The S(tS0
) and S(tSf

) are values at time instants
tS0

and tSf
when describing point of ith agent initially starts

toward and finally reaches the sliding surface, respectively. �
On simplifying expression (37)

2

δ

[∣∣∣
∣∣∣|Si| 12 sgn(Si)

∣∣∣Si(tSf
)

Si(tS0
)

− ςi
δ

ln

(
δ|Si| 12 sgn(Si) + ςi

∣∣∣Si(tSf
)

Si(tS0
)

) ∣∣∣
∣∣∣
]
= tSf

− tS0
. (38)
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As the agent reaches sliding surface, the value of Si, i.e.,
S(tSf

) = 0. Equation (38) is further expressed as

2

δ

[∣∣∣
∣∣∣− |Si(tS0

)| 12 sgn(Si(tS0
))

− ςi
δ

ln
(
−δ|Si(tS0

)| 12 sgn(Si(tS0
))
) ∣∣∣

∣∣∣
]
= (tSf

− tS0
) (39)

where tSf
− tS0

= Tr. On rearranging (39)

Tr =
2

δ

[∣∣∣
∣∣∣− |Si(tS0

)| 12 sgn(Si(tS0
))

− ςi
δ

ln
(
−δ|Si(tS0

)| 12 sgn(Si(tS0
))
) ∣∣∣

∣∣∣
]
. (40)

The Tr in (40) is the maximum reaching time to the sliding
surface.

C. Admissibility of Event-Based Control

The admissibility of event-triggered control is necessary to
avoid the piling of triggering instants (i.e., Zeno effect) which
can force the system to instability. Theorem 3 provides a bound
on interevent execution duration to avoid such scenario.

Theorem 3: For the system in (7), event-based control is
updated when the condition in (15) is satisfied. The admissibility
of such control update is guaranteed if the interevent execution
time Te (Te = tik+1 − tik) is lower bounded by

Te ≥ 2
∥∥∥|Si(t

i
k)|

1
2

∥∥∥ ln

(
1 +

δetr∥∥∥δ|Si(tik)|
1
2 sgn(Si(tik)) + ςi

∥∥∥
)
.

(41)
Proof: The event-triggered error for agent i is

ei = |Si(t)| 12 sgn(Si(t))− |Si(t
i
k)|

1
2 sgn(Si(t

i
k)). (42)

The time derivative of event-triggered error in (42) is

ė1 =
d

dt

(
|Si(t)| 12 sgn(Si(t))− |Si(t

i
k)|

1
2 sgn(Si(t

i
k))

)

=
1

2
|Si|− 1

2 Ṡi. (43)

Substituting Ṡi from (32) in (43) gives

ėi =
1

2
|Si|− 1

2 (qαi (t
i
k)−K1|Si(t

i
k)|

1
2 sgn(Si(t

i
k))

+ �i(t
i
k) + di − qαi ). (44)

Using Assumptions 1 and 2 in (44)

ėi ≤ 1

2
|Si|− 1

2

(
Φi −K1|Si(t

i
k)|

1
2 sgn(Si(t

i
k))

+ �i(t
i
k) + δ|Si| 12 sgn(Si)

)
. (45)

Using ςi = Φi −K1|Si(t
i
k)|

1
2 sgn(Si(t

i
k)) + �i(t

i
k) the same as

in Section III-B, inequality (45) is written as

ėi ≤ 1

2
|Si|− 1

2

(
δ|Si| 12 sgn(Si) + ςi

)
. (46)

Using (42) and (46) is written in terms of event-triggered error
as

ėi =
d(ei)

dt
≤ 1

2
|Si(t

i
k)|−

1
2

(
δ(ei+|Si(t

i
k)|

1
2 sgn(Si(t

i
k)))+ςi

)

⇒ d(ei)

dt
≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 |si1(tik)|−

1
2

(
δ(ei1 + |si1(tik)|

1
2 sgn(si1(t

i
k)))

+ ςi1

)

...

1
2 |sin(tik)|−

1
2

(
δ(ein + |sin(tik)|

1
2 sgn(sin(t

i
k)))

+ ςin

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)

Using the vector norm in (47), we can write

d ‖ei‖
dt

≤ 1

2

∥∥∥∥|Si(t
i
k)|−

1
2

(
δ(ei+|Si(t

i
k)|

1
2 sgn(Si(t

i
k)))+ςi

)∥∥∥∥

≤ 1

2

∥∥∥|Si(t
i
k)|−

1
2

∥∥∥
(
δ ‖ei‖+

∥∥∥δ|Si(t
i
k)|

1
2 sgn(Si(t

i
k))+ςi

∥∥∥
)
.

