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Abstract

Tracking the evolution in time of parameters, input and states of a structural dynamic
system is often difficult, since their direct measurement can be problematic or even im-
possible. It is of great interest to estimate these quantities based on output-only data
from a limited set of sensors. This work proposes an estimation technique for states,
inputs and material parameters for structural dynamics models based on an Augmented
Extended Kalman Filter. A parametric Model Order Reduction technique is proposed
to construct a Reduced Order Model which maintains an explicit dependency on mate-
rial parameters, enabling the parameter estimation thanks to a low computational cost
and an efficient derivation of the linearized system. The choice of sensor configurations
that ensure the observability of unknown quantities is discussed as well. The proposed
methodology shows highly promising results and could be employed for model refinement
or condition monitoring. The methodology is validated both numerically and experimen-
tally, using data acquired on a scaled wind turbine blade, with errors on the estimated
parameters lower than 3.5% with respect to experimentally identified parameter values.

Keywords: Structural dynamics, Parameter-input-state estimation, Parametric model
order reduction, Augmented extended Kalman filter, Parameter identification

1. Introduction1

Parameter identification [1, 2] and tracking [3, 4] have been among the main research2

interests in structural dynamics over the last years. The system’s states are also com-3

monly tracked to have a complete knowledge about the system evolution in time. In most4

cases, parameters and states are difficult to directly measure. The main limiting factors5

are, among others, the high cost of the required sensors and mounting inaccessibility,6

potential interference with operations or, at times, appropriate sensors might not even7

exist. A common approach to overcome these issues is employing indirect estimation8

methods, that are typically based on the measurement of a set of responses of the system9
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to known inputs. Often however, measuring these inputs is also not straightforward.10

Therefore, ideally an output-only procedure should be employed, where the estimation11

of parameters and states is coupled with the concurrent estimation of inputs.12

A well known estimation approach, originally developed for state estimation, is the13

Kalman Filter (KF) [5, 6], which combines a numerical model of the system and measured14

sensor data by minimizing the trace of the state error covariance matrix. For non-15

linear systems, several variations have been proposed in literature, such as e.g. the16

Extended Kalman Filter (EKF) [6] and the Sigma-Point Kalman Filters (SPKF) [7]. In17

order to simultaneously estimate inputs and parameters, common approaches are Dual18

Kalman Filters (DKF) [8, 9] or state augmentation [10]. DKF consists of two separate19

filters estimating the states and the unknown quantities in parallel. State augmentation20

consists instead of extending, i.e. augmenting, the system state vector with the unknown21

quantities such as e.g. inputs or parameters. This approach allows to keep into account22

all coupling effects between the estimated quantities, given that the augmented system23

is observable [11]. Furthermore, it generally results in a gain in computational time. A24

zeroth order random walk model is often used to model the augmented states dynamics25

[12, 13]. By employing one of these two techniques, several authors jointly estimated26

states and inputs [13, 14, 15], states and parameters [16, 17, 18, 9] or the three together27

[12, 19, 20, 21].28

For structural dynamics applications, KF approaches typically use Finite Element29

(FE) models, that can have a large number of Degrees of Freedom (DOFs); i.e. in30

the order of hundreds of thousands up to millions. The direct use of these models31

can result in an unfeasible computational load. Their dimensions are usually reduced32

by employing projection-based Model Order Reduction (MOR) techniques [22, 23, 24].33

Here, the governing equations of the Full Order Model (FOM) are projected onto a34

lower dimensional subspace of the solution space, the so-called reduction space, which is35

spanned by a reduction basis. This effectively reduces both the number of equations and36

DOFs, resulting in a so-called Reduced Order Model (ROM) with a decreased associated37

computational load.38

When using a KF for parameter estimation, the parameter values are updated at39

each time step, requiring the model to be updated accordingly. Since in general ROMs40

do not retain any explicit parametric dependency, it is necessary to recreate the ROM at41

each step, which could result in a loss of most of the computational efficiency granted by42

the use of a ROM in the first place. This explicit dependency can however be retained43

by applying a parametric Model Order Reduction (pMOR) technique. A comprehensive44

overview on projection-based pMOR techniques can be found in the work by Benner et45

al. [25]. The usage of pMOR for model identification together with optimization methods46

has been proposed in literature [26, 27]. Employing a parametric Reduced Order Model47

(pROM) inside a KF-based parameter estimation allows to efficiently update the model48

for each new estimated parameter value, resulting in an overall computationally efficient49

procedure. This approach has been proposed by Naets et al. [12] for the joint estimation50

of states, parameters and input in linear structural dynamics applications. Here, the51

employed pMOR scheme consists of the interpolation of ROMs which have been calcu-52

lated for different sampled parameter values, which can be seen as a local approach [25].53

By not assuming any particular form for the parametric dependency of the full model,54

this approach allows to have a general representation for a large variety of parameters.55

This causes a loss of information about the kind of parameters considered, and the form56
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of parametric dependency is not fully exploited. The downside of the local approach is57

that a ROM and its reduction basis have to be calculated and stored for each parame-58

ter sample, potentially resulting in a large computational overhead. The interpolation59

of the ROMs and reduction bases introduces further computational bottlenecks. In or-60

der to guarantee the consistency of the different reduced sets of DOFs, an intermediate61

projection to a high-dimensional space is typically required.62

This work proposes an augmented EKF framework which uses a pMOR approach that63

exploits models with an affine parameter dependency and uses a constant global reduction64

basis [25]. More specifically, linear structural FE models show an affine dependency65

on material parameters. In this case, a global reduction basis, i.e. not depending on66

parameters, can be defined and used to reduce the so-called affine components in an67

off-line phase. The evaluation of the parametric model becomes then straightforward in68

the on-line phase [28]. Only one global basis and a small set of matrices - the affine69

components - thus have to be stored, leading to significant gains with respect to storage70

and a positive impact on the computational performances. The proposed framework71

enables the efficient joint estimation of states, inputs and parameters. Furthermore, the72

proposed pMOR approach preserves the structure of the FOM parametric dependency,73

allowing to distinguish between different types of parameters (e.g. stiffness-related and74

mass-related) and consequently to analyze their observability individually.75

The paper is structured as follows: in section 2 the affine representation for the76

structural FE system matrices is derived, and the proposed pMOR scheme is described77

and validated. In section 3 the EKF is described and in section 4 the influence of the78

type of measurements and estimated quantities on the system observability is highlighted.79

