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SUMMARY

The Koiter method recovers the equilibrium path of an elastic structure using a reduced model, obtained by
means of a quadratic asymptotic expansion of the finite element model. Its main feature is the possibility
of efficiently performing sensitivity analysis by including a-posteriori the effects of the imperfections
in the reduced non-linear equations. The state-of-art treatment of geometrical imperfections is accurate
only for small imperfection amplitudes and linear pre-critical behavior. This work enlarges the validity
of the method to a wider range of practical problems through a new approach, which accurately takes
into account the imperfection without losing the benefits of the a-posteriori treatment. A mixed solid-shell
finite element is used to build the discrete model. A large number of numerical tests, regarding non-linear
buckling problems, modal interaction, unstable post-critical and imperfection sensitive structures, validates
the proposal. Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Koiter FE method, geometrical imperfections, post-buckling, limit load, imperfection
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1. INTRODUCTION

Thin-walled beams and shells are commonly used as primary components in structure engineering,
due to their high specific strength and stiffness, which allow weight and material economy. Their
load-carrying capabilities are often determined by buckling, which often occurs for loads much
lower than the failure loads of materials. The path-following strategy is the standard approach
employed to analyze the non-linear elastic behavior of this kind of structure. Once the continuum
problem has been discretized using the finite element (FE) method, the equilibrium path of the
structure is traced step-by-step, solving a non-linear system of equations, where the unknowns are
the FE degrees of freedom (DOFs) and the load factor.
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As a consequence of modal buckling interaction, shell-like structures may exhibit a very unstable
post-buckling behavior and may be highly sensitive to initial imperfections [1, 2, 3, 4, 5], especially
to geometrical imperfections. In light of this an imperfection sensitivity analysis [6, 7, 8, 9] becomes
mandatory. It consists in seeking the so called worst (detrimental) imperfection cases, which are the
shapes of the geometrical imperfections associated with the minimum limit load (safety factor).
The Monte Carlo simulation generally adopted to this end may require thousands of equilibrium
path evaluations [10]. The use of composite structures, which require a layup optimization [11, 12],
further complicates the design process.
Standard path-following approaches, aimed at recovering the equilibrium path for a single loading
case and assigned imperfections, are not suitable for this purpose because of the high computational
burden of the single run [13], and are unusable if no information about the worst imperfection
shapes is available. For these reasons, the FE implementation of asymptotic methods [14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24] based on Koiter’s theory of elastic stability [25] has recently
become [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36] more and more attractive. The Koiter method
consists of the construction of a reduced model, in which the FE model is replaced by its second
order asymptotic expansion using the initial path tangent, m buckling modes and the corresponding
second order modes, named quadratic correctives. In this way, once the reduced model is built,
the equilibrium path of the structure can be obtained by solving the non-linear reduced system of
m equations in m+ 1 unknowns, which represent the modal amplitudes and the load factor. The
coefficients of the reduced system are evaluated using strain energy variations up to the 4rd order.
Shell structures can require a very large number of FE DOFs to avoid significant discretization
errors, while m is usually at most a few tens. Clearly the convenience of the method with respect to
the standard path-following strategy is evident.

Since the first proposals [37, 15, 38, 6], the method has been continuously enhanced in terms of
both accuracy and computational efficiency. In particular, a mixed (stress-displacement) formulation
is required to avoid an interpolation locking phenomenon in the evaluation of the coefficients of the
reduced system [6, 39, 40, 38, 41] and to make the asymptotic expansion accurate for a wider
range, avoiding the extrapolation locking [14, 27] common in the displacement based approach and
providing accurate results also for non-linear pre-critical behaviors. Geometrically exact shells and
beams [42, 43] or corotational approaches [44, 32] have been proposed to achieve structural model
objectivity. Both the strategies make explicit use of the rotation tensor and its highly non-linear
representation. Alternatively in [26, 27], the method has been implemented exploiting the non-linear
Cauchy continuum based on a Green strain measure. In this way, adopting the mixed Hellinger-
Reissner variational formulation, the strain energy has a 3rd order only polynomial dependence
on the FE DOFs with the zeroing of all the fourth order strain energy variations. The resulting
asymptotic formulation appears accurate, efficient and simple.
The effects of geometrical imperfections can be included in the Koiter analysis a-priori in the FE
model, like it is mandatory for the standard path-following approach. In this way the modes used
in the asymptotic expansion and the coefficient of the reduced system are recomputed for each
imperfection. Although this procedure is cheaper than a path-following analysis, the re-construction
of the reduced model involves a linearized buckling analysis and its computational cost can still
prevent a Monte Carlo simulation. On the contrary the solution of the reduced system has a very
low cost (usually fractions of seconds), negligible compared to the construction of the reduced
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Due to the assumed 3rd order polynomial dependence of Φ[u] on u, it can be exactly replaced
with its 3rd order Taylor expansion from a given configuration u = u0, that is

Φ′[u]δu :=

(
Φ′0 + Φ′′0(u− u0) +

1

2
Φ′′′(u− u0)2

)
δu, ∀δu ∈ T , (2)

where a subscript denotes, from now on, the point in which the quantities are evaluated, i.e.
Φ′0 ≡ Φ′[u0] and so on, while the quantity Φ′′′ is constant with u.

