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Abstract

This paper shows the application of response surface methodology for gear op-
timization using micro-geometry profile modifications. The suitability of three
distinct metamodeling techniques is studied in this paper: Gaussian Process
(stochastic), Shepard k-Nearest (nonparametric deterministic) and Polynomial
(parametric deterministic). The described optimization strategy is implemented
and tested on a case study consisting of a pair of identical spur gears, in which
the goal is to find optimal micro-geometry modifications of tooth profile, pro-
viding decreased values of peak-to-peak transmission error and maximal contact
stress along the meshing cycle, while maintaining the safety coefficient linked
to tooth bending fatigue above a required threshold. The gear pair is analyzed
under three different loading scenarios. It is shown that the described opti-
mization strategy allows finding optimal micro-geometry modifications of tooth
profile that enable significant improvements in all the observed performance
indices with respect to the unmodified gear design, as confirmed by detailed
numerical simulations of the optimal gears.

Keywords: gears, optimization, micro-geometry, mechanical transmission,
response surface, transmission error

1. Introduction

With the development of numerical simulation methods, gear structural op-
timization has gained much attention by mechanical engineers, since computer
- based analyses allow selecting an optimal design solution from a vast num-
ber of trial models, with limited need for costly and time consuming physical
prototyping and testing. In order to improve gear operating parameters, tooth
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micro-geometry is often tuned to ameliorate the meshing process by eliminat-
ing flank-tip contact and, consequently, allowing loaded teeth for a smooth
changeover. Currently, these issues are most frequently approached by using
Finite Element Method (FEM) simulations, which can cover all the aspects of
gear shape, position and operating conditions [1].

However, although the principles governing gears operation are well estab-
lished and understood, detailed numerical analyses aimed at predicting their
dynamic behavior and durability are still cumbersome and time consuming.
This is because high fidelity approaches to gear numerical simulations require
accurate description of local (i.e., contact stress) and global (i.e., tooth and body
deflections) phenomena, which simultaneously influence the overall transmission
behavior.

When it comes to optimization, it is commonplace to carry out these tasks by
using analytical, semi-analytical or FE-based gear models. Artoni et al. [2] pre-
sented optimization methodology for cylindrical gears, based on micro-geometry
modification of tooth, evaluating peak value of contact stress and peak-to-peak
value of loaded transmission error (TE). Harianto and Houser [3] described a
method for assessing the influence of gear geometry modification on various
performance indices, including tooth root and contact stress and gear noise and
vibration. Artoni et al. in ref. [4], described tooth geometry optimization in
hypoid gears based on generalized tooth flank description, using the so-called
ease-off parameterized surface. Bonori et al. [5] presented an implementation
of genetic algorithms for spur gear optimization, aiming at minimizing the gen-
erated vibrations. The goal of the procedure was to decrease the peak-to-peak
value of static transmission error (STE) using tip and root reliefs. As shown
by Parker et al. [6], STE, which is simpler to calculate, can be used to predict
gear dynamic behavior. According to the findings described by Cai in ref. [7],
STE is strongly correlated with gear dynamics. Therefore, minimization of the
peak-to-peak STE results in improvements of gear vibration behavior.

The optimal value of micro-geometry modifications is strongly correlated
with the operational conditions, for which the transmission is designed. In other
words, tip and root reliefs, which are optimal for a given loading torque, can
perform worse than non-modified profile under a different load. Indeed, Faggioni
et al. [8] used tooth profile modifications to perform a global optimization of
gear vibrations in a wide range of operating conditions. A study on tooth
profile modification was also discussed by Fernández et al. [9]. The authors
took under consideration profile reliefs and manufacturing inaccuracies, showing
their influence on the STE peak-to-peak values.

In case of simulation data that is difficult or long to predict and collect, the
response surface methodology (RSM) can be usefully employed. This approach,
which was studied extensively in the last decades, is based on the idea of sub-
stituting complex mathematical models by simpler, easy to compute represen-
tations that allow to predict the observed quantity values (i.e., the dependent
variables) as a function of certain independent variables. In the result, a so-
called surrogate or metamodel is generated, referred sometimes to as a ’model
of a model’. A parameterized approximating function can be determined a pri-
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ori (e.g., polynomial model) or not considered at all (e.g., Gaussian Processes
or k-Nearest approaches), depending on the chosen algorithm. The latter al-
ternative is perceived as more general and is often used when the output data
exhibits a high degree of non-linearity or its form is simply unknown. The im-
plementation of RSM to time consuming engineering optimization problems can
be found in [10, 11]. A description of various variants of surrogate-based data
approximation was presented in [12, 13].

Despite its great popularity in engineering, the RSM implementation to gear
design, specifically to micro-geometry optimization, has gained scant popular-
ity. Very limited information on its application is available in the literature
dedicated to mechanical transmissions. One example can be found in ref. [14]
by Zhang et al., in which Kriging method combined with Latin Hypercube
Sampling (LHS) design of experiment (DoE) was used successfully to predict
strength responses of large scale gears. Surrogates were used in this work to
perform global optimization with genetic algorithms (GA), finding an optimal
set of macro-geometrical parameter values. The authors emphasized the signifi-
cance of metamodeling to simplify engineering problems which, due to detailed
numerical simulations, are becoming increasingly time-demanding nowadays.
Kayabasi and Erzincanli in ref. [15] used polynomial-based RSM to perform
shape optimization of a harmonic drive. Other examples of using RSM can be
found in [16, 17], in which data approximation techniques support optimization
of gear manufacturing, aimed at improving the process of tooth profile genera-
tion. Zhang and Guo in [16] used second order polynomial regression to predict
dynamic transmission error fluctuations calculated using an analytical model of
planetary gearbox. Park in [17] used the same type of polynomial approach to
predict variation of a static transmission error computed for helical gears.