An extensive numerical validation of the estimation procedure is presented in section 5.80

An experimental validation of the proposed approach is presented in section 6. Finally,81

conclusions are given in section 7.82

2. Parametric Model Order Reduction for Finite Element structural models83

For a parametric linear structural FE model, the semi-discrete (continuous in time,84

discrete in space) Equations Of Motion (EOM) of the FOM can be written as:85

M(p)z̈ + C(p)ż + K(p)z = Su (1)

where z ∈ Rndof are the nodal DOFs, M, C and K are respectively the stiffness,86

damping and mass matrices, S is the input shape matrix that distributes the external87

forces u ∈ Rnf on the DOFs of the system and p ∈ Rnp are the parameters of the88

system. In this work the parameters of interest are material properties such as Young’s89

modulus (E), density (ρ) and Poisson’s ratio (ν) for isotropic materials. Each of the90

EOM components is dependent on time, but has been omitted from notation for clarity91

purposes. The EOM are generally derived by assuming constant mass for the system,92

while if the density is time-variant an additional related term appears in the equations93

[29]. The assumption made in this work is that density varies slowly in time, a realistic94

behavior for system identification or monitoring applications, so that the additional term95

is assumed to be negligible.96
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2.1. Affine Representation97

The system matrices should exhibit an affine dependency on the considered param-98

eters to guarantee the efficiency of the global basis pMOR approach. The affine repre-99

sentation for a generic matrix X(p) can be stated as:100

X(p) = X0 +
∑
i

Xifi(p) (2)

where X0 is the constant term, Xi are the affine components and fi(p) are the affine101

functions.102

In the following sections, the affine representation of the matrices of the system is103

explicitly described. The FE formulation employed in this section is based on [30].104

Stiffness Matrix parameterization105

The constitutive relationship for an isotropic material links the stress vector σ ∈ R6
106

and strain vector ε ∈ R6 through the constitutive matrix E ∈ R6×6. This matrix has an107

affine relationship with the Young’s modulus E and Poisson coefficient ν of the material:108

E =

[
1 0
0 0

]
Eν

(1 + ν)(1− 2ν)
+

[
2I 0
0 I

]
E

2(1 + ν)
= Eλλ+ Eµµ (3)

where λ and µ are the Lamé parameters.109

In the former equation and in the following I, 0 and 1 represent respectively the110

identity matrix, the zero matrix and the all-ones matrix of appropriate dimensions.111

If the material properties are assumed constant over the element volume, the same112

parameter dependence as in Equation 3 applies for the element stiffness matrix Ke:113

Ke = Kλ
eλ+ Kµ

eµ (4)

The corresponding assembled system stiffness matrix K retains the parametric rela-114

tionship.115

From Equation 4 it is clear that the two Lamé parameters themselves are the needed116

affine functions if the system is parameterized for both E and ν. It can be shown in an117

equivalent way that E is itself the affine function needed if ν is not considered in the118

parameterization. The final affine representation of the parametric stiffness matrix for a119

model containing multiple materials is then:120

K(p) = K0 +
∑
i

[Kλ
i λi + Kµ

i µi] +
∑
j

KE
j Ej (5)

where λi = λ(Ei, νi) and µi = µ(Ei, νi). The materials represented by an index121

i are parameterized for both E and ν, while the ones represented by an index j are122

only parameterized for E. K0 is a constant term accounting for possible terms that do123

not depend on parameters (if for example some of the materials in the model are not124

parameterized). The approach could be easily generalized to take into account localized125

stiffness terms related to lumped spring elements.126
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Mass Matrix parameterization127

The consistent mass matrix of a single element, assuming constant material param-128

eters over the volume, can be represented with an affine dependency on the material129

density ρ as:130

Me = Mρρ (6)

Following the same considerations made for the stiffness matrix, the affine repre-131

sentation of the parameterized mass matrix for a model containing multiple materials132

is:133

M(p) = M0 +
∑
i

Mρ
i ρi (7)

where M0 is a constant term accounting for eventual terms that do not depend on134

parameters (such as non-parameterized lumped masses or materials).135

Damping Matrix parameterization136

A typical and well known approach to model damping in structural applications is137

the proportional Rayleigh damping model. This consists in defining the damping matrix138

as a linear combination of mass and stiffness matrices as:139

C(p) = αM(p) + βK(p). (8)

where α and β are the Rayleigh damping parameters.140

This model has the advantage of retaining the parametric dependencies for the damp-141

ing matrix.142

Affine Component Extraction143

Starting from a set of matrices calculated at ns different parameter values, the so-144

called sampling points, a least squares problem is solved to calculate the affine compo-145

nents. For a generic matrix, given the samples [p1...pns ] and the corresponding matrices146

[X1...Xns ], the affine components are calculated by solving for each element X(a,b) of the147

matrices:148

min
X0(a,b),...,Xi(a,b),...

ns∑
h=1

∥∥∥∥∥Xh
(a,b) −X0(a,b) −

∑
i

Xi(a,b)fi(p
h)

∥∥∥∥∥ (9)

where i represents the affine component index, as in Equation 2. In the former149

equation and in the rest of the paper, ‖·‖ denotes the L2 norm. This procedure requires150

the sampling of the FOM a number of times at least equal to the number of components151

to be identified. An ns lower than the number of unknowns in the least squares problem152

would in fact results in an underdetermined problem. The full matrices can be stored153

and used for identification during the sampling phase of the pROM creation (described154

below) at a minimum added computational cost.155
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2.2. pMOR Scheme156

The DOFs vector z is approximated by projecting it onto a lower-dimension subspace157

spanned by the global basis Ψ ∈ Rndof×nred that, given the pMOR scheme employed, is158

constant and does not depend on time or on the value of the parameters of interest:159

z ≈ Ψq (10)

where q ∈ Rnred is the reduced set of DOFs.160

The Galerkin projection of the EOM onto the reduced space yields the reduced EOM:161

Mr(p)q̈ + Cr(p)q̇ + Kr(p)q = Sru (11)

where Mr(p) = ΨTM(p)Ψ, Cr(p) = ΨTC(p)Ψ, Kr(p) = ΨTK(p)Ψ and Sr =162

ΨTS.163

Using Equation 5 and Equation 7, the parametric reduced matrices become:164

Kr(p) = Kr
0 +

∑
i

[Krλ
i λ(Ei, νi) + Krµ

i µ(Ei, νi)] +
∑
j

KrE
j Ej (12)