2.1.1. Fundamental path. The method starts with the evaluation of the fundamental path uf [λ]

assumed as analytical in λ and approximated with its tangent in the (known) equilibrium
configuration (u0, λ0 = 0) as uf = u0 + λû. It is evaluated through a first order Taylor expansion
in λ of Eq.(1), that is

Φ′′0 ûδu− p̂δu = 0, ∀δu ∈ T . (3)

2.1.2. Buckling loads and modes. With the adopted linear extrapolation in λ of the fundamental
path, it is possible to evaluate the bifurcation condition, that is the singularity of the second strain
energy variation, as

Φ′′[uf [λ]]v̇iδu ≡ (Φ′′0 + λΦ′′′û)v̇iδu = 0 ∀δu ∈ T (4)

where v̇i and λi are the bifurcation modes and loads. Note that the expression in Eq.(4) is exact,
due to the zeroing of all the higher order energy terms, and so the buckling condition is exactly a
linear eigenvalue problem [27], which provides the m bifurcation loads and modes, orthogonalized
according to

Φ′′′ûv̇iv̇k = −δik (5)

with δik the Kronecker symbol.

2.1.3. The reduced model of the perfect structure. According to a Lyapunov-Schmidt
decomposition [45], U is decomposed as a direct sum of the critical subspace V and its orthogonal
complementW , defined as

U = V ⊕W,


V = {v : v =

m∑
i=1

ξiv̇i}

W = {w : Φ′′′ûv̇iw = 0}

(6)

where ξi, with i = 1 · · ·m are the buckling mode amplitudes.
The space of admissible configurations, following a Galerkin approach, is limited to

ud = uf [λ] + v[ξi] + w[λ, ξi] (7)

where the corrective term w ∈ W is assumed to be at least quadratic in λ and ξi and the compact
notation f [ξi] is used to denote the dependence of function f on all the ξi.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ACCURATE AND EFFICIENT ACCOUNT OF GEOMETRICAL IMPERFECTIONS IN KOITER ANALYSIS 5

Using a Ritz-Galerkin approach the equilibrium equation is imposed assuming v̇i and δw as test
functions, and the configuration defined by ud, that is

rw[λ, ξi] ≡{Φ′[ud]− λp̂}δw = 0

rk[λ, ξi] ≡{Φ′[ud]− λp̂}v̇k = 0.
(8)

From the condition rw[λ, ξi] = 0 and using a Taylor expansion up to the 2th order in λ, ξ1, · · · ξm
we obtain the quadratic correctives (see [26])

w =
1

2
λ2 ˆ̂w +

1

2

∑
ij

ξiξjwij

{
Φ′′b

ˆ̂wδw = −Φ′′′û2δw

Φ′′bwijδw = −Φ′′′v̇iv̇jδw
∀δw ∈ W (9)

where the subscript b denotes quantities evaluated in λbû and λb is a suitable reference value of the
bifurcation load (the first bifurcation load or a mean value of the bifurcation cluster).

From the condition rk[λ, ξi] = 0 we obtain the reduced nonlinear system which defines the
equilibrium path

rk[λ, ξi] ≡ µk[λ] + (λk − λ)ξk −
1

2
λ2

m∑
i=1

ξiCik +
1

2

m∑
i,j=1

ξiξjAijk

+
1

6

m∑
i,j,h=1

ξiξjξhBijhk = 0, k = 1 · · ·m
(10)

where
Aijk =Φ′′′v̇iv̇j v̇k

Cik =Φ′′b
ˆ̂wwik

Bijhk =− Φ′′b (wijwhk + wihwjk + wikwjh)

µk[λ] =
1

2
λ2Φ′′′û2v̇k.

(11)

Eqs.(10) are an algebraic nonlinear system ofm equations in them+ 1 variables λ, ξ1 · · · ξm that,
due to the small size of the system, can be efficiently solved using specialized variants of the arc–
length scheme. Second and third order variations of the strain energy are required for the evaluation
of coefficients in Eq.(11).