Limited number of literature positions on the subject of RSM-based gear
optimization can be identified as an open research gap and allows to pose a
question on usefulness of metamodeling in this class of structural optimization
problems. This paper aims at providing an insight into this issue and demon-
strates the applicability of metamodel-based multi-objective gear optimization
on a real-life case study. The RSM-based optimization was carried out on a
pair of identical spur gears to obtain improvements in STE and contact stress,
with a constraint on the fatigue safety coefficient for tooth bending. Each gear
design was altered by micro-geometry modification and assessed by non-linear
static FEM simulations. Three different metamodeling techniques were used
to build the surrogates for every output quantity, namely: Gaussian Processes
(GP), 3rd order polynomial model (PL) and Shepard k-Nearest (SKN). Each of
the response surfaces was validated and the selected, most accurate metamodels
were used in conjunction with multi-objective genetic algorithm (GA) in order
to find a set of parameter values for optimal microgeometry modification. To
make the optimization attempt more comprehensive, the objectives were settled
for three different loading torque values: 350Nm, 500Nm and 650Nm.

The paper is structured as follows: Section 2 explains the idea of multi-
objective optimization and discusses the use of population-based metaheuris-
tics for solving this type of problems. Selected metamodeling techniques and
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response surface validation indices are introduced to the reader in Section 3.
Section 4 presents the RSM-based optimization process workflow. The concept
of micro-geometry modifications are described in Section 5. Section 6 describes
the case study numerical model used for FEM simulations and discusses the
observed output quantities. Section 7 presents the generated metamodels and
provides details on assessment of the accuracy for different data approximation
methods. Section 8 presents the optimization assumptions and describes the re-
lationships between the goals of the procedure. Section 9 presents the obtained
surrogate-based quasi-optimal solutions and their numerical validation. Section
10 concludes the paper.

2. Multi-objective optimization

Following Coello et al. [18], a multi-objective optimization problems (MOP)
can be defined by Eq. 1:

Objective : min/max[f(x)], x ∈ Ω (1)

Subject to : hi(x) = 0, gj(x) ≤ 0,

i = 1, ..., l, j = 1, ..., t

where f(x) = [f1(x), ..., fk(x)] is a vector of k objective functions, subject to l
equality hi(x) = 0, i = 1, ..., l and t inequality gj(x) ≤ 0, j = 1, ..., t constraints.
An MOP solution minimizes or maximizes the components of f(x) vector by
modification of the design parameters x = [x1, ..., xn], defined on the problem
design space Ω, i.e., x ∈ Ω. The solution to MOP is the so-called trade-off,
also referred as Pareto-optimal design, representing a compromise between the
possible improvements in separate objectives, as described by Artoni et al. [4].

2.1. Optimum-search algorithm

Population-based meta-heuristics and specifically genetic algorithms are a
frequent choice as MOP solving method. The principal advantage of these
meta-heuristics over deterministic methods is that they can be successfully im-
plemented for finding a global optimum also in non-linear problems. This is
because these methods are not based on gradient calculation and depart from
multiple initial points, spread out in the design domain.

The state-of-the-art description of evolutionary algorithms, including GAs,
can be found in ref. [18]. One of the most known genetic algorithm is the
Non-Dominated Sorting GA II (NSGA-II), described by Deb et al. [19], which
has been successfully used to solve a number of multi-objective structural opti-
mization problems, e.g. [20, 21]. A modern variant of the NSGA-II algorithm
is the controlled elitist GA (CEGA) [22], which allows progressing to a next
generation also individuals which are not ranked as non-dominated, providing
that their promotion results in maintaining a widely spread search region. This
feature precludes premature convergence to a local optimum, increasing chances
for finding genuinely global Pareto front.
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2.2. Design of Experiment

In order to be able to span the response surface over the design domain,
firstly a set of data points must be generated. These known values are used
by the chosen RS algorithm for response model fitting, i.e., they provide infor-
mation essential for data prediction. The test points can be chosen randomly,
but more often their selection is driven by predefined principles that enable the
design of experiment (DoE). The reason for this is to use as few test points as
possible to explore the design domain in the most comprehensive manner.

A common choice of a DoE algorithm, which allows understanding higher
order relationships between the independent and the dependent variables, is
Latin Hypercube Sampling (LHS) [23]. Its main advantages over a random
sample selection is that the LHS method divides each of design variable h into N
equal-probability intervals, creating a grid of Nh subdomains. Next, a sample is
randomly laid in each interval, creating a relatively uniformly distributed sample
map, which is important for subsequent metamodeling. As a consequence, there
are no excessively large areas in the design domain, for which no testing points
are determined. Moreover, unfavorable sample clustering is avoided, saving
computational time and effort.

3. Response Surface Modeling

As described in the introductory section, the RSM technique is used to find
simple mathematical description of highly complex models which are analyzed
in the design process. This substitution results in substantial improvement in
computational efficiency, which is essential when detailed, high-fidelity models
are utilized for numerical simulations. The following metamodeling techniques
are discussed in this paper: polynomial model (P), Shepard k-Nearest (SKN)
and Gaussian Process (GP).