Mr(p) = Mr
0 +

∑
i

Mrρ
i ρi (13)

And the reduced damping matrix retains the proportional relationship:165

Cr(p) = αMr(p) + βKr(p) (14)

Reduction Basis Selection166

In this work the global reduction basis Ψ is constructed by concatenating local bases167

Ψi, corresponding to different parameter samples pi, and carrying out a subsequent168

Singular Value Decomposition (SVD) [24].169

The reduction basis is representative of the system for a set of configurations that170

correspond to specific parameters values. This poses the challenge of identifying a global171

reduction space that properly represents the system’s behavior over the range of pa-172

rameter values of interest. This is particularly true for a modal basis, which contains173

a subset of the eigenmodes of the system, since the eigenmode shapes can vary greatly174

for different values of the parameters. The final reduction basis thus has to accurately175

represent possible deformations across the parameter range in its entirety while having176

a reasonably small dimension. The steps required for the basis selection are shown in177

Figure 1, and are further described below.178
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Increase basis size
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END

Figure 1: Basis selection workflow

Parameter Space Definition and Sampling179

The parameter space Ω is defined by setting upper and lower limits for each parameter180

based on the application of interest: Ω = {pi ∈ R, pmini < pi < pmaxi ∀pi}.181

Once defined, the parameter space has to be sampled in order to get a set of config-182

urations that is representative of the entire space. Several sampling methods have been183

proposed in literature for pMOR. Benner et al. [25] state that, for a small or moderate184

number of parameters (np < 10), a Latin Hypercube Sampling (LHS) method is effective.185

Several methods have been tested for the application at hand (e.g. uniform sampling,186

LHS) and LHS proved to be the most effective. Therefore this method is adopted in this187

work. In case of a large parameter space, for which the LHS would require a high number188

of samples, other techniques (such as e.g. greedy sampling [31]) could be adopted.189

Local Bases and Matrices Generation190

For each parameter sample pi the full system, consisting of the matrices Mi and Ki,191

is assembled. These FOM matrices are used to extract the corresponding local basis.192

This basis consists of a set of eigenmodes Ψnm,i concatenated with a set of static modes193

Ψsm,i [13, 23], so that Ψi = Ψ(pi) = [Ψnm,iΨsm,i]. The FOM matrices are stored for194

the affine component identification as explained in section 2.1.195

Global Reduction Basis Construction196

The global basis is constructed by concatenating the local bases:197
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Ψglobal = [Ψ1...Ψns ] (15)

In general, this matrix of local bases can have linearly dependent columns. In order198

to remove these linear dependencies, an SVD is performed:199

Ψglobal = UΣVT (16)

The Left Singular Vectors (LSVs) U represent an orthonormal set of vectors that,200

spanning the range of Ψglobal [24], is suitable to be used as a reduction basis. In order to201

only keep the vectors that contain most of the information and therefore obtain a global202

basis of small enough dimension, a subset of the LSVs is used as the global truncated203

basis Ψ. This truncated LSVs basis exhibits the property of being the optimal low-rank204

approximation for the full basis [24]. The choice of how many LSVs to retain is done205

through an iterative procedure that subsequently increases the number of retained basis206

vectors and compares the Frequency Response Functions (FRFs) of the pROM over a207

set of nin input DOFs and nout output DOFs and in a specific frequency range until the208

relative error becomes lower than a user-defined threshold.209

Let Hij(ω,Ψ,p) be the FRF for the input DOF i and the output DOF j, using the210

pROM created using the basis Ψ evaluated for the parameter values p. Furthermore,211

the frequency range is discretized as [ω1, ... , ωnω ]. At each iteration step k, the relative212

error between the FRFs calculated using the current reduction basis Ψk and the one213

relative to the previous step Ψk−1 is calculated as:214

ek(p) =

nin∑
i=1

nout∑
j=1

(
1

nω

nω∑
l=1

‖(‖Hij(ωl,Ψk−1,p)‖ − ‖Hij(ωl,Ψk,p)‖)‖
‖Hij(ωl,Ψk−1,p)‖

)
(17)

This metric allows to achieve a good accuracy of the pROM in the frequency range of215

interest while limiting the number of evaluations needed for the FRFs to only the set216

of input/output DOFs. Furthermore, the metric also allows to compare both the shape217

of the responses and the amplitude. The error can be evaluated on a single parameter218

configuration of interest or averaged over a set of configurations. In this work, the error219

is calculated for the parameter values at the center of the sampled range.220

2.3. pMOR Numerical Validation221

A numerical validation of the proposed pMOR scheme is shown against a standard222

ROM and is presented below.223

The system considered for the validation is a scaled wind turbine blade present at224

the testing facilities of Siemens Industry Software NV in Leuven (Belgium). The blade225

consists of Titanium Gr23 and has been produced using additive manufacturing followed226

by heat treatments. It is fixed to a concrete base via a set of bolted connections to its227

flange.228

The linear FE model of the blade used in this work (Figure 2a) mainly consists of229

linear hexahedral elements and a minority of linear pentahedral elements, for a total of230

65264 nodes and 391584 DOFs. Rigid elements connect the entire face of the flange to231

four spring elements that model the compliance of the bolts, as shown in Figure 2b.232
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(a) (b)

Figure 2: Finite element model of the blade

The pROM has been created considering the Young’s modulus and the density as233

parameters. This choice aims at giving a smaller set of representative parameters that234

can be easily represented in results.235

A commercial FE solver [32] has been used to extract the full model information236

needed for the pROM generation. The least-squares procedure identification described237

in section 2 has been applied for the affine component identification. The settings used238

for the creation of the pROM can be seen in Table 1. The number of eigenvectors239

of the structure with an associated eigenfrequency in the range of interest is higher240

for configurations with low stiffness and high density. The size of the local basis has241

therefore been chosen to contain the entire set of modes even for these extreme cases.242

Figure 3 shows the convergence of the relative error in the basis size selection procedure,243

in which the basis starts with a dimension of 24 and is increased by 12 basis vectors at244

each iteration. The relative error decreases monotonically to reach a value beyond the245

threshold in 3 iterations. The final dimension of the pROM is 60, with a reduction factor246

of more than 6000 with respect to the full model.247

Table 1: Blade’s pROM information

size of Ψi 24 (15 eigenmodes + 9 static modes)
number of samples 5

relative error threshold 10−3

frequency range 0-500Hz
number of nodes 65264

DOFs of the full model 391584
size of Ψglobal 60
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Figure 3: Relative error for the global basis selection iterative procedure of the blade’s pROM. The basis
size starts at 24 and the first relative error is calculated at the second step where the size increased to
36.