2.1.4. Standard a-posteriori account of geometrical imperfections. Small imperfections, expressed
by an initial displacement ũ, can easily be considered in the asymptotic analysis. In the current
proposal [15, 40, 6, 39] the following coefficients

µ̃k := λΦ′′′ûũv̇k (12)

are added to Eq.(10), that is
rk + µ̃k = 0 (13)

and the reduced model is corrected adding ũ to the expression (7)

ud = ũ+ uf [λ] + v[ξi] + w[λ, ξi]. (14)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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So, once the steps in Eqs.(3), (4), (9), (11) of the analysis have been performed, once and for all,
small imperfections in the geometry can be taken into account by adding a few additional terms
in the expression of rk. The computational extra-cost is negligible since just the reduced nonlinear
equations Eq.(10) have to be solved again for each new imperfection. In this way the method allows
a low cost imperfection sensitivity analysis. In particular the reader is referred to [10] where the
imperfection sensitivity analysis is performed by means of a Monte Carlo simulation showing how
thousands of geometrical imperfections can be analyzed in a few minutes in order to detect the worst
imperfection shape.

However, comparisons with standard path-following analyses show that the accuracy of this
approach is limited to small imperfection amplitudes and structures with an almost linear pre-critical
behavior. The aim of this work is, then, to improve its accuracy, making the approach suitable for a
wider range of practical problems.

2.2. FEM implementation of the asymptotic approach

Denoting with a bold symbol the discrete FEM counterpart of the continuum quantities, and
referring to the solid-shell finite element model presented in [26], the construction of the reduced
model of the perfect structure consists of the following steps.

1. The fundamental path defined by Eq.(3) becomes in FE format

uf [λ] = u0 + λû , K0 û = p̂ , K0 ≡ K[u0] (15a)

and requires the solution of a linear system to evaluate the initial path tangent û.
2. The buckling modes and loads are obtained by the following eigenvalue problem

K[λ]v̇ ≡ (K0 + λK1[û])v̇ = 0 (15b)

where K0 and K1 are obtained from the following energy equivalence

δuTK0δu := Φ′′0δu
2 δuTK1δu = Φ′′′0 ûδu

2.

3. Them× (m+ 1)/2 quadratic correctives FE vectors wij , ˆ̂w ∈ W are obtained by the solution
of the linear systems (i = 1 . . .m, j = i . . .m)

Kbwij + pij = 0

Kb
ˆ̂w + p00 = 0

, ∀w ∈ W (15c)

in which Kb ≡ K[λb], pij ,p00 are defined as a function of modes v̇i and û by the energy
equivalences

δwTpij = Φ′′′b v̇j v̇jδw

δwTp00 = Φ′′′b û
2δw.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ACCURATE AND EFFICIENT ACCOUNT OF GEOMETRICAL IMPERFECTIONS IN KOITER ANALYSIS 7

Vectors wij are obtained by solving the following linear systems adopting a Lagrangian
multiplier approach (see [7]){

Kbwij + pij = 0

wT
ijK1v̇k = 0, k = 1 · · ·m.

(15d)

The solution of Eq.(15d) can be obtained adopting the iterative scheme proposed in [7] which
uses the already decomposed matrix K0. The same approach is used to evaluate ˆ̂w.

4. Evaluation of the coefficients in Eq.(11) of reduced equilibrium system in Eq.(10) as a sum
of finite element contributions.

The evaluation of the equilibrium path, to be repeated for each imperfection, requires the
following steps

1. evaluation of µ̃k = λΦ′′′ûũv̇k;
2. solution of the reduced system in Eq.(13) and drawing of the equilibrium path according to

Eq.(14).

3. AN ACCURATE A-POSTERIORI ACCOUNT OF GEOMETRICAL IMPERFECTIONS

In this section the Koiter algorithm previously presented is reformulated in order to coherently
consider the presence of geometrical imperfections, removing the hypothesis of linear pre-critical
behavior which leads to Eq.(12). In this way it is possible to overcome the inaccuracy in the limit
load evaluation observed, for example, in Fig.19 of [8]. The imperfection sensitivity analysis can
still be performed in the post-processing of the Koiter method, when the geometrical imperfections
are expressed as a linear combination of known shapes like, as usual, the displacement shape of the
buckling modes.

3.1. The strain energy and the equilibrium path of the structure with geometrical imperfection

Using a Hellinger-Reissner variational principle the mixed strain energy Φ[u] is expressed, as usual
in a FE context, as a sum of element contributions

Φ[u] =
∑
e

∫
Ωe

(
tTρ[d]− 1

2
tTC−1

ρ t

)
dΩe (16)

ρ[d] and t are the vectors collecting the generalized strains and stresses components for the given
structural model, Ωe is the finite element domain and d is the displacement field and C−1

ρ the
compliance matrix of the structural model.