3.1. Polynomial models

The polynomial metamodeling technique is parametric and deterministic,
i.e., it requires a priori determination of underlying approximation model and
specification of certain values of its parameters [13]. The general form of a third
order function used in the subsequent study, takes the form of Eq. 2:

f(x) = β0 +
k∑

i=1

βixi +
k∑

i=1

k∑
j=1,i<j

βijxixj +
k∑

i=1

βiix
2
i+

+

k∑
i=1

k∑
j=1,i<j

βijx
2
ixj +

k∑
i=1

k∑
j=1,i<j

βijxix
2
j +

k∑
i=1

βiiix
3
i (2)

where x is the vector of independent variables, f is the output (predicted) func-
tion, while β0, βi, βii, βiii and βij are the coefficients that must be determined
through a model fitting process, e.g., using the least squares method.
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3.2. Shepard k-Nearest
The SKN algorithm is a combination of two well-known non-parametric de-

terministic techniques: Shepard’s and k-Nearest [24–26]. In this regression
method, the impact of the known data points xi ⊂ Ω on a predicted x∗ is
controlled by assigning weighting factors, which are inversely proportional to
the distance between them. The k-Nearest regression method computes the
predicted value x∗ as the weighted average of the k closest to x∗ known data
points. This can be written by Eq. 3:

f∗
SKN (x∗) =

k∑
i=1

wi,t(x
∗)yi,t wi,t(x

∗) ∈ ℜ (3)

where wi,t(x
∗) denotes the weight assigned to the t − th data point and yi,t is

the known dependent value. The weights are defined using Eq. 4:

wi,t(x
∗) =

{
∥x∗−xi,t∥−p∑k
t=1 ∥x∗−xi,t∥−p if x∗ ̸= xi ∀t = 1, ..., k

1 if x∗ = xi

(4)

where p is an arbitrarily chosen parameter. According to Shepard [25], in order
to allow the approximation surface to be smooth, the recommended value of
this parameter is equal to p = 2.

3.3. Gaussian Process
The GP is a non-parametric model, being a collection of random variables,

any finite number of which have a joint Gaussian distribution [27]. It is defined
by its mean µ(x) and covariance k(x,x∗) functions, according to Eq. 5:

f(x) ∼ GP (µ(x), k(x,x∗)) (5)

The former function is frequently taken as zero [28, 29]. The latter, known as
the kernel, describes the dependency between the input and the output. In the
subsequently described study the squared exponential covariance function was
utilized, which for d-dimensional case takes the form of Eq. 6:

cov(xi,xj) = k(xi,xj) + σ2
eδij = σ2

fexp(−
1

2
(

D∑
d=1

(xd,i − xd,j)
2

l2d
)) + σ2

eδij

i, j = 1, ..., n (6)

where σf denotes the highest allowable covariance value [30], ld is the distance
parameter, n is the number of known data points, σe represents the data noise
and δij is the Kronecker delta function.

In order to fit the GP model to the training data obtained by the FEM
analyses, in the case study presented here, the prediction error was minimized by
tuning the σf , σe and ld parameters. Despite that computer simulations are fully
deterministic and therefore not burden with measurement uncertainty, the error
element in the covariance function was not excluded from the computations, in
order to prevent GP model overfitting [29].
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3.4. Validation of the metamodels

To assure that prediction-based design will not lead to erroneous results,
the metamodel should be validated. In the case of deterministic input data, a
frequently used metrics for assessing model accuracy is the R2 (i.e., R-squared)
estimator, expressed by Eq. 7 [28]:

R2 = 1−
∑k

i=1(yi − fi)
2∑k

i=1(yi − ȳ)2
· 100% (7)

where k is the number of input points yi, ȳ is the mean of all the inputs and
fi denotes the predicted values for the input vectors (i.e., each predicted fi
corresponds to one known yi). The closer to unity is the R2 value, the better
the metamodel approximates the input data. However, since it is set on the
residual vectors, it cannot be used for interpolation metamodeling techniques.
For this reason, in the RS validation process described below in this paper, the
R2 measure was used for polynomial and GP surrogates only.

In some cases, however, high value of R2 can be misleading, showing nearly
perfect approximation quality for an over-fitted model. To overcome this prob-
lem it is essential to verify the accuracy of a surrogate using different methods,
based on statistical estimators [31, 32]. In such cases the assessment of surro-
gate accuracy is carried out on an additional set of data. The most frequent
indices of this type are the maximum absolute error (MAX), the root mean
square error (RMSE) and a modification of the latter, denoted as normalized
RMSE (NRMSE). The first out of the three, is a local measure of the deviation
between the observed and the predicted output values, as described by Eq. 8:

MAX = max|yi − fi|, i = 1, ...,m (8)

where m is the number of elements in a validation data set. In case of iterative
RS fitting, this quantitative measure can be used to indicate a region of a design
space, which requires sampling refinement.