Frequency Domain Analysis248

In order to check that the pROM properly interpolates the behavior of the model249

in the frequency range and parameter space considered, the FRFs can be calculated250

and compared for a set of input/output DOFs of interest with the ones of the full FE251

models and non-parametric ROMs created for a specific set of parameters. The results in252

Figure 4 show the FRFs of a FE model, a standard, non-parametric ROM and the pROM253

for parameter values not used in the pROM generation, namely the nominal values as well254

as two extremes of the parameter range, for input and output on the force application255

point at the bottom face of the blade. A good correspondence can be observed.256

(a) High E and low rho (b) Reference values (c) Low E and high rho

Figure 4: FRFs comparison on 3 parameter sets.

In Figure 5 the average error (calculated as
|(|FRFpROM |−|FRFROM |)|

|FRFROM | ) on the FRFs257

between ROM and pROM is plotted over a parameter range larger than the one used for258

generating the pROM, corresponding to 11× 11 samples. This shows as, in the original259

range, the interpolation by the pROM is accurate and provides good results even far260

from sampling points. Outside of the range the error is still low, but it shows a tendency261

to grow in the low stiffness zone where the frequency range includes a higher number of262

eigenfrequencies associated with eigenmodes of the structure.263
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Figure 5: Relative error between ROM and pROM FRFs over the parameter space sampled on a 11x11
grid. The grey box and the red stars are respectively the parameter space and the sampled points used
for the pROM generation.

Time Domain Analysis264

Since instabilities can arise when employing a ROM for time domain simulations if not265

handled properly [33, 34], the comparison of FRFs might not be sufficient to properly266

asses the quality of the proposed pMOR technique. Therefore, a comparison is also267

carried out in the time domain. The results are shown in Figure 6, where a continuous268

random signal with a frequency content in the range of 0-500Hz is applied to the pROM.269

The acceleration is calculated at the same location as the input force, while the strain270

is calculated at a location on the top face in the direction of the axis of the blade. A271

first-order implicit Euler time integration scheme was used for the forward simulation272

presented in this section with an integration step h = 0.1ms. A good correspondence273

between the ROM and pROM can again be observed.274

11



Figure 6: Comparison of time-domain simulations for a continuous random input. The right figures
show a zoom of the 1.8s to 2s range.

3. Augmented Extended Kalman Filter for joint state/input/parameter es-275

timation276

In order to use the pROM within a Kalman Filter scheme, the reduced EOM are277

transformed from a second order to a first order form via a state space representation278

[13]. State augmentation is employed for the estimation of the inputs and parameters279

jointly with the states of the system. The augmented state is defined by extending280

the regular system states with the unknown quantities as x∗ =
[
qT q̇T uunT pT

]T ∈281

R2nred+nun+np . Here the input is split into the unknown inputs uun ∈ Rnun and the282

known inputs ukn ∈ Rnkn , with a corresponding split in Sr, giving Srkn ∈ Rnred×nkn and283

Srun ∈ Rnred×nun .284

The time evolution of inputs and parameters is represented using a zeroth order285

random walk model [10, 13, 12] where each augmented state is considered as constant286

with the addition of white Gaussian noise:287

u̇un(t) = 0 + ru(t) (18)

ṗ(t) = 0 + rp(t) (19)

The augmented system can then be represented as:288 {
ẋ∗(t) = A∗(x∗)x∗(t) + B∗(x∗)ukn(t)
y(t) = H∗(x∗)x∗(t) + D∗(x∗)ukn(t)

(20)

12



in which the vector y ∈ Rnm contains the outputs from measurements, and the289

augmented state and input matrices are defined as:290

A∗(x∗) =


0 I 0 0

−Mr−1

Kr −Mr−1

Cr Mr−1

Srun 0
0 0 0 0
0 0 0 0

 (21)

B∗(x∗) =


0

Mr−1

Srkn
0
0

 (22)

The output and feedthrough matrices H(p) and D(p) depend on the quantity measured291

and are explicitly defined in section 4. Note that here and in the following equations the292

dependency of Kr, Cr and Mr on the parameters is not written explicitly, if not needed,293

for notation clarity.294

The augmented model has a nonlinear dependency on the parameters, resulting in295

general in a nonlinear dependency on the augmented state vector. Because of this, it296

is necessary to employ a non-linear KF approach. Withouth loss of generality with297

respect to other non-linear KF approaches, the discrete version of the EKF is employed298

in this work. The EKF has a similar structure with respect to the one of the linear299

KF, but uses a system linearization to propagate the state error covariance and calculate300

the Kalman gain. Given the affine dependency of the reduced system matrices on the301

parameters employed in the pMOR, the linearized system is expected to be smooth302

and continuous. The next sections describe the time discretization of the system, the303

linearization procedure, as well as the EKF algorithm.304

3.1. Discretization and Linearization305

The augmented state-space model in Equation 20 needs to be discretized in time by306

choosing an appropriate time integration scheme. This work adopts the method described307

by Risaliti et al. [15] for the discretization and linearization of the state-space equations,308

in which the integration scheme of choice is the first order implicit Euler scheme. This309

choice allows a larger time step size compared to explicit time integrator schemes.310

The state evolution in time for a time step h is discretized as:311

x∗k = x∗k−1 + hẋ∗k (23)

The implicit equation governing the system is then:312

gd(x
∗
k−1,x

∗
k,u

kn
k ) = x∗k−1 − x∗k + h

(
A∗ (x∗k) x∗k + B∗ (x∗k) uknk

)
= 0 (24)

This equation is solved for xk in the EKF prediction step to advance the value of the313

states from k − 1 to k.314

The EKF linearization requires the extraction of the underlying explicit equation315

associated with Equation 24 as detailed in [15]. This explicit function exists locally316

if the corresponding implicit function is continuously differentiable. This property is317

guaranteed by the adopted affine parameter dependency. The underlying explicit function318
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can be found using a Taylor series expansion around the linearization point [x∗,0k−1 x∗,0k ],319

truncated at the first order:320

gd(x
∗
k−1,x

∗
k,u

kn
k ) ≈ g0

d +
∂gd
∂x∗k

∣∣∣∣∣
0

(x∗k − x∗,0k ) +
∂gd
∂x∗k−1

∣∣∣∣∣
0

(x∗k−1 − x∗,0k−1) ≈ 0 (25)

where g0
d = gd(x

∗,0
k−1,x

∗,0
k ,uknk ). Furthermore, x∗k can be explicitly defined as:321

fd(x
∗
k−1,u

kn
k ) = x∗k = x∗,0k −

(
∂gd
∂x∗k

∣∣∣∣∣
0

)−1 [
g0
d +

∂gd
∂x∗k−1

∣∣∣∣∣
0

(x∗k−1 − x∗,0k−1)