The strain energy of the structure for an initial imperfection characterized by an assigned
displacement d̃ and zero stress is assumed as

ΦI [u] ≡
∑
e

∫
Ωe

(
tT (ρ[d]− ρ[d̃])− 1

2
tTC−1

ρ t

)
dΩe. (17)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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Denoting with a symbol δ the variation of d and t, the first variation of ΦI [u] becomes

ΦI [u]′δu =
∑
e

∫
Ωe

{
δtT (ρ[d]− ρ[d̃]−C−1

ρ t)− tTρ′[d]δd
}
dΩe

= (Φ[u]′ − Φ′[ũ])δu

(18)

that is the difference between the perfect and imperfect structure first order strain energy variation,
being

Φ′[ũ]δu :=
∑
e

∫
Ωe

δtTρ[d̃]dΩe (19)

the first variation of the perfect structure evaluated in ũ (which has t̃ = 0).
The equilibrium path is obtained from the following condition

(Φ[u]′ − Φ′[ũ]− λp)δu = 0 ∀δu (20)

which in FE format becomes
s[u]− p̃− λ p̂ = 0. (21)

In particular the internal force vector s[u], the load vector p̂ and the imperfection vector p̃ are
defined by the energy equivalences

sT δu ≡ Φ′[u]δu , p̂T δu ≡ p̂ δu , p̃T δu ≡ Φ′[ũ]δu , ∀ δu. (22)

Eq.(21) can be solved using standard path-following techniques [46, 47, 27] for an assigned
imperfection ũ. Note that in the hybrid solid-shell FE model, the internal force vector of the
imperfect structure is obtained by simply subtracting a constant vector p̃, evaluated once and for
all at the beginning of the analysis, to the internal forces vector s[u] of the perfect structure.

3.2. The new reduced model with geometrical imperfection

The space of admissible configurations that will be used in the Lyapunov-Schmidt decomposition is
obtained by adding an additional term which represents the initial imperfection, to the configuration
field of the perfect structure in Eq.(7) that is

ud[λ, ξi, ξ̃i] = ũ+ λû+ v[ξi] + w[ξi, ξ̃i, λ] (23)

where the geometrical imperfection is assumed to be a linear combination of a known shape ūi

ũ =

n∑
i=1

ξ̃iūi. (24)

The imperfection shapes ūi are generic and can be, for example, the displacement part of the
buckling modes as well as measured geometrical imperfections. Note that, unlike the reduced
model in Eq.(14), now the quadratic correctives w[ξi, ξ̃i, λ] depend on the geometrical imperfection
amplitudes ξ̃i.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ACCURATE AND EFFICIENT ACCOUNT OF GEOMETRICAL IMPERFECTIONS IN KOITER ANALYSIS 9

From now on the 3th order dependence of the strain energy on the configuration variables u (see
Eq.(2)) will be exploited in order to simplify the exposition.

The residual equation (20) is firstly expanded in Taylor series starting from ũ, so obtaining(
Φ′′[ũ](ud − ũ) +

1

2
Φ[ũ]′′′(ud − ũ)2 − λp̂

)
δu = 0.

The first term in previous equation is expanded again from the initial configuration of the perfect
structure (u0 = 0, λ = 0)

Φ′′[ũ](ud − ũ)δu = (Φ′′0 + Φ′′′ũ)(ud − ũ)δu

and, remembering that Φ′′0 ûδu = pδu(
Φ′′0(v + w) +

1

2
Φ′′′(λû+ v + w)2 + Φ′′′ũ(λû+ v + w)

)
δu = 0. (25)

With a further Taylor expansion of Φ′′0(·) starting from the uk = λkû and letting Φ′′k = Φ′′[uk]

Φ′′0(v + w)δu = (Φ′′k(v + w)− λkΦ′′′û(v + w))δu

the Eq.(25) becomes(
Φ′′k(v + w) + (λ− λk)Φ′′′û(v + w) +

1

2
λ2Φ′′′û2 +

1

2
Φ′′′(v + w)2 + Φ′′′ũ(λû+ v + w)

)
δu = 0.

(26)
It is worth mentioning again that Eq.(26) does not contain any truncation error. Furthermore note

that the equilibrium condition for the structure with no imperfection is regained for ũ = 0.

3.2.1. Projection of the equilibrium equation in the space W . The corrective field w ∈ W is
obtained by projecting Eq.(26) in direction δw, i.e. assuming δu = δw, and expanding it in Taylor
series up to the second order in the asymptotic parameters (λ, ξi, ξ̃i). The term Φ′′k v̇δw, by exploiting
the bifurcation Φ′′i v̇iδu = 0 and the orthogonality Φ′′′ûv̇iδw = 0 conditions, becomes

Φ′′k v̇δw =

n∑
i=1

ξi {Φ′′i v̇i + (λk − λi)Φ′′′ûv̇i} δw = 0

that allows the simplification of the residual equation as

r̃w[ξi, λ, ξ̃] ≡
{

Φ′′[λû]w +
1

2
λ2Φ′′′û2

+
1

2
Φ′′′(v2 + 2wv + w2) + Φ′′′ũ(λû+ v + w)

}
δw = 0

(27)

with Φ′′[λû]w = Φ′′kw + (λ− λk)Φ′′′ûw.