(48)

From (48)

∫ etr

0

d ‖ei‖
δ ‖ei‖+

∥∥∥δ|Si(tik)|
1
2 sgn(Si(tik)) + ςi

∥∥∥

≤
∫ tik+1

tik

1

2

∥∥∥|Si(t
i
k)|−

1
2

∥∥∥ dt

⇒ ln

⎛
⎝δ ‖ei‖+

∥∥∥δ|Si(t
i
k)|

1
2 sgn(Si(t

i
k)) + ςi

∥∥∥
δ

⎞
⎠

∣∣∣∣
etr

0

≤ 1

2

∥∥∥|Si(t
i
k)|−

1
2

∥∥∥ t
∣∣∣∣
tik+1

tik

. (49)

As per Assumption 3, ‖ei‖ ≤ etr. On simplifying and
rearranging (49)

1

2

∥∥∥|Si(t
i
k)|−

1
2

∥∥∥ (tik+1 − tik)

≥ ln

⎛
⎝δetr +

∥∥∥δ|Si(t
i
k)|

1
2 sgn(Si(t

i
k)) + ςi

∥∥∥∥∥∥δ|Si(tik)|
1
2 sgn(Si(tik)) + ςi

∥∥∥

⎞
⎠

⇒ Te ≥ 2
∥∥∥|Si(t

i
k)|

1
2

∥∥∥ ln

⎛
⎝1+

δetr∥∥∥δ|Si(tik)|
1
2 sgn(Si(tik))+ςi

∥∥∥

⎞
⎠

(50)
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Fig. 3. MAS digraph for (a) simulation and (b) real-time experiment.

whereTe = tik+1 − tik. The value ofTe obtained in (50) provides
lower bound on interexecution time before the next event occurs.

Remark 8: The interevent time is defined using the last (tik)
and forthcoming event instant (tik+1). Hence, Si at t = tik and
t = tik+1 are considered. �

Remark 9: Equation (47) has vector components on LHS and
RHS. To proceed further, the vector norm has been used. �

Remark 10: The value of Te varies for different interevent
duration as the parameters involved change their values. �

IV. CASE STUDY

The proposed methodology has been validated through sim-
ulation and real-time experiments.

Remark 11: In the experiments (simulation and real-time),
we have considered random data packet losses and delays in the
network. The data communication among the mobile robots in
real-time experiment occurs through wireless network following
IEEE 802.11 protocol which is susceptible to the above network
uncertainties. �

Remark 12: There are some limitations during implemen-
tations. In the experiments, only time-varying matched distur-
bances are considered. Only random packet losses and delays
are considered as wireless network (following IEEE 802.11
protocol) is used, which is susceptible to network uncertainties.
There is no separate fault identification and isolation module in
the proposed model. �

A. Simulation Experiment

The approach has been validated through simulation in
Gazebo environment with Pioneer P3-DX robot model. In the
MAS framework shown in Fig. 3 (a), five robots act as fol-
lower and one acts as leader. All robot models are identical in
performance and control. Each robot system is equipped with
an onboard computer with Ubuntu 14 platform having robot
operating system (ROS), which facilitates an ultimate control
over all sensors and actuators. A Wi-Fi router (Tinda) is used
to maintain a sufficient network strength throughout the experi-
ment. Each robot is provided a unique IP address for exchange
of information with each other. The odometer sensor provides
current position and orientation of mobile robot. The sensor data
is available at the rate of 10 Hz. Hence, 0.01 s is used as sampling
interval.

The weight for the communication among agents is assumed
to be 1. As per the communication graph G in Fig. 3(a), the

Fig. 4. Trajectory of robots during desired formation.

Fig. 5. (a) Linear velocity and (b) angular velocity of robots.

consensus parameters are

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0

0 0 0 0 0

0 −1 1 0 0

0 0 −1 1 0

−1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The leader is free to move in any direction. The initial position
of leader is x0 = [0; 0], whereas followers are initially at
x1 = [−2; 1], x2 = [−3; 2], x3 = [−2;−1], x4 = [−3;−2],
and x5 = [−4; 0]. The system parameters are as follows: l =
0.21 m,K1 = diag{0.5, 0.5},K2 = diag{0.001, 0.001}, Δ1 =
(−0.8 m,−0.8 m), Δ2 = (0.8 m,−0.8 m), Δ3 = (−0.8 m,
0.8 m),Δ4 = (0.8 m, 0.8 m), Δ5 = (0.8 m, 0 m), and α = 5/7.
The parameter δ in disturbance bound as per Assumption 1 is
0.01.