]
(26)

from which the Jacobian matrix is defined as:322

J =
∂fd(x

∗
k−1,uk)

∂x∗k−1
= −

(
∂gd
∂x∗k

∣∣∣∣∣
0

)−1(
∂gd
∂x∗k−1

∣∣∣∣∣
0

)
(27)

The two derivatives required for the evaluation of the Jacobian matrix are:323

∂gd
∂x∗k

= −I + h

[
∂A∗(x∗k)

∂x∗k
x∗k + A∗(x∗k)

]
+ h

[
∂B∗(x∗k)

∂x∗k
uknk

]
(28)

∂gd
∂x∗k−1

= I (29)

The derivatives of the system matrices A∗(x∗) and B∗(x∗) are straightforward to324

compute given the affine dependency employed for the pMOR. Given Equation 21 and325

Equation 22, A∗(x∗) and B∗(x∗) only depend on p, hence only their derivatives with326

respect to p are non-zero. As A∗(x∗) and B∗(x∗) are the result of the multiplication327

of the Mr−1

(p), Cr(p) and Kr(p) matrices, the chain rule for derivation is applied to328

these terms to obtain the derivatives with respect to p.329

The derivative of the stiffness matrix Kr(p) depends on the type of parameter con-330

sidered:331

∂Kr(p)

∂Ei
= Krλ

i

∂λ

∂E
+ Krµ

i

∂µ

∂E
= Krλ

i

ν

(1 + ν)(1− 2ν)
+ Krµ

i

1

2(1 + ν)
(30)

∂Kr(p)

∂νi
= Krλ

i

∂λ

∂ν
+ Krµ

i

∂µ

∂ν
= Krλ

i

E(1 + 2ν2)

(1 + ν)2(1− 2ν)2
−Krµ

i

E

2(1 + ν)2
(31)

∂Kr(p)

∂Ej
= KE

j (32)

The derivative of the inverse mass matrix Mr−1

(p) is needed and can be calculated332

by using the property of inverse matrices derivation:333
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∂Mr−1

(p)

∂ρi
= −Mr−1

(p)
∂Mr(p)

∂ρi
Mr−1

(p)
∂Mr(p)

∂ρi
= Mrρ

i (33)

Given the proportional damping model used, the derivative of Cr(p) is a linear com-334

bination of the two calculated above.335

3.2. Augmented Extended Kalman Filter336

The discrete system equations of the system considering noise are:

gd(x
∗
k−1,x

∗
k,u

kn
k ) = wk (34)

yk = h(x∗k,u
kn
k ) + vk (35)

where wk and vk are white uncorrelated Gaussian noise with the corresponding co-337

variance matrices Qk and Rk. The output Equation 35 is commonly referred to as the338

measurement equation in the context of Kalman filtering.339

The discrete-time version of the augmented EKF consists of the following steps:340

Prediction

gd(x
∗+
k−1,x

∗−
k ,uknk ) = 0 (36)

Jk−1 =
∂fd(x

∗
k−1,u

kn
k )

∂x∗k−1

∣∣∣∣∣
x∗+
k−1,x

∗−
k

(37)

P−k = Jk−1P
+
k−1J

T
k−1 + Qk−1 (38)

Correction

Jm,k =
∂h(x∗k,u

kn
k )

∂x∗k

∣∣∣∣∣
x∗−
k

(39)

Kk = P−k JTm,k(Jm.kP
−
k JTm,k + Rk)−1 (40)

x∗+k = x∗−k + Kk(yk − h(x∗−k ,uknk )) (41)

P+
k = (I−KkJm,k)P−k (I−KkJm,k)T + KkRkK

T
k (42)

In the former equations, Jk−1 is the Jacobian of the system calculated on the a-posteriori341

estimate from the previous step. The linearized form of the measurement equation around342

the current estimated state is represented by Jm,k The term Kk is the Kalman gain, and343

Pk is the state error covariance matrix.344

Of particular importance in the setup of the filter is the choice of the matrices Q345

and R, respectively representing the covariance of the states (also referred to as the346

plant noise covariance matrix) and of the measurements. They are commonly assumed347

as constant and set by trial and error procedure or by experience. In literature some348

rules of thumb for the choice have been proposed (e.g. [13]) or schemes to adapt the349

value in time (e.g. [35, 18, 36]). In particular, in this work the R matrix is chosen to be350

a constant diagonal matrix containing the measurement noise covariance taken directly351
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from the used physical sensor data. The plant noise covariance matrix Q is also assumed352

to be constant and diagonal, as the noise is considered to be uncorrelated, and can be353

split to separate the contributions to the different augmented states as:354

Q =


Qq 0 0 0
0 Qq̇ 0 0
0 0 Qu 0
0 0 0 Qp

 (43)

Here, Qq and Qq̇ represent the uncertainty on the model, while Qu and Qp represent355

the uncertainty on the unknown input and parameters, respectively.356

The terms of Qu are set using the rule of thumb proposed in [13]. For the i-th unknown357

input ui, the relative term on the diagonal of Q is set as:358

Qui = (hωuiaui)
2

(44)

where ωui
and aui

are the expected values of frequency and amplitude of the force.359

As pointed out in [13] and [15], this method aims at keeping the rate of change of the360

unknown quantity in a range that allows to correctly track its variation while filtering361

noise. Following this reasoning, Qp is also set using the same rule of thumb:362

Qpi = (hδpiapi)
2

(45)

In this case ap is the initial tentative value for the parameter and δp is a scaling363

factor that helps in the setup of the unknown parameter covariance by decoupling it364

from the absolute value of the parameter itself as well as the integration scheme time365

step size. In this way, the influence of δp on the estimation results can be studied and366

applied to parameters with different order of magnitudes. The units of δp are equivalent367

to frequency.368

The value of δp should typically be set to a low value, as the parameter value is usually369

constant or slowly varying. It should not be set excessively low, as this can slow down the370

convergence rate to as well as constrain the tracking of any change of the parameter value371

in time. Given the adopted zeroth order random walk model, a higher augmented state372

covariance value for the corresponding parameter state allows for a larger change per373

timestep, lowering the achieved filtering of noise from the estimated augmented states,374

which is present due to measurement noise propagation in the correction step of the EKF.375