Assuming
Φ′′[λû]w ≈ Φ′′bw with Φ′′b ≡ Φ′′[λbû]

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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10 G. GARCEA, F.S. LIGUORI, L. LEONETTI, D. MAGISANO, A. MADEO

with λb a suitable reference value of the bifurcation cluster and maintaining only the terms of the
quadratic polynomial order in λ, ξi, ξ̃i the residual equation simplifies as

r̃w[λ, ξi, ξ̃i] ≡
{

Φ′′bw +
1

2
λ2Φ′′′û2 +

1

2
Φ′′′v2 + Φ′′′ũ(λû+ v)

}
δw = 0. (28)

Remembering the expression of v[ξi], the quadratic correctives of the imperfect structure are sums
of the correctives for zero imperfections of Eq.(9) and of the additional contribution due to the
geometrical imperfection

w[ξi, ξ̃i, λ] =
1

2
λ2 ˆ̂w +

1

2

∑
i,j

ξiξjẅij + w̃ (29)

where
w̃ = λ ˜̂w +

∑
i

ξi ˙̃wi (30)

with
˜̂w :=

∑
j

ξ̃j ˆ̃wj , ˙̃wi :=
∑
j

ξ̃j ˙̃wij . (31)

The terms in Eq.(31) can be evaluated, once and for all in the perfect structure step of the Koiter
analysis, being known the imperfection basis, as{

Φ′′b ˆ̃wiδw = −Φ′′′ûūiδw

Φ′′b ˙̃wijδw = −Φ′′′v̇iūjδw
∀δw ∈ W. (32)

3.2.2. The new reduced equations with geometrical imperfection. Exploiting the orthogonality
condition Φ′′′ûwv̇k = 0 the kth equilibrium equation, obtained assuming δu = v̇k in Eq.(26),
becomes

r̃k ≡
(

(λ− λk)Φ′′′ûv +
1

2
λ2Φ′′′û2 +

1

2
Φ′′′(v + w)2 + Φ′′′ũ(λû+ v + w)

)
v̇k = 0. (33)

Substituting the expression of w and v previously obtained, using the mode normalization
condition in Eq.(5) and maintaining terms in λ, ξi, ξ̃i until the 3rd polynomial order, the equilibrium
equation becomes

r̃k[λ, ξi] ≡ rk[λ, ξi] + µ̃k[λ, ξi] = 0, k = 1 · · ·m (34)

with rk[λ, ξi] = 0 the kth reduced equilibrium equation in Eq.(10) and the new imperfection factor
µ̃k defined as

µ̃k ≡
∑
i

ξiλΦ′′′vi ˆ̃wv̇k +
1

2

∑
ij

ξiξj
(
Φ′′′vi ˙̃wj v̇k + Φ′′′vj ˙̃wiv̇k + Φ′′′ũẅij v̇k

)
+ λΦ′′′ũ(û+ ˆ̃w)v̇k +

∑
i

ξiΦ
′′′ũ(v̇i + ˙̃wi)v̇k +

1

2
λ2Φ′′′ũ ˆ̂wv̇k.

(35)

It is possible to observe that the only change, with respect to the standard reduced system in
subsection 2.1.4 regards the imperfection coefficient µ̃k which is now more complex than the one

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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ACCURATE AND EFFICIENT ACCOUNT OF GEOMETRICAL IMPERFECTIONS IN KOITER ANALYSIS 11

used in Eq.(11), which only maintains the linear contribution in λ

µ̃k = λΦ′′′ûũv̇k

while the quadratic terms in λ and the terms in ξ are neglected, leading to inaccuracy as the pre-
critical non-linearity increases.

Furthermore, note that the proposed reduced model assumes the following final expression

ud[λ, ξi, ξ̃i] = ũ+ λ(û+ ˜̂w) +
∑
i

ξi(v̇i + ˙̃wi) +
1

2

∑
ij

ξiξjẅij +
1

2
λ2 ˆ̂w. (36)

The new correctives can be seen as a correction to the fundamental path tangent and the buckling
modes of the perfect structures in order to take into account the geometrical imperfection.

3.3. FEM implementation of the proposed algorithm

The construction of the reduced model of the perfect structure presented in subsection 2.2 is
completed by adding the evaluation of the new corrective after Eq.(15c){

Kb
˙̃wij + p̃ij = 0

Kb
ˆ̃wi + p̃0i = 0

, ∀w ∈ W (37)

where
δwT p̃ij = Φ′′′b v̄j u̇jδw δwT p̃0i = Φ′′′b ûūiδw.