The RMSE and its more intuitive normalized modification, which expresses
RMSE as a percentage of the output data range, can be calculated by using Eq.
9 and Eq. 10, respectively:

RMSE =

√∑m
i=1(yi − fi)2

m
, i = 1, ...,m (9)

NRMSE =
RMSE

ymax − ymin
· 100% (10)

where yi and fi denote observed and predicted output data values. The RMSE
and NRMSE measures describe quantitatively the overall accuracy of a tested
metamodel. As such, these estimators are perceived as global validity measures.
Additionally, the NRMSE can be used to compare metamodels of different scales
(e.g., gear TE in micrometers and tooth bending stress in megapascals), there-
fore it is useful in multi-objective optimization problems.
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In the RS model fitting presented subsequently, R2 measure was used for
the data points obtained in the DoE, along with RMSE, NRMSE and MAX
estimators combined with a validation set of points.

4. Methodology workflow

The workflow of the proposed optimization approach is presented in Fig.
1. The first step is the preparation of the FE model of the gear pairs, which
afterwards are subjected to mesh morphing process to allow for micro-geometry
modifications of tooth profile. The subsequent step is the generation of the
design of experiment (DoE) through a set of individual solutions, which are
analyzed later to provide data essential for building appropriate metamodels
using GP, 3rd order PL and SKN techniques. In order to select the most accurate
data prediction approach for each of the output quantities, an additional set of
known data points is used, combined with three accuracy indices: the maximum
absolute error (MAX), the normalized root mean square error (NRSME) and,
for the surrogates generated using GP and PL approaches, the R-squared (R2)
measure.

Preparatory stage: bulding of a FEM 

model, selection of the design variables, 

constraints and objectives 

Selection of design of experiment (DoE)

solutions

Generation of metamodels

Metamodel validation and selection 

of appropriate metamodels

Genaration of validation point models 

by FE mesh morphing technique
Generation of DoE models 

by FE mesh morphing technique

FEM simulations and data extraction

Population-based optimization using 

Genetic Algorithm

Exploration of the Pareto front 

and selection of trade-off solutions

Numerical validation of the results 

Selection of additioal solutions used 

for metamodel validation

Figure 1: The optimization procedure workflow.

After selecting the most appropriate metamodeling technique for each of the
output quantities, the global optimization is performed, using the CEGA algo-
rithm, under constraints related to tooth bending fatigue strength. This results
in the formulation of the Pareto front, from which the individuals representing
the trade-offs between the objectives are selected manually, based on the fore-
seen level of improvements that they provide. The last step of the procedure is
the numerical validation of the RS-predicted performance of the selected solu-
tions, among which the most suitable one is selected as the final optimization
result.
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5. Tooth profile modification

Tooth micro-geometry profile modification has a significant impact on the
static and dynamic behavior of a geared transmission, as shown in the liter-
ature [2–5, 9, 15, 33, 41–43]. Although the most common way of applying
micro-geometry modifications is to provide both tip and root relief, researchers
observed no substantial difference in the effects of applying both of these modi-
fications or an equivalent tip relief only in micro-geometry of spur gears [8, 33].
For this reason, in the research presented in this paper, we decided to investi-
gate the influence of linear (in the roll distance domain) tip relief only. The two
parameters that were used in this study to describe the modification were tip
relief depth d and starting radius rt. The same micro-geometry modifications
were applied to the driving and the driven gear. Consequently, only two pa-
rameters controlled the modification process, i.e., amplitude and length of tip
relief. Figure 2 shows an example of the imposed linear tip relief modification
as a function of the roll distance (a) and in the coordinate system of the FE
model (b). Part (c) of Fig. 2 presents a comparison between the modified and
the original FE meshes.
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Figure 2: Tip relief deviation from the involute profile calculated in roll angle domain and
transformed into nodal coordinates in the FE model for a micro-modified gear with d =
74.1mm and rt = 0.4mm. The roll angle in figure 2a is measured from the initial contact
point on the active tooth profile.

The tooth profile modification was carried out on a baseline FE model de-
scribed above. The gear teeth were modified using the mesh morphing tech-
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nique, by moving the so-called handles attached to the tooth profile nodes, as
shown in Fig. 3. This technique was utilized in order to maintain the quality
of FE elements.

Morphing direction

Tooth profile 

FE mesh fragment

Figure 3: Tip relief imposed by means of the FE mesh morphing technique.

6. FE modeling and analysis of meshing gears under static load

In order to assess the proposed strategy for multi-objective optimization of
gear micro-geometry, a pair of identical spur gears was analyzed, for which Tab.
1 summarizes the geometric parameters. Below, we provide a short presentation
of the utilized FE model, description of each of the output quantities and their
meaning to gear design.

6.1. Gear FE model

The procedure of tooth profile modification was carried out on a the FE
model shown in Fig. 4. The gear bodies and teeth were discretized using
three-dimensional hexahedral elements, while the shafts were simplified to rigid
representations. It is worthy to point out that the region of the gears, in which
no contact was expected, was discretized using a coarse FE grid. Conversely,
in the case of teeth for which meshing contact was foreseen, smaller elements
were used. The size of the FE mesh in contact region was determined using the
convergence analysis, which was carried out on a set of models constructed with
different FE mesh refinements.

6.2. Static Transmission Error (STE)

In practice, the micro-geometry modifications are applied to gears principally
to decrease the STE peak-to-peak value, which is a measure of internal vibration
source and, as mentioned in the introduction, is correlated with the dynamic
TE [6, 7]. TE is defined by Smith in ref. [33] as ’the difference between the
angular position that the output shaft of a drive would occupy if the drive were
perfect and the actual position of the output’. The STE can be considered as
the TE measured in quasi-static conditions. It is frequently transformed into
longitudinal displacement along the line of action and as such expressed by Eq.
11:
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A

A

Torque

Fixed

Coarse FE mesh 

Fine FE mesh

Figure 4: The analyzed FE model of the meshing spur gears.