4. Observability analysis376

In order for the EKF to be able to correctly estimate the unknown quantities of the377

system, a proper choice of the measurement set is needed [12, 14, 37]. This choice can be378

made by analyzing the system observability, which depends on the system-measurement379

combination (A∗,H∗).380

4.1. Continuous System Linearization381

As noted in [12], observability analysis methods are traditionally developed for linear382

systems, but given the mild non-linearity of structural systems with respect to parameters383

it is still worth analyzing the properties of the linearized model around representative384

16



linearization points. Furthermore, the analysis is done on the time-continuous system for385

simplicity reasons, but all results translate directly to the discrete case. The continuous386

linearized model is represented by Jc and Jm, which are the derivatives of the state and387

measurement equations of the continuous-time model in Equation 20 respectively, with388

respect to the system state.389

The Jacobian of the continuous state equation is defined as:390

Jc =
∂ẋ∗

∂x∗
= A∗(x∗) +

∂A∗(x∗)

∂x∗
x∗ +

∂B∗(x∗)

∂x∗
ukn =

0 I 0 0

−Mr−1

Kr −Mr−1

Cr Mr−1

Srun
∂q̈
∂p

0 0 0 0
0 0 0 0

 (46)

where391

∂q̈

∂p
= −∂Mr−1

Kr

∂p
q− ∂Mr−1

Cr

∂p
q̇ +

∂Mr−1

∂p
Srunuun +

∂Mr−1

∂p
Srknukn (47)

Some of the terms in Equation 46 and Equation 47 become zero for specific choices of392

parameter types or specific types of input. If only a set of stiffness parameters ps is393

estimated, ∂q̈
∂p takes the form:394

∂q̈

∂ps
= −Mr−1 ∂Kr

∂ps
(q + βq̇) = −Mr−1 ∂Kr

∂ps
Kr−1 (

Srunuun + Srknukn −Mr (q̈ + αq̇)
)

(48)
If only a set of mass parameters pm is to be estimated, ∂q̈

∂p takes the form:395

∂q̈

∂pm
= −∂Mr−1

∂pm

(
Kr (q + βq̇)− Srknukn − Srunuun

)
=

−Mr−1 ∂Mr

∂pm
(q̈ + αq̇)

(49)

For a measurement in which the dependency on states and inputs can be written in396

the form:397

h(x∗,ukn) = H∗(x∗)x∗ + D∗(x∗)ukn (50)

as it is the case in this work and without loss of generality, the Jacobian results in:398

Jm =
∂h(x∗,ukn)

∂x∗
= H∗(x∗) +

∂H∗(x∗)

∂x∗
x∗ +

∂D∗(x∗)

∂x∗
ukn (51)

The observability analysis requires the explicit definition of equations for the dif-399

ferent kinds of measurements. In this work, strain and acceleration measurements are400

considered:401
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Strain Measurements402

The strain measurement equation can be derived as the spatial derivative of the nodal403

displacements. Given the element shape functions, the strain measurement equation can404

then be stated as [15]:405

hs(x
∗,ukn) = Nsz = NsΨq (52)

where Ns ∈ Rnms×ndof is a shape matrix relating the physical DOFs to the measured
strain components in the material points of interest and nms is the number of strain
measurements acquired. In this case:

H∗s =
[
NsΨ 0 0 0

]
D∗s = 0 (53)

and406

Jm,s = H∗s (54)

Acceleration Measurements407

The acceleration measurement is can be expressed as a linear combination of nodal408

accelerations, so that:409

ha(x∗,ukn) = Naz̈ = NaΨq̈ = NaΨMr−1 (
−Crq̇−Krq + Srknukn + Srunuun

)
(55)

where Na ∈ Rnma×ndof is a shape matrix relating the physical acceleration DOFs to the410

acceleration of the material points of interest and and nma is the number of acceleration411

measurements acquired. In this case:412

H∗a(x∗) = NaΨ
[
−Mr−1

Kr −Mr−1

Cr Mr−1

Srun 0
]

(56)

413

D∗a(x∗) = NaΨ
[
Mr−1

Srkn

]
(57)

and, by considering the dependency of the reduced matrices with respect to the aug-414

mented states (the parameters in particular)415

Jm,a = NaΨ
[
−Mr−1

Kr −Mr−1

Cr Mr−1

Srun
∂q̈
∂p

]
(58)

4.2. PBH Test416

The Popov-Belevitch-Hautus (PBH) observability test [38, 39] states that a sufficient417

and necessary condition for the observability of the linearized system is that the matrix418

PBH =

[
Is− Jc

Jm

]
(59)

is of full rank for every value of s ∈ C. The matrix Is− Jc is guaranteed to be full rank419

for all values of s but the eigenvalues of Jc, which are the values on which the analysis420

focuses. In particular, the linearized matrix has a number of zero-valued rows at least421

equal to the number of augmented states, thus it has the same number of zero eigenvalues.422

It is for this value of s that the observability is most critical; non-zero eigenvalues, while423

being unobservable, remain stable and thus the system is at least detectable [14]. The424

s = 0 case will then be analyzed in the rest of this section.425
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The PBH matrix, for s = 0 and using strain and acceleration measurements, can be426

expressed as:427

PBH =



0 −I 0 0

Mr−1

Kr Mr−1

Cr −Mr−1

Srun − ∂q̈∂p
0 0 0 0
0 0 0 0

NsΨ 0 0 0

−NaΨMr−1

Kr −NaΨMr−1

Cr NaΨMr−1

Srun NaΨ
∂q̈
∂p


(60)

Some conclusions can be drawn directly:428

� In order to have full observability, a number of strain measurements at least equal429

to the total number of unknown quantities (inputs and parameters) should be430

employed. The rows relative to acceleration measurements in Equation 60 are in431

fact always a linear combination of the second block rows. For any application case432

then, the use of only acceleration measurements does not allow for an observable433

system. Acceleration measurements are still important since they add information434

useful to improve the performances of the estimation procedure435

� Parameters related to mass cannot be observed in a static condition (for which436