The imperfection coefficients µ̃k are evaluated using the expression (35) instead of (12). Once the
reduced non-linear system (34) is solved, the equilibrium path is traced according to (36).

The computational cost of the Koiter method with the proposed a-posteriori account of the
geometrical imperfections remains of the order of that required by a standard linearized buckling
analysis, that is dominated by the factorization of the matrix K0. With respect to the standard
approach, recalled in subsection 2.2, it is necessary to evaluate the new m×m correctives ˙̃wij ,
and m correctives ˆ̃wi by means of the linear problem in Eq.(37) and the corresponding third order
strain energy variations in Eq.(35).

4. NUMERICAL RESULTS

In this section some benchmarks are considered in order to test the accuracy of the proposed a-
posteriori account of geometrical imperfection. A comparison with the different approaches is made.
In particular, the numerical results report:

- the solution of the full FE model non-linear equations (21), obtained using a standard path-
following technique, denoted as Riks and considered the reference solution;

- the solution obtained through the Koiter method including the imperfection a-priori in the
model by assuming u0 = ũ in subsection 2.1.1, which means that the reduced model is re-
constructed for each imperfection while µ̃k = 0, denoted as K0;
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- the solution obtained through the Koiter method using the reduced model of the perfect
structure, built once and for all, and taking into account the imperfection a-posteriori in the
standard way recalled in 2.1.4, denoted as Klin;

- the solution obtained through the Koiter method using the reduced model of the perfect
structure, built once and for all, and taking into account the imperfection a-posteriori
according to the new proposal described in 3.2, denoted as Kquad.

The geometrical imperfection is given as a linear combination of the displacement shapes of the
buckling modes and its maximum displacement components, denoted as ũmax.
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Figure 1. Simply supported plate: geometry, load and boundary conditions.

0 5 10 15 20
0

1

2

(uA − ũA)× 100

λ/λb

Klin

Kquad

Riks

Figure 2. Simply supported plate: geometry and equilibrium paths for ũmax = t

4.1. Simply supported plate

The first example regards a simply supported and uniformly compressed plate whose geometry, load
and boundary conditions are reported in Fig.1. The imperfection shape is proportional to the first
buckling mode reported in the same figure.

Fig.2 shows the equilibrium paths obtained with the different methods. In this case the proposed
Kquad approach provides results very similar to reference Riks ones, even for a large imperfection
magnitude, while the standard Klin approach gives a result which is completely wrong. In this
case the energy terms associated with ˙̃w and ˆ̃w are large also for small values of the imperfection
amplitude due to the membrane hyperstaticity of the plate.
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4.2. Cylindrical isotropic and laminated roofs

E11 E22 = E33 ν12 = ν13 ν23 G12 = G13 G23

3.3 1.1 0.25 0.25 0.66 0.44

Figure 3. Cylindrical roof subjected to a central pinching force with material properties of the ply.

The structure, whose geometry and loads are pictured in Fig.3, is a semi-cylindrical roof loaded
by a central force whose curved edges are free while the straight ones are hinged. Three material
configuration are studied: the first one in an isotropic material characterized by E = 3.10275 and
Poisson ratio ν = 0.3, the second and the third ones are laminated materials characterized by two
different layups, [0◦/90◦/0◦] and [90◦/0◦/90◦] respectively with respect to the e1-axis, whose
properties are reported in Fig.3. The FE mesh consists of 18× 8 elements.

The imperfection shape is the displacement shape of the first buckling mode. In Figs.4, 5 and 6
the equilibrium paths and the limit loads for different values of the imperfection amplitude ũmax
are reported. It is possible to observe how the proposed Koiter method with a-posteriori account
Kquad furnishes accurate results for significant values of the imperfection amplitudes, very close
to the a-priori account K0 whose limit load always coincides with the Riks one. Since the pre-
critical behaviour is non-linear even for the structure without imperfections, the standard a-posteriori
account Klin fails also for very small imperfection amplitudes.

−0.4 −0.3 −0.2 −0.1 0

1

1.5

2

ũmax/t

λlim

Klin

Kquad

K0

Riks

−20 −15 −10 −5 0
0

0.5

1

1.5

2

wA − w̃A

λ

Klin

Kquad

K0

Riks

Figure 4. Cylindrical isotropic roof: limit load versus imperfection magnitude (left) and equilibrium paths
for ũmax = 0.1t (right).
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Klin

Kquad

K0

Riks

−25 −20 −15 −10 −5 0
0

0.5

1

1.5

wA − w̃A

λ

Figure 5. Cylindrical laminated roof: equilibrium paths for umax = 0.1t for layup [0/90/0] (left) and
[90/0/90] (right).
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Figure 6. Cylindrical laminated roof: limit load vs imperfection magnitude for layup [0/90/0] (left) and
[90/0/90] (right).