The task is to achieve the shape of Gerono lemniscate (hori-
zontally oriented eight-shaped figure). The leader and follower
robots’ trajectories are shown in Fig. 4. The leader pursues the
trajectory-shaped Gerono lemniscate whereas followers follow
the leader trajectory maintaining a desired distance. Initially,
the robots are not in consensus but after few seconds, they
gradually attain the desired trajectory. Fig. 5 shows the linear
and angular velocities of followers with respect to the leader. It
can be observed that the velocities of followers gradually get in
sync with the leader velocities. Fig. 6(a) ensures that the desired
separation is gradually maintained throughout the task even in
the presence of disturbances. The sliding surfaces of all the
follower agents are shown in Fig. 6(b). All the agents attain their
respective desired sliding surface in finite-time. The dynamic
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Fig. 6. (a) Relative distance of followers from leader and (b) sliding surface
of followers.

Fig. 7. Event-triggered error and threshold of (a) F-1 and (b) F-3.

TABLE I
EVENTS TRIGGERED FOR FOLLOWER ROBOTS

F: Follower.

event-triggered errors and their thresholds for F-1 and F-3 are
shown in Fig. 7. The other agents too provide the similar results.
The events occur when errors cross their respective dynamic
thresholds. It can be observed that events are more when there
are turns or change in orientations of the trajectory. Table I shows
the number and percentage of events triggered for all the five
follower robots during consensus in 100 s.

B. Real-Time Experiments

Three Pioneer P3-DX (two-wheeled differentially driven)
robots have been used for real-time experiments which form a
MAS framework. The two robots are followers while one acts as
a leader. The robots are equipped with sonar sensor and position
encoder. They communicate through wireless network having
unique IP addresses assigned to them.

The consensus parameters of the graph are L = [0 0;−1 1]
and B = [1 0; 0 1]. The leader robot is free to roam in
any direction. To achieve consensus-based formation,
the followers should keep track of leader trajectory.
The initial position of leader is x0 = [0; 0], whereas
followers are initially at x1 = [−4; 0.5] and x2 = [−4;
−0.5]. The system parameters are as follows: l =
0.21 m,K1 = diag{0.5, 0.5},K2 = diag{0.001, 0.001},Δ1 =
(0.7 m,−0.7 m),Δ2 = (0.7 m, 0.7 m), and α = 5/7. The

Fig. 8. (a) Trajectory of robots during desired formation. (b) Relative distance
of followers from leader.

Fig. 9. (a) Linear velocity and (b) angular velocity of robots.

Fig. 10. Sliding surfaces of two followers.

sampling time considered for the experiments is 0.01 s. The
value of δ in disturbance bound is 0.01.

The trajectories of all the robots are shown in Fig. 8(a). The
desired formation is achieved for leader-follower framework as
the desired deviation ‖Δ‖ is obtained in Fig. 8(b). The distance
between each follower and leader is large initially but after
some time event-based controllers drive the agents to a desired
formation and then maintain required separations for rest of the
trajectory. The linear and angular velocities of the robots are
shown in Fig. 9(a) and (b), respectively. The proposed controller
has been tested for various velocities and turn maneuvers. The
sliding surfaces (‖S‖) of the followers are presented in Fig. 10.
The result suggests that the describing point of agents reach the
sliding surfaces approximately in12.3 s. The expression of upper
bound on finite reaching time in (40) evaluates to 115.94 s. Thus,
the reaching time during real-time experiment is well below the
upper bound. The event-triggered error and the respective error
threshold as per condition in (15) for both the followers are
shown in Fig. 11. The event-triggered error crosses the threshold
very frequently initially which leads to triggering of events for
control update. As the consensus is gradually achieved, the
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Fig. 11. Event-triggered error and threshold of (a) Follower-1 and
(b) Follower-2.

Fig. 12. (a) Trajectory of robots during circle formation. (b) Relative distance
of followers from leader.

Fig. 13. (a) X-position trajectories and (b) Y-position trajectories of robots
during circle formation with desired separation distance.

crossings by event-triggered error is largely reduced. The least
interevent time is 0.01s.

For the validation of the proposed approach, another real-time
experiment is performed with leader and follower robots trying
to achieve the desired formation in the shape of “circle.” The
initial position of leader is x0 = [0; 0]. The followers are initially
at x1 = [−1;−0.7] and x2 = [1;−0.7]. The desired distance
separation between leader and followers 1 and 2 should be
Δ1 = (0.9 m, 0 m) and Δ2 = (−0.9 m, 0 m), respectively. The
leader robot’s linear velocity (v) and angular velocity (ω) is
0.2 m/s and 0.15 rad/s. The consensus parameter, system pa-
rameter, and disturbance are similar to the previous experiment.