∂q̈
∂p is zero) because the last block column becomes zero. This follows the practical437

intuition that in a static case the inertial term is not excited and thus measurements438

carry no useful information.439

Other conclusions can be made in particular cases for which the equations simplify440

and it is possible to observe linear dependency of the columns of the PBH matrix. In441

the next subsection the observability for the case of a single parametrized material is442

discussed.443

4.3. Observability Analysis for a Single Material444

This section considers the case for which one material is parameterized for both445

Young’s modulus and density. In this case the mass, stiffness and damping matrices446

assume the simple form:447

Kr = EKrE (61)

Mr = ρMrρ (62)

Cr = αρMrρ + βEKrE (63)

This simplified case yields the following derivatives:448

∂q̈

∂E
= −1

ρ
Mrρ−1

KrE (q + βq̇) =
1

ρE
Mrρ−1 (

Srknukn + Srunuun
)
− 1

E
(q̈ + αq̇) (64)

∂q̈

∂ρ
= −E

ρ2
Mrρ−1

(
KrE (q + βq̇)− Srknukn

)
= −1

ρ
(q̈ + αq̇) (65)
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For s = 0, the PBH matrix is:449

PBH =



0 −I 0 0 0
E
ρ Mrρ−1

KrE
(
α+ βE

ρ Mrρ−1

KrE
)

− 1
ρMrρ−1

Srun − ∂q̈
∂E −∂q̈∂ρ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

NsΨ 0 0 0 0

−NaΨ
E
ρ Mrρ−1

KrE −NaΨ
(
α+ βE

ρ Mrρ−1

KrE
)

NaΨ
1
ρMrρ−1

Srun NaΨ
∂q̈
∂E NaΨ

∂q̈
∂ρ


(66)

It can be observed that:450

� Given Equation 64 and Equation 65, it is impossible to simultaneously estimate E451

and ρ if there is no input being applied to the system. This implies that under a452

free response condition the effect of mass and inertia is not distinguishable. The453

last two columns become in fact linearly dependent.454

� It is impossible to simultaneously estimate inputs, E, ρ if there is not at least one455

non-zero known input.456

� If E and the input are to be estimated, the system is not observable in static457

conditions. This implies that it is impossible to estimate both the Young’s modulus458

and a static load, confirming the intuition that the system inversion in this case is459

not feasible.460

5. Numerical Validation461

This section presents a numerical validation of the main methodology proposed and462

presented in the previous chapters, i.e. the joint state/input/parameter estimation, using463

the blade FE model introduced in subsection 2.3. In a first part an Optimal Sensor Place-464

ment (OSP) procedure is employed to select the sensors to use for the estimation. Then465

a setup of the filter is executed using numerical data. The robustness and effectiveness466

of the chosen setup is numerically validated.467

5.1. Sensor Selection468

The physical blade is instrumented with strain and acceleration sensors spread over469

its entire length, as shown in Figure 7, therefore also virtual sensors are placed at the470

same locations. In particular, the sensors used are:471

� 10 rectangular strain gage rosettes placed symmetrically on the top and bottom472

face at 5 different sections along the length of the blade (numbered from 0 to 4 in473

the remaining part of the paper).474

� 4 uniaxial strain gages placed symmetrically on the top and bottom face of sections475

2 and 3 along the axis of the blade.476
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� 10 triaxial accelerometers placed on the top face at 8 sections along the length of477

the blade (named from A to H in the remaining part of the paper). Their axes are478

aligned with the global ones.479

Figure 7: Position of sensors and input points on the blade. The 3 sensors labeled are the rosettes of
which the z sensors were selected by the OSP procedure.

Only a subset of sensors is used for the estimation, while the remaining ones are used480

for validation purposes: the estimated values are compared with the simulated ones, for481

the numerical applications, or with the measured ones, for experimental applications.482

A minimal number of strain gages is required for observability reasons, as discussed in483

section 4. The addition of accelerometers to this set could extend the overall bandwidth484

of the filter. The frequency range investigated in this work is however low enough to485

allow the use of only strain gages for the estimation, while the accelerations sensors will486

therefore be used for validation.487

The selection of strain gages to use for the estimation has been based on the OSP488

strategy described in [37]. There the aim is to find the optimal location and orientation489

of sensors in order to guarantee the best observability for unknown inputs. The strategy490

starts by screening an initial sensor pool spread over the entire surface of the model, and491

then subsequently removing the sensors that contribute the least to the observability492

metric of interest. For the blade setup considered in this work, the OSP strategy has493

been adapted to start from the pool of existing sensors, following the subsequent steps494

as discussed in the reference.495

The OSP procedure has been used to select a set of 3 strain gages, since that is the496

minimum required number for estimation of the two parameters and one input. The497

selected sensors are the ones oriented along the axis of the blade in the rosettes on the498

top face of sections 2 and 4 and on the bottom face of section 4, as shown on Figure 7.499

The OSP approach targets input estimation and therefore it is only used in this work as500
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a way to select the sensors to use, without any claim of global optimality. The extension501

of the OSP procedure to consider also observability of parameters is out of the scope of502

this work and is therefore not explored here.503

5.2. Filter Setup504

In the case of experimental data, the measurement noise covariance matrix R is set505

using values extracted for each physical sensor. If numerical measurements are used, the506

noise level is known and its covariance value can be directly used as the diagonal entries507

of R. The initial value for P is set by assuming a low initial error on the states and an508

initial error on the parameters in the same order of magnitude as the expected parameter509

values themselves to improve initial convergence.510

It is common practice for AKF application to set the covariance of the plant to a low511

value to let the filter follow the numerical model predictions [13, 12]. In the following512

application Qq = εI and Qq̇ = εI, where ε represents the machine precision.513

Setting the zeroth order random walk noise covariance to a low value implies that514

the associated augmented state is expected to remain constant or vary slowly. A large515

value permits a large variation of the associated augmented state during each time step.516