Finally it is worth noting from Fig.7 how the buckling mode corrected with ˙̃w1, according to
Eq.(36), has a shape similar to those obtained considering the imperfection a-priori in the FE model.
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Figure 7. Cylindrical roof: bucking mode of the structure without imperfection, with ũmax = 0.2t and ˙̃w1
for either isotropic, [0/90/0] and [90/0/90] cases.
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4.3. Compressed simply supported channel section

A simply supported channel section, whose geometry and material properties are reported in Fig.8
is now analysed with 2 different shapes of the imperfection depicted in Fig.13: the first one is
the displacement shape of the first buckling mode (flexural), the second one corresponds to the
displacement shape of the 3rd buckling mode (local with 13 half-waves). The structure exhibits
buckling mode interaction phenomena.

Figure 8. Compressed simply supported channel section with material properties.

2 4 6
900

1,000

1,100

1,200

ũmax/t

λlim

Klin

Kquad

K0

Figure 9. C-section: limit load versus imperfection
magnitude for flexural imperfection.
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1,000
A

Deformed shape in A

Z

Y

X

 DISPLACEMENTS 
10696.186.276.266.256.246.236.326.316.36.32

uA − ũA

λ

Klin

Kquad

K0

Riks

Figure 10. C-section: equilibrium paths for first buck-
ling shape imperfection and umax = 5t (upwards).

In Fig.9 it is reported how the limit loads change with the amplitude of the first imperfection,
while Fig.10 shows the equilibrium paths for ũmax = 5t. In Fig.11 the buckling modes and
correctives for K0 and Kquad are reported. It can be observed how the buckling mode of the
imperfect structure presents a shortening, while for the perfect structure presents a similar shape by
summing its first buckling mode v̇1 and the corrective ˙̃w1, according to Eq.(36). The good behaviour
in the evaluation of the limit point of Kquad is evident while Klin presents significant errors in the
equilibrium path evaluation notwithstanding the fairly accurate value of the limit load.

In Fig.12 the equilibrium paths and the deformed shapes in two equilibrium points for the
second imperfection, are presented. The corresponding mode shapes and how they change with
the imperfection are reported in Fig.13. Also in this case the good behaviour of the proposal Kquad,
compared to Klin, is evident.
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Figure 11. C-section: buckling mode of the structure without imperfection (left), with an imperfection in the
direction of the first buckling mode of amplitude ũmax = 5t (centre) and the relative ˙̃w1 (right, displacement

factor 10).
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Figure 12. C-section: equilibrium paths for third buckling shape imperfection and ũmax = −0.5t. 12 modes
have been considered in asymptotic analysis.
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Figure 13. C-section: first, second and third buckling modes of the structure without imperfection, with
ũmax = 0.5t in the direction of the third buckling mode and ˙̃w (displacement factor 10).

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



20 G. GARCEA, F.S. LIGUORI, L. LEONETTI, D. MAGISANO, A. MADEO

 DISPLACEMENTS 
0

Y
0.0139 0.0278 X0.0417 0.0556 0.0695 0.1390.125

Z
0.1110.09730.0834λb,1 = 0.13055 0 0.0139 0.0278

Z
0.0556 0.0695 0.0834 0.0973 0.111 0.125 0.139

 DISPLACEMENTS 

X
Y

0.0417λb,2 = 0.13055 0.0423
Z

0.0635 0.0847 0.169 0.19 0.212

 DISPLACEMENTS 
0.106 X

Y
0.1480.1270 0.0212 λb,3 = 0.13149 0.06350.04230.0212

Z
0.0846 0.106 0.127 0.148 0.169 0.190

 DISPLACEMENTS 

X
Y

0.212λb,4 = 0.13149

0.0174
Z

0.0523 0.0698 0.0872 0.1050 0.122 0.14 0.157 0.174

 DISPLACEMENTS 

X
Y

0.0349 λb,5 = 0.13165
Z

0 0.0174 0.0349 0.0523 0.0698 0.0872 0.105 0.122 0.14 0.157 0.174

 DISPLACEMENTS 

X
Y

λb,6 = 0.13165 0 0.0111 0.0221 0.0332 0.0442 0.0553 0.0663 0.0774 0.0884 0.0995 0.111

 DISPLACEMENTS 

X
YZ

λb,7 = 0.13197 0.0884 X
Y

0.0774
Z

0 0.06630.0111 0.0221 0.0332

 DISPLACEMENTS 
0.1110.0442 0.09950.0553λb,8 = 0.13197

Figure 14. Cylinder Z33: first 8 buckling modes of the structure without imperfection.

