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Among all procedures, keyhole neurosurgery is one of the most hazardous ones, due to the com-
plexity of the brain environment and the high density of vital structures. Respect of the kinematic
constraints of the probe selected to perform the procedure and of the preferences dictated by the
surgeon’s experience are essential to find the safest path to the surgical target. This work presents
and optimisation and classification strategy for neurosurgical interventions. The framework relies
on Answer Set Programming to translate the requirements and the expert’s knowledge into the ob-
jectives of the optimisation procedure. The semantics of Answer Set Programming grants extensive
flexibility, as it allows to easily change the requirements to optimise and their priority based on the
specific needs of the clinical case.

1 Introduction

Keyhole Neurosurgery (KN) has become the gold standard to perform brain procedures, since it allows
access to the brain via a small hole on the skull, minimising trauma to the patient [6]. Paramount to
the success of this kind of procedures is accurate and precise planning of the trajectory the probe has to
follow to reach the Target Structure (TS) deep inside the brain.

To this end, it is important to identify and comply to precise requirements; some of them are strictly
mandatory, while others can be defined as soft constraints. The first ones must be fulfilled and are strictly
related to the respect of the kinematic constraints of the selected probe: for the trajectory to be feasible,
it should not surpass the maximum curvature K,,,, the needle can perform; moreover, the path cannot be
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Figure 1: Architecture of the proposed system, displaying the basic workflow and the user interactions.

chosen if it approaches the delicate structures at a minimum distance that is smaller than the radius r of
the needle.

Soft constraints are instead dictated by implicit and explicit desiderata that guide the decision-making
process of the neurosurgeon. These are used to express preferences, that can vary from procedure to
procedure, and even from patient to patient [2]. Generally, they are the following:

* Minimisation of the path length d,,, to minimise risks in the motion of the needle.

* Maximisation of the distance from obstacle d,,;, to mitigate the damage of possible mistakes in the
motion of the needle.

* Minimisation of the curvature c,,,, performed by the needle to have a smoother path that facilitates
the control of the probe.

Given these premises, the attempt of fulfilling these requirements can be seen as an optimisation
problem, where soft constraints are the objectives. Classical methods, like graph- and sampling-based
techniques [5, 7] or learning-based approaches [9], generate a raw path that is then input of the optimisa-
tion phase. The desiderata are translated into numerical constraints via cost functions, that are generally
formulated as follows:

F(x) =Y ki*fi(x) (1)
i=1

where f; represents the soft constraint weighted of a factor k;, that can be chosen empirically or
suggested by the surgeon.

This standard optimisation approach presents several limitations when applied to KN. Indeed, the
transposition of the preferences dictated by the clinician into ad hoc cost functions requires specific math-
ematical and programming skills together with several hours of coding to implement them. Therefore, it
is not possible to immediately implement new requirements. This lack of flexibility and the impossibility
of changing them and adapting them real-time during the pre-operative phase hinders their validity as
optimisation techniques for KN.

Interestingly, deductive reasoning, and in particular Answer Set Programming (ASP), can provide a
valid alternative to overcome these drawbacks. ASP is a declerative logic formalism that encodes com-
putational problems via logic programs [1, 3]. Indeed, its semantics allows to explicitly represent domain
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knowledge that can be used to intuitively implement the constraints of the complex brain environment
and the surgeon’s preferences. Therefore, we herein present an optimisation and classification strategy
that exploits the flexible semantics of ASP to find the optimal curvilinear trajectory in the pre-operative
phase. The strategy takes in input not only the raw trajectory, but also the priority associated to each
optimisation objective that can differ from case to case. Moreover, we show how the optimisation and
classification techniques have been integrated in a surgical simulator developed in Unity [4] to intuitively
guide the neurosurgeon through all the steps of the decision making process and easily visualise the result
of the planning.

2 Materials and methods

2.1 Definition of manual trajectories

To test our methodology, we have decided to use as raw trajectories in input manual trajectories traced by
the neurosurgeon. As first step, the neurosurgeon inputs the kinematic constraints of the steerable needle
in use, K,,x and OD, and the parameters he/she intends to prioritise in the selection of the best trajectory,
diors dmin and ¢4, With their respective weights, wa, s, Wapmin and we,,,,..; the higher the weight, the higher
the priority. The surgeon then proceeds with the choice of the TS and Entry Point (EP) located on the
brain cortex.