Table 1: Gear design specifications.

Parameter Name Value
Number of teeth 57
Normal module 2.60 mm

Normal pressure angle 20 deg
Tip diameter 154.50 mm
Root diameter 141.70 mm
Face width 23 mm

Normal circular teeth thickness
at theoretical pitch circle 3.78 mm
Kinematic contact ratio 1.45

Theoretical pitch diameter 148.20 mm
Working center distance 150 mm

Generating tool
edge radius coeff. 0.555
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STE = rB1Θ1 − rB2Θ2 (11)

where rB1, Θ1, rB2 and Θ2 are the base radii and measured rotation angles for
driving and driven gears. The STE is heavily affected by profile reliefs, which,
for low loading torque values, can result in the elimination of contact between
the teeth in some regions of the meshing cycle. In gears with micro-modified
profiles, the STE can be divided into two contributions [34]: the geometric (or
rigid) component and the elastic deflection component, as shown in Fig. 5. The
former results from free gear rotation which can take place when profile tip relief
is used and therefore, when distance between teeth is increased. The latter is
caused by gear deflection under load.
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Figure 5: Static transmission error obtained for: a) the unmodified model (blue crosses) and
the model after micro-geometry modification with d = 21µm, rt=76.19 mm (red circles); b)
rigid part of the TE

6.3. FE model convergence analysis

The STE curve quality was used as a measure for FE model mesh conver-
gence analysis. Three models were used to calculate the STE curve along one
meshing cycle. The method used for these calculations was based on a series of
non-linear static simulations, carried out on the gear pair positioned along the
meshing cycle with an angular step equal to ∆θ = 0.21deg, as described in [35].
Measured along a tooth profile, the three tested element sizes were: 0.07mm,
0.11mm and 0.15mm. In the analysis, the driving gear was loaded by 350Nm
torque. The results obtained were compared with one another (Fig. 6), which
enabled choosing the optimal FE element size. Based on the obtained data, it
was decided to use the 0.11mm FE element size. This value guaranteed good
quality results and relatively small number of elements in the FE model, which
was equal to 148019, corresponding to 526321 active degrees of freedom.
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Figure 6: Convergence analysis of the FE model mesh using 350Nm loading torque applied
on the driving gear.

6.4. Tooth bending fatigue

Stress generated in the tooth root is often taken as a measure for gear bend-
ing fatigue. Root fillet undergoes frequent loading unloading cycle, thus it
is prone to this type of failure. The calculation of root fatigue strength re-
quires the estimation of element values of the principal stress tensor, which are
subsequently used to assess the fatigue mean and alternate stresses [34]. Combi-
nation of these two quantities can be used for assessing the gear material fatigue
strength, using the Haigh diagram [40]. In order to understand which side of a
tooth undergoes more significant fatigue bending load, the mean and alternate
stress computed for contacting and free side of a tooth are compared in Fig. 7.

These values were calculated in the mid-width region of the fillet, which is
often chosen for positioning strain gauges in experimental measurements. As it
can be deduced from the presented results, due to high cyclic tension loads, the
region crucial for bending fatigue is the one on the contact side of the tooth.
For this reason, the subsequent computations of fatigue strength were carried
out for σ1 and σ3 components of the principal stress tensor, evaluated for the
root fillet located on the contact tooth side. Figure 8 depicts examples of prin-
cipal stress history obtained for unmodified and modified gears and expressed
in normalized meshing cycle angle θ/Θm, where θ is the instantaneous meshing
angle and Θm denotes total meshing angle. The maximum and minimum values
of these quantities for every gear modification pattern were subsequently used
for metamodeling and data prediction.

6.5. Contact stress

Contact stress in meshing teeth is calculated on the flank, showing local
concentration of internal material pressure. This value is important for gear
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design because it drives the process of tooth surface scuffing and pitting, as
discussed in ref. [14, 34]. As the contact pattern and position on the tooth
flank is influenced by the micro-geometry modification, this value should be
observed and minimized to avoid premature failure of a transmission. Figure 9
depicts examples of maximum contact stress histories in meshing angle domain.
As described in [36], maximum values of contact stress is observed when a tooth
enter and leave the contact. As seen in the same figure, application of micro-
geometry modification can alleviate this unwanted effect (as depicted by red
dots in Fig. 9). In the subsequent RS fitting, only the highest calculated value
for each micro-geometry modification pattern was considered.
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Figure 9: Maximum contact stress values calculated for a unmodified model (blue crosses) and
for a model after application of micro-geometry modification with d = 21µm, rt = 76.19mm
(red circles).

7. Metamodels

The DoE set was formed by using LHS algorithm by selecting 28 individ-
uals. As shown in Fig. 10, the initial set of individual data points was cho-
sen to cover the design domain area spanned over the region limited by the
boundary values rt ∈< 0.00mm, 0.04mm > and rt ∈< 74.10mm, 77.25mm >,
for depth (d) and length (rt) of tip micro-geometry modification respectively.
Additionally, to preclude infeasible solutions resulting from deep and short re-
liefs, the design domain was confined by a line passing through the points
(d1, rt,1) = (0.00mm, 74.10mm) and (d2, rt,2) = (0.04mm, 75.675mm). Fur-
thermore, four corner points were taken under consideration to limit the design
domain. This approach resulted in 32 data points obtained by carrying out 31
analyses. The solution positioned in point (d1, rt,1) = (0.00mm, 74.10mm) was
geometrically equal to the one settled in point (d3, rt,3) = (0.00mm, 77.25mm),
i.e., zero-depth tip relief was applied in both cases.