The leader and follower robots trajectories are shown in
Fig. 12(a). The leader pursues a circle-shaped trajectory with the
followers following the leader trajectory maintaining a desired
distance. Initially, the robots are not in consensus but after few
seconds, they gradually attain the desired trajectory. Fig. 12(b)
ensures that the desired separation is gradually maintained
throughout the task even in the presence of disturbances.

Fig. 13 shows that the followers are achieving consensus with
respect to the leader in finite time with the desired separation.
The square block in Fig. 13(a) shows that the follower comes

Fig. 14. Results based on [18]. (a) Trajectory of robots. (b) Relative distance
of followers from leader.

Fig. 15. Velocities based on approach in [18]. (a) Linear velocity and
(b) angular velocity.

in desired formation shape and maintains a desired separation
distance throughout the process with respect to the leader. It is
evident from the plots that formation in MAS is achieved in
finite time in the presence of time-varying matched disturbance,
which infers the robustness of controller. The above experiment
confirms the efficacy of the proposed approach. The consensus
is achieved within 5–7 s. A YouTube link of the video for
experiments with three other sets of initial positions is given
in [36].

C. Comparative Analysis With Other Approaches

To compare the efficiency of the proposed approach,
we have repeated the experiments for approach presented
in [18]. The control law used there is defined as ui(t) =
γiq

α
i (t

i
k). The triggering condition used in [18] is ‖ei(t)‖ ≤

(η/n(1−β)/2)1/β‖qi(ti)‖α/β , where event-triggered error mag-
nitude is ‖ei(t)‖ = (qαi (t

i
k)− qαi (t

i))1/β . The other param-
eters are α ∈ (0, 1) and β ∈ (0, 1]. The initial position of
leader is x0 = [0 ; 0]T , whereas followers are initially at x1 =
[−4 ; 0.5]T and x2 = [−4 ; −0.5]T .

On comparing the trajectories during desired formation
in Fig. 14, the proposed approach provides better trajectory
than [18]. One can notice in Fig. 15 the linear and angular
velocities of robots change abruptly at times for [18], whereas the
change in velocities are smooth for the proposed approach. For
the generalized consensus-based problem, the approach in [18]
works well but not suitable for MAS with disturbance.

A comparison has been drawn out with conventional SMC
approach presented in [32]. The event-triggering condition and
the control law have been used as given in [32]. The robot
parameters are kept the same as in this article. The trajectories
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Fig. 16. Results based on [32]. (a) Trajectory of robots. (b) Relative distance
of followers from leader.

Fig. 17. Velocities based on approach in [32]. (a) Linear velocity and
(b) angular velocity.

TABLE II
COMPARISON OF DIFFERENT APPROACHES

F-1: Follower-1 and F-2: Follower-2.

during formation in Fig. 16 are shaky as with the linear and
angular velocities in Fig. 17 too showing chattering. Though
the minimum interevent time is the same for all the approaches
in Table II, the average triggering is lesser for the proposed
approach than the approaches in [18] and [32].

Based on the theoretical developments followed by real-time
experiments, we can conclude that the proposed event-based
STSMC approach is one of the best choices to handle consensus-
based formation problem in the presence of disturbance.

V. CONCLUSION

This article designs a finite-time event-based STSMC for
achieving consensus in a leader–follower-based MAS frame-
work in the presence of external bounded disturbance. The pro-
posed approach guarantees finite-time consensus of each agent
along with its stability. The admissibility criteria satisfied by
each agent’s control update helps in avoiding the Zeno behavior
during the consensus. The simulation and real-time experiments
using six and three robots, respectively, for desired consensus
validate the theoretical developments in the article. The results
obtained justify the performance of the proposed approach to
be at par with traditional time-triggered approaches and better

than other existing event-based approaches. The less number
of events significantly decrease the count of control updates
which further reduce actuator actions, computations, and data
communication required to address the problem. This ensures
saving of resources available during multirobot system opera-
tion. However, this work does not consider network uncertainties
among the agents. These uncertainties may be in the form of
transmission delay, communication delay, packet loss, channel
noise, etc. They may deteriorate the system performance from
the desired objective and may even cause the system to be un-
stable. Another future scope of this article may be to incorporate
fault tolerance in the existing model to handle the fault in the
exciting model. The future work, therefore, will consider the
above-mentioned aspects in the proposed approach.
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