Then, starting from EP, the surgeon manually draws a trajectory using a joystick, defined as follows:

T(T:l‘(),l‘l,l‘nfl) (2)

where fo = EP and t,_1 = T'S. Each of these trajectories is the input of the optimisation phase, which
is followed by the classification step. The final output is the optimal trajectory 797",

2.2 Search space definition

Taken as input the manual trajectory 7', the planner creates a new search space in which the ASP program
can search for new, alternative trajectories. The search space is defined as follows: around each point
tj €T, excluding EP and TS, a set of concentric circles of radius 0 < r < 5mm is defined, to be compliant
with the kinematic constraints of the specific case; the range of the radius is specified by the surgeon,
depending on the characteristics and design of the specific needle in use.

Then, for each circle, #; points are sampled, equally spaced on the circumference by applying the
formulas in Equation 3. Again, the number of 7; to be sampled is chosen by the operator, based on the
needed resolution and also on the computational power available.

Given the coordinates x; 5> Vr; and zg; of the centre of the circle, given 9_,/ values of angles uniformly
distributed between 0° and 360° and the value of the radius r of the desired circle, the formulas in
Equation 3 are applied to convert the coordinates from polar to cartesian convention. Thus, x, y and z
coordinates for each point 7; on the circumference of the circle are obtained.

X, =rxcos(6;,) +x,

1
yi;, = rxsin(6,;) +yi; 3)

U =
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From the newly generated set of available points 7; a search graph is obtained, where each point is
a node of the graph. Considering point ¢; in the input path T, each point 7}, in the concentric circles
around it, is connected by an edge to the corresponding point 7;, 1, on the concentric circle having the
same radius, built around point ¢;,1; ¢; is also connected by an edge with the immediately adjacent points
to 7;11. The EP 71 and the TS 7,_; are the same of the original trajectory 7.

2.3 ASP trajectory optimisation

The search graph is encoded by facts of form edge (X,Y) expressing that there is an edge between points
X and Y. Moreover, facts start (X) and finish(X) encode EP and TS, respectively. Eventually, possible
steps are represented as facts of the form step (X). These facts are the input to an ASP program consti-
tuted by the logic rules described next. First, it is stated that at the step 0 the needle must be placed in the
start position EP. Then, the program guesses for each step S > 0 different from 7S the points the needle
should visit in order to obtain a possible path. More in detail, the needle can move from point P1 at step
S-1 to point P2 at step S only if the needle visited P1 at step S-1, P1 and P2 are connected by an edge and
the target structure TS has not been reached yet. Moreover, the program ensures that the needle cannot
visit two or more points at the same time and that it cannot move to positions already visited. This is
expressed by the following choice rule:

0 <= {needle_at(S, P2) : edge(P1, P2),needle_at(S-1, P1),

. “4)
not finish(P2)} <= 1 :- step(S).

Lastly, ASP checks that guessed paths reach the target structure TS and discards paths that do not satisfy
such condition via an integrity constraint:

finished :- needle_at(S, P),step(S), finish(P). (5)

:- not finished. (6)

2.4 Parameters extraction

For each path T found by the optimisation in the optimisation phase and for each of the manual trajecto-
ries the parameters d;y, diin and ¢, are computed. These parameters are paramount for the final step
of the presented workflow, that is the classification of the trajectories to select the optimal one.

2.5 ASP trajectory classification

In the classification step of this methodology, the best trajectory among the ones provided by the clinician
and the ones generated in the optimisation step is chosen.

The ASP program guesses a path to choose among all trajectories, that are encoded by facts of form
trajectory(X). The guessed path is then checked against the requirements introduced in Section 1.

We now show how these requirements are translated in hard and soft constraints.

First we report the hard constraints:

:— choose(X), curvature(cpu),

(7

maxCurve (X, Kuuw), Knax < Cmax-
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:= choose(X), radius(r),

‘ (8)
dlStDbSt(X, dmin), dmin <r.

Essentially, the facts maxCurve(X, c;qy) and distObst (X, dyin) respectively couple ¢qe and dpipn
to the corresponding trajectory X.
Soft constraints have been encoded as follows:

#min{d;,:@wy,, ,X: choose(X),length(X,d;x)}. 9)

#max{din@wy, . ,X: choose(X),

"’ (10)
dist0bst (X,dpmin) }.

#min{cpua@we,, ,X: choose(X),

(1)

maxCurve (X, Cpuax)}-

where the facts length(X, d.), distObst(X, d,;i») and maxCurve(X, cpqy) respectively couple dy,
dpin and ¢, to the corresponding trajectory X.

2.6 Optimal trajectory evaluation

The surgeon can now visualise the optimal trajectory 79" in the simulator. Therefore, he/she can visually
evaluate the result. If not completely satisfied, he/she can easily go back and select new optimisation
parameters and/or change their respective weigths and obtain immediately a new trajectory.