Subsequently, the LHS algorithm was used to select 6 additional points,
which were utilized for validation of each metamodel with RMSE and MAX
estimators. These points are marked by crosses in Fig. 10.
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Figure 10: Position of data points calculated in the design domain for RS construction (DoE
points) and its validation.

7.1. Construction and validation of metamodels

Using the three mentioned approaches, GP, 3rd order PL and SKN, the data
points required for the DoE were obtained for the analyzed gear pair under
three different loading torques: 350Nm, 500Nm and 650Nm. The same load
values were used to calculate the observed quantity values for the additional
validation points, to test the accuracy of the generated metamodels for each
loading scenario.

Table 2: Metamodel validation results for 350Nm loading torque.

STE Contact Stress σ1 σ3

[µm] [MPa] [MPa] [MPa]

PL
R2[%] 87.7 77.3 83.3 91.0

NRMSE[%] 10.72 11.13 11.04 9.65
MAX|yi − fi| 2.99 47.73 5.70 0.03

SKN
NRMSE[%] 9.12 15.85 7.59 4.75
MAX|yi − fi| 2.09 67.01 3.92 0.02

GP
R2[%] 99.5 90.2 97.8 88.0

NRMSE[%] 2.11 7.54 3.99 11.12
MAX|yi − fi| 0.60 40.91 1.98 0.04

Tables 2-4 describe validation results of the metamodels constructed by using
the three selected techniques for each value of applied torque. A detailed analysis
of the metamodeling results allowed for selecting the most suitable surrogates
for the observed quantities.

Based on this data, the following approximation techniques were chosen
for the subsequent optimization procedure: the SKN technique was used for
σ3 calculated for gears under 350Nm torque. The prediction of contact stress
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generated on the tooth flanks under the 650Nm torque was done by using the
3rd order polynomial. The values of all the other outputs were predicted using
the GP algorithm, which appeared to be the most accurate, according to the
metrics used. The NRMSE for all the GP metamodels was below 7.55%, while
R2 for residuals was close or above 90%.

Figures 11 and 12 show the selected metamodels representing the objective
functions for the subsequent optimization procedure, calculated for different
loading torques. It can be seen that the STE and contact stress values vary
with the micro-geometry modification in different way. This observation justifies
implementation of a multi-objective optimum-search algorithm, for finding a
set of design parameters providing improvements in all the observed outputs,
simultaneously.

Table 3: Metamodel validation results for 500Nm loading torque.

STE Contact Stress σ1 σ3

[µm] [MPa] [MPa] [MPa]

PL
R2[%] 54 94 88 74.0

NRMSE[%] 18.74 8.75 7.69 9.31
MAX|yi − fi| 3.81 44.72 6.14 0.03

SKN
NRMSE[%] 7.55 12.81 5.63 11.70
MAX|yi − fi| 1.59 95.26 3.51 0.04

GP
R2[%] 99 98 95 86

NRMSE[%] 2.75 4.77 4.65 6.95
MAX|yi − fi| 0.45 39.62 3.58 0.03

Table 4: Metamodel validation results for 650Nm loading torque.

STE Contact Stress σ1 σ3

[µm] [MPa] [MPa] [MPa]

PL
R2[%] 45 98 98 68

NRMSE[%] 22.89 4.55 3.49 9.97
MAX|yi − fi| 4.57 44.79 2.90 0.03

SKN
NRMSE[%] 9.59 9.56 3.67 10.29
MAX|yi − fi| 1.46 104.67 2.44 0.03

GP
R2[%] 99 98 99 78

NRMSE[%] 2.72 4.97 2.43 8.12
MAX|yi − fi| 0.56 41.63 1.94 0.03

The analysis of Fig. 11 reveals that the depth of tip relief, which results in
minimal STE value, increases with the loading torque. It can be also seen that
for unmodified tooth profile, i.e., for tip relief equal to zero, the peak-to-peak
values of the STE are the lowest for the lowest external load. Such a behavior
mimicked by the constructed metamodels is consistent with the expected behav-
ior of the analyzed transmission, considering that the elastic tooth deflection,
which causes STE in nominal gears, increases with the loading torque value.
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Figure 11: The GP metamodels for STE prediction under: (a) 350Nm, (b) 500Nm and (c)
650Nm torque.

The peak contact stress shown in Fig. 12 is the highest for all the tested
loading scenarios for the gears without tip modifications. As discussed in ref.
[36, 37], this phenomenon is driven by the fact that, when no relief is applied
to the tooth tip, the contact appears on the tooth edge. An optimal value of
tip micro-geometry modification allows avoiding this situation, accommodat-
ing tooth elastic deflection. As shown in Fig. 11, for each loading torque, a
separate set of optimal parameters for micro-geometry tip modification can be
found. Although it is less evident compared with the STE output, also in the
case of gear contact stress minimization, the region of optimal micro-geometry
modification is shifted towards higher values of tip relief, when the input torque
is increased.