4.4. Cylinder

The test regards a compressed composite cylinder. The stacking sequence is in[0/0/19/− 19/37/−
37/45/− 45/51/− 51]out with the rotation measured from the cylinder axis with respect to the
outward normal. The height is 510mm, the radius is R = 250mm, the thickness t = 1.25mm. The
ply properties are E1 = 123.6, E2 = E3 = 8.7, ν12 = 0.32, ν13 = ν23 = 0, G12 = G13 = G23 =

5.7. The cylinder is labelled Z33 in the literature [10, 48] and has been used as a benchmark case
of imperfection sensitivity. The cylinder is clamped on the top and bottom, excluding the axial
displacement at the top edge where an uniform distributed load is applied. The displacement in the
load direction of a node located at the top of the structure, and labelled wA, has been chosen as
control parameter in the equilibrium path representation. Some of the buckling modes of the perfect
structure are plotted in Fig.14 while those of the imperfect one and the corresponding correctives
˙̃wk for a geometrical imperfection in the direction of v̇1 are reported, respectively in Fig.16 and

Fig.17. The equilibrium path and the deformed shape at the limit point, for ũmax = 0.2t are plotted
in Fig.15 while the limit load values for all the methods are presented in Tab.I. Finally in Fig.18
there are the equilibrium paths for a different imperfection shape and ũmax = 0.2t. Also in this case
the limit loads evaluated with the different formulations are reported in Tab.I. The Kquad approach
always exhibits greater accuracy than Klin for both the imperfection shapes.

imp. direction Klin Kquad K0 Riks

v̇1 0.0831 0.0732 0.0759 0.0769
v̇1 + v̇2 + v̇3 0.0929 0.0868 0.0825 0.0826

Table I. Cylinder: limit load to imperfection direction for several methods and imperfection amplitudes
ũmax = 0.2t.
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Figure 15. Cylinder Z33: equilibrium paths (left) and deformed shape at limit load (right) for first buckling
shape imperfection and ũmax = 0.2t. 8 modes have been considered in asymptotic analysis.
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Figure 16. Cylinder Z33: u̇ in the case of imperfection along the first buckling mode and maximum
amplitude ũmax = 0.2t.
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Figure 17. Cylinder Z33: ˙̃w in the case of imperfection along the first buckling mode and maximum
amplitude ũmax = 0.2t. The displacement scale is ten times bigger than the one used in the buckling mode

representation.
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Figure 18. Cylinder Z33: equilibrium paths for imperfection: ũ = v̇1 + v̇2 + v̇3 and ũmax = 0.2t. 8 modes
have been considered in asymptotic analysis.
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Figure 19. Frame: geometry and mesh grid detail.
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Figure 20. Frame: First 5 buckling modes of the structure without geometrical imperfections.

4.5. Frame

The last test regards the frame reported in Fig.19.
The first 5 buckling modes of the perfect structure are reported in Fig.20, while the limit load

versus imperfection amplitude curve for a geometrical imperfection with the shape of the second
buckling mode and the equilibrium path for ũmax = 0.4t are reported in Fig.21. In the same figure,
the equilibrium path of the structure without imperfections is presented, in order to point out the
strong imperfection sensitivity of the frame and the modal interaction phenomenon. Even in this
last case the proposal Kquad provides very accurate results with a limit point which coincides with
the a-priori account K0 and Riks solution, while inaccuracies occur for Klin.
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Figure 21. Frame: equilibrium paths for geometrical imperfection along the second buckling mode and
ũmax = 0.4t (left) and magnitude imperfection sensitivity (right).
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5. CONCLUSION

A new strategy to include, a-posteriori, geometrical imperfections in Koiter analysis is proposed
in this paper. The main idea is to correct the linear modes of the perfect structure reduced model
using additional corrective modes, which take into account the imperfections. The reduced system
of the imperfect structure is obtained starting from the system of the perfect structure by adding
some terms, which coherently consider the geometrical imperfection up to the second order. In this
way, the Koiter method with a-posteriori account of the imperfections becomes accurate even for
pre-critical non-linearities and significant imperfection amplitudes, making the approach suitable
for a wide range of practical problems.

A large number of numerical tests, regarding shell structures in both isotropic or laminated
materials and also presenting complex behavior characterized by almost coincident buckling loads
and pre-critical non-linearities, validates the proposal. The limit load provided by the new a-
posteriori account is very close to the path-following reference solution and to that provided by
the Koiter method with the imperfection included a-priori in the model.

Finally, this work confirms that the Koiter method is definitely a suitable tool for analyzing
imperfection sensitive structures and shows that the a-posteriori account of the geometrical
imperfections is not only a possibility, but also an accurate and efficient choice.
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