3 Experimental evaluation and conclusions

The surgical procedure considered as case study is Convection Enhanced Delivery (CED), in which
the target is the tumor that is surrounded by any essential structures, mainly vessels. 3-D brain struc-
tures were identified on two datasets: 1) Time-of-Flight (ToF) Magnetic Resonance Imaging (MRI) for
vessels visualisation, 2) T1 for brain cortex, skull surface, arterial blood vessels, ventricles and all the
relevant deep grey matter structures visualisation, segmented through FreeSurfer Software and 3D Slicer.
The selected probe is the bio-inspired, multi-segment programmable bevel-tip needle developed in the
EDEN2020 project [8].

3.1 Experimental protocol

In order to evaluate the optimal path obtained with our framework, we compared it with the manual
trajectories computed by the expert surgeon. To evaluate the optimal path found by the ASP planner, we
compared it with the manual trajectories computed by the expert surgeon. The expert surgeon (age: 37,
performed surgical procedures: 2440) was asked to select 10 entry points, EP;, on the brain cortex, a tar-
get structure 7'S and the weights, we, . ,wq,. ,wq,, for the rules prioritization. k experiments, EX P (with
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Figure 2: A Shows expert’s rules, and catheter kinematic constraints. B Shows a comparison between
Manual and Optimized approach for the CED procedure. The results for both considered scenarios and
used approaches are reported in terms of the minimum (d,,;,) and the mean (d,,,) distance from the
critical obstacles, the total path length (d,,,) and the curvature (c,,y) calculated over the five best paths
for each approach. P-values were calculated using Wilcoxon matched-pairs signed-rank test.

1 <k <5), were conducted. For each EXP,, the surgeon was asked to generate a pool of trajectories,
{Tj} (with 1 < j < 10), and choose the optimal one, TManual phased on his expertise. The same pool of
surgical paths generated in the manual approach,{7;}, was used for the optimization procedure and the
optimal one, {T9P'}, was selected, using rules, weights and kinematic constraints given in input by the
surgeon as reported in Figure 2A.

Experiments were performed on a Linux machine equipped with a 6-core i7 CPU, 16GB of RAM and
1 NVIDIA Titan XP GPU with 12GB of VRAM. The performance metrics of the paths were analysed
using Matlab (The MathWorks, Natick, Massachussetts, R2020a). To assess data normality, Lilliefors
test is applied. Since the data distribution resulted to be non-normal, we performed pairwise comparison
with the Wilcoxon matched-pairs signed-rank test. Differences were considered statistically significant
at p-value < 0.05.

3.2 Results

Figure 2B shows a comparison between the Manual and Optimized approaches in terms of dyi, dayg,
Cmax and dy,; calculated over the best path of left hemisphere. The Optimized approach keeps lower d;;
and significantly lower ¢, (p-value < 0.01) of the path than the Manual approach. While it keeps a
significantly greater dy;, (p-value < 0.01) and d,,, (p-value < 0.01) following the rules dictated by the
expert who gives more importance to these two parameters in this case.

3.3 Conclusion and future works

The herein proposed methodology consists of the application of deductive reasoning via ASP to support
the neurosurgeon in the development of the surgical workflow to increase the accuracy and the outcome
of the operation. This methodology allows one to describe the complex environment of the brain and



V. Corbetta, A. Segato, J. Zangari, S. Perri, E Calimeri & E. De Momi 7

the steerable needle that moves in it in a purely declarative fashion; using a set of logic rules, a flexible
approach is implemented that can be customised by the clinician depending on the selected application
and on the specific patient. This logic-based tool optimises the trajectories traced by the neurosurgeon
and then selects the best one.

Using ASP for modelling the expert’s knowledge and his/her desiderata can be a significant asset
for many reasons. First of all, even if the whole path planning tool is implemented in Unity, this is just
to provide a user-friendly graphical interface, but under the hood, the knowledge is expressed through a
declarative formalism: modifying and adapting the criteria for optimising path and rejecting unwanted
ones would be rather easy. Moreover, the specifications are formally encoded, yet executable; and once
the optimisation rules have been properly selected, ASP guarantees that the best trajectory is chosen. If
two or more paths have the same “’score”, selecting one or the other would make no difference. Indeed,
ASP guarantees the flexibility necessary in KN: the neurosurgeon can easily and in real time change the
optimisation objectives and their priority, so that the planning is easily customisable depending on the
procedure and on the specific patient.

Results show the effectiveness and robustness of our approach. As future works are concerned, we
would like to test our methodology in the Eden2020 framework and also try to apply our optimisation
and classification strategy to raw trajectories generated by other path planning approaches, like learning-
based methods, to prove the generalisability of our methodology.
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