8. Definition of the optimization problem

The definition of the optimization process starts with the formulation of
the objectives and constraints. In the optimization problem addressed in this
work, the STE peak-to-peak value and the peak value of the contact stress were
calculated for each set of modified gears and represented the objectives. The
calculation of the STE was based on Eq. 11.

The peak value of the contact stress was derived directly from the results of
the nonlinear statics FEM analyses in the form of Huber - von Mises Hencky
reduced stress [37, 38].

8.1. Correlation between the objective functions

The relationships between the observed objective functions were studied us-
ing linear Pearson correlation factors. Figure 13 presents the dependencies for
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Figure 12: The GP (a and b) and PL (c) metamodels for peak contact stress prediction under:
(a) 350Nm, (b) 500Nm and (c) 650Nm torque.

the pairs of selected outputs.
Given two data sets, X and Y , the Pearson correlation coefficient, often

denoted as ρx,y, takes values from < −1; 1 > and is calculated using Eq. 12:

ρx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(12)

where xi and yi denote consecutive samples from X and Y , while x̄ and ȳ are
the arithmetic mean values of the two sets. The closer to 1 is the value of this
coefficient, the higher degree of positive linear dependency is observed between
the variables (i.e., xi and yi behave similarly). Conversely, if the value of ρx,y is
close to -1, an inverted linear dependency is observed between xi and yi, which
is sometimes referred as anti-correlation [39]. When the discussed factor ρx,y is
close to zero, lack of linear dependency between two tested data sets is detected.
Using this notation, the Pearson correlation factors were calculated for every
pair of objective values in the datasets obtained through FEM analysis in the
DoE.

The histograms on the diagonal of the matrix presented in Fig. 13 show
the distribution of the analyzed data within the range between minimum and
maximum values. All the histograms were created by dividing the total range
into ten equally spaced bins. Below the main diagonal, the scatter charts present
the distribution of the obtained data in the two-objective space. The solid line
on each chart represents the regression line obtained by least square technique,
which shows the rate of change between the variables. The calculated correlation
coefficients are presented as bar charts above the main diagonal.

It can be seen that none of the analyzed objective pairs are strictly contra-
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Figure 13: Correlation matrix calculated for the objective functions (STE and Cont stand
for static transmission error and contact stress, respectively. The subsequent numerical value
indicates the loading torque).

dictory, i.e., no negative correlation was found. However, high ρx,y was calcu-
lated only between contact stress values obtained for gear pair operating under
500Nm and 650Nm torques, for which ρx,y = 0.907. Relatively strong depen-
dencies were also obtained between the corresponding quantities for different
torques, i.e., between STEs calculated for 350Nm and 500Nm torques, STEs
between 500Nm and 650Nm. Similar observations can be made in the case of
the contact stress obtained for different torque levels. These results confirm the
deductions achieved from visual inspection of the metamodels shape: the region
where the global minimum for each objective function is located was shifted
towards greater tip relief for higher values of loading torque. However, it should
be also noted that not all of the responses are closely related: 6 calculated cor-
relation coefficients took values below 0.5, which can be perceived as lack of
strict connection between these output values.

8.2. Optimization constraints

In operational conditions, each tooth undergoes one loading-unloading cy-
cle for every full rotation of a gear. To prevent gear train premature damage,
tooth bending fatigue strength should be controlled when micro-geometry mod-
ifications are applied. This is because incautious tooth shape modification can
excessively deteriorate this parameter. In typical applications, fatigue loading
cycles play a major role for gear endurance.

In order to secure a sufficient bending fatigue resistance of the modified
gears, a suitable constraint was defined for the optimization process. Based on
the principal stress tensor elements σ1 and σ3 extracted from FEM analyses
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results, a mean σm and alternate σa stress are calculated according to Eq. 13
and Eq. 14:

σm =
max(σ1) +min(σ3)

2
(13)

σa =
max(σ1)−min(σ3)

2
(14)

where max(σ1) and min(σ3) denote maximum and minimum value of the se-
lected principal stress tensor elements. Using the Soderberg fatigue diagram
presented in Fig. 14, these two quantities can be used to assess the fatigue
performance of the analyzed gears. In the presented case, hardening 16MnCr5
steel is assumed as gear material, with yield tensile strength Syt = 490MPa
and fatigue strength Se = 450MPa. Using these two values, the fatigue safety
factor can be computed as described by Eq. 15:

n =
SeSyt

σaSyt + σmSe
(15)

where n is a fatigue safety factor, describing the position of a point (σm, σa)
compare with Fig. 14 - with respect to the limiting Soderberg line [40]. The
constraint used in the presented optimization case, which is enforced in all the
loading scenarios, is given by Eq. 16:

n ≥ 1.5 (16)
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Figure 14: Soderberg line for 16MnCr5 steel, with two sample (σm,i, σa,i) points describing
material fatigue strength.
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9. Optimization results

The optimization was carried out using the controlled elitist genetic algo-
rithm, with the following parameters: generation size 100, maximum number
of generations 5000, crossover probability 0.85. The stopping criteria were set
to reaching either the highest specified number of generations or an excessively
small improvements in the best fitness function. During the optimization, it
appeared that the first criterion was reached and the process was stopped due
to this limitation.

The optimization algorithm found a set of Pareto-optimal solutions, within
which three trade-offs were chosen manually, for further testing. These indi-
viduals, indicated in Tab. 5 as Sol1, Sol2 and Sol3, were selected based on
the level of improvement that they provided in all the objective functions, and
because they fulfilled the requirements imposed by the constraint functions.
Subsequently, an FE model was built for each of the chosen individuals, in or-
der to carry out numerical validation of metamodel-based predictions. Tables
6-8 present the outcome of this process, comparing the obtained results with
the equivalent data for the baseline model.

Table 5: Selected Pareto-optimal solutions.

Solution id
Modifications

Depth [µm] Starting radius [mm]
Sol1 16.3 74.134
Sol2 15.4 74.402
Sol3 13.4 74.190

Table 6: Predicted and FE-derived results for the selected Pareto-optimal solutions for 350Nm
torque.

STE Contact Stress Fatigue
[µm] [MPa] Safety Coeff.

Unmodified
FEM-based 6.078 626.7 2.82

Model

Sol1
Predicted 3.436 374.0 2.770
FEM-based 3.542 388.6 2.723

Sol2
Predicted 2.473 397.3 2.728
FEM-based 2.434 389.8 2.729

Sol3
Predicted 3.168 383.4 2.791
FEM-based 3.775 397.3 2.755

As shown in Tab. 6-8, the numerical validation confirmed that application
of the micro-geometry modifications indicated by the optimization algorithm
resulted in improvements in all of the specified objective functions. Further-
more, the fatigue safety constraints were satisfied in all the tested cases. The
relative prediction error expressed as the difference between the value indicated
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Table 7: Predicted and FE-derived results for the selected Pareto-optimal solutions for 500Nm
torque.

STE Contact Stress Fatigue
[µm] [MPa] Safety Coeff.

Unmodified
FEM-based 8.276 907.3 2.04

Model

Sol1
Predicted 6.079 621.3 1.956
FEM-based 5.689 619.2 1.963

Sol2
Predicted 4.510 558.6 1.946
FEM-based 4.462 556.2 1.946

Sol3
Predicted 6.057 661.3 1.972
FEM-based 5.930 667.0 1.987

Table 8: Predicted and FE-derived results for the selected Pareto-optimal solutions for 650Nm
torque.

STE Contact Stress Fatigue
[µm] [MPa] Safety Coeff.

Unmodified
FEM-based 10.527 1136.0 1.61

Model

Sol1
Predicted 7.574 850.5 1.594
FEM-based 7.960 927.5 1.566

Sol2
Predicted 6.525 838.8 1.562
FEM-based 6.670 867.4 1.562

Sol3
Predicted 7.930 889.1 1.602
FEM-based 8.162 950.5 1.579
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by metamodel and the one obtained using a FEM analysis, was calculated using
Eq. 17:

ϵrel =
|yFE − y∗|

yFE
· 100% (17)

where yFE and y∗ are the FE-derived and the metamodel-predicted values of a
response, respectively. As it can be seen in Fig. 15, all but one error values are
below 8.50%, which is in line with the metamodel accuracy discussed previously.

Figure 15: Objective functions and constraints relative prediction error.

With the aim of assessing the quality of each quasi-optimal solution, a per-
formance index is defined for each optimization objective by Eq. 18:

ϑobj = (
1− yFE

ybase
) · 100% (18)

where ϑobj is a relative improvement in an objective function, while ybase denotes
a baseline value of the corresponding, numerically derived yFE objective for the
modified model.

It can be observed in Fig. 16-18 that the application of the micro-geometry
modifications according to solution Sol2 resulted in a reduction ϑobj for all of
the objective functions in the range 23.64% - 59.97%. Because of the superior
characteristics, this solution is then identified as the final, optimal modification.

10. Conclusions

The paper presents an RS-based approach to optimization of gears, using
tooth profile micro-geometry modification as decision variables. This metamodel-
based approach allows testing a large number of possible gear tooth modification
by a population-based optimum search algorithm, with relatively small com-
putational expense. Through its implementation to gear design process, it is
possible to find improvements in multiple design targets simultaneously. Due
to strong nonlinearity of this type of design problems, meeting this require-
ment would be difficult using the manual trial-and-error approach or classical,
gradient-based optimization techniques.
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Figure 16: Relative improvements obtained for the analyzed case study.

Figure 17: Comparison of STE curves for the unmodified gear (blue crosses) and the quasi-
optimal solution Sol2 (red circles).
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Figure 18: Comparison of Contact Stress history curves for the unmodified gear (blue crosses)
and the quasi-optimal solution Sol2 (red circles).

In order to show the usefulness and applicability of the proposed technique,
it was successfully implemented to solve the problem of improving transmission
error and strength in a pair of identical spur gears, loaded by different torque
values. In order to decrease the computational effort associated with testing nu-
merous candidate solutions, metamodeling techniques were used to approximate
the data obtained through FE simulations in the DoE phase. Subsequently, the
surrogates were used in combination with the population-based CEGA opti-
mization algorithm to find a set of quasi-optimal solutions among 5000 popula-
tion generations, each consisting of 100 individuals. The final, Pareto-optimal
micro-geometry modification pattern was selected manually, based on the im-
provements provided with respect to the performance of the baseline gear model.

The presented optimization methodology can be used in the gear develop-
ment process, as an efficient tool for supporting design decisions and helping to
achieve the desired characteristics.
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