These covariance values depend on the assumed nature of the augmented states, i.e.517

having a specific expected quasi-static or dynamic behavior. In the remaining part of518

this section the effect of choosing different augmented state noise covariance values on the519

corresponding estimation results is shown. The values are represented by ωu or δp, which520

are used to calculate the covariance values by applying Equation 44 or Equation 45. The521

following estimation cases are based on numerical data in order to have full control and522

assure that any variations in the estimated values are only due to the noise present in523

the supplied numerical measurements. The measurements are generated by a forward524

simulation using the same integration scheme as in subsection 2.3 and then zero-mean525

white Gaussian noise is added. A 20 Hz sinusoidal load (Figure 8) is used for this analysis,526

without loss of generality.527

Figure 8: 20Hz sine input

The first case considered is the estimation of a constant Young’s modulus. The528

estimated parameter value for different values of δE is shown in Figure 9. In order529

to evaluate the estimation performance, the average error is considered along with the530

maximum and minimum error that define the interval in which the estimated parameter531

evolves. Ideally the average value for the error should be close to zero and the maximum532

and minimum interval should be as narrow as possible. A large interval indicates a large533
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variation usually caused by noise. The desired behavior of the filter in this first case is534

that the estimated parameter value converges and stays as constant as possible. All the535

δE values allow for similar convergence behavior, with a similar and small average error536

in the last part. It can also be seen that the evolution interval is narrow for δE values537

below a certain threshold (10−2Hz) while for higher values it increases, showing more538

measurement noise leaking into the estimate, as explained in subsection 3.2. It can be539

concluded in this case that a covariance value as low as possible is desired, and that any540

value below a certain threshold will allow for good results.541

Figure 9: Estimated value of E with numerical data for sine load with different values of δE . A zoom
on the last 0.4s is presented together with the estimation error on the same time interval.

A second case is considered where the parameter is degrading in time (Figure 10). A542

low δE value constrains the rate of change of the parameter, preventing it from properly543

tracking the real value. The minimum δE value that allows to properly track the evolution544

of the parameter for the presented case is 1Hz. By further increasing the δE value, the545

average error remains small, while the variation interval gets larger, showing that more546

measurement noise leaks into the estimated augmented states. In this case a larger δE547

value should be used.548

These results indicate that there is no overall optimal covariance value setting and the549

setting thus has to be made according to the application case and the expected evolution550

of the augmented state over time. A representative virtual exercise could be carried out551

to select these settings. In a system identification case, where the model parameters552

are expected to be constant, δE can be set as low as possible. If an abrupt change in553

parameter values is expected instead, a high value should to be employed at the expense554

of a more noisy estimate (as explained in subsection 3.2).555
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Figure 10: Estimated value of degrading E with numerical data for sine load with different values of δE .
A zoom on the last 0.4s is presented together with the estimation error on the same time interval.

A third case is considered where E and ρ are estimated simultaneously, as shown556

in Figure 11. If the covariance values are not high enough, the estimated parameters557

tend to converge much slower as compared to the single parameter case. Also here a co-558

variance value for which the average error stabilizes corresponds to 1Hz. The decreased559

convergence rate can be explained by the fact that the dynamic stiffness of a linear struc-560

tural system tends to depend on the ratio between stiffness and mass parameters. Once561

the filter has reached the correct stiffness/mass ratio (by means of the estimated parame-562

ters), the dynamic response of the system using these estimated parameter values is close563

to the real response, causing the low convergence rate that thus has to be compensated564

for with higher covariance values of the parameters. This is shown in Figure 12. Here,565

the ratio of the two parameters converges faster than their single values.566

When parameters and input are estimated simultaneously, their covariance settings567

appears to be uncoupled for this specific application, since they only effect their relative568

augmented state’s convergence. As a consequence, the choice of covariance values for569

parameters, as discussed above, also applies for this case. The results shown in Figure 13570

are calculated for a fixed δE = 10−3 and varying ωu. As discussed and shown in [12, 40,571

41], a small lag is usually present in the estimated input with respect to the measured572

one, even when the amplitude is correctly estimated. This lag can also be clearly seen573

in the results of this application when the frequency of the input is set to the known574

value of 20Hz. This represents a mismatch in the case of input only estimation. When575

parameters are jointly estimated with the inputs, this phase shift is compensated for by576

the filter through an estimated parameter value different from the real one. Increasing577

the estimated input frequency value reduces the observed lag at the expense of more578
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noise. This in turn reduces the error on the parameter estimation, as can be clearly seen579

in the plot of parameter error with respect to ωu.580

Figure 11: Estimated values of E and ρ with numerical data for sine load with different values of δp
= δE = δρ. A zoom on the last 0.4s is presented together with the estimation error on the same time
interval.
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Figure 12: Value of the ratio between estimated E and ρ for the case shown in Figure 11.
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Figure 13: Estimated values of E and inputs with numerical data for sine load with different values of
ωu and δE = 10−3Hz. A zoom on the last 0.2s is presented together with the estimation error on the
same time interval.

5.3. Numerical Estimation Validation581

A first validation of the estimation procedure is done using numerical data. This582

allows, by having full control over the system and the measured data, to asses the per-583
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formance of the filter with the setup defined in the previous section. The numerical584

approach also allows to consider the case of a parameter degrading with time, for which585

no experimental data is available.586

As the full set of sensors is estimated, the sensors not used as measurements can587

be compared with their reference simulation values to assess if the filter can correctly588

estimate the full field of strains and accelerations by using only a limited set of sensors.589

This evaluation is based on the Averaged Absolute Error (AAE) metric defined in [15]590

as
∑T
i=1 |yest,i − ymeas,i|/T where yest,i and ymeas,i are the estimated and measured591

signals at the i-th time step, respectively, and T is the number of steps in the considered592

time interval. This metric is compared with the Maximum Response Amplitude (MRA)593

for each case in order to compare the average error with the maximum value assumed594

by the signal. For this numerical application, the sensor estimation results are shown595

only for the most complex case of parameter and input estimation, as all the others are596

comparable.597

The inputs used for this validation are a static load on the tip, a 20 Hz sinusoidal598

load (Figure 8) and a broadband continuous random signal (Figure 14). Data on the599

inputs is listed in Table 2.600

Figure 14: Continuous random input

Table 2: Load case data

Signal type Frequency Amplitude
Static 0 Hz 14.7 N
Sine 20 Hz 5 N

Random 0-500 Hz 14 N (max)

Each application case has been run for every possible load case. In some of the cases601

the static load has not been used since it makes the system unobservable, as shown in602

the theoretical observability analysis (section 4). White noise, with an amplitude in the603

order of 10−7m/m and 10−3m/s2 for strain and acceleration measurements respectively,604

is added to the generated numerical measurements. Both simulations and estimations605

use a time step of 0.1ms.606

An overview of the performance of all the cases in terms of parameter estimation is607

shown in Table 3. This table shows the minimum, maximum and average relative error608

of the estimated parameters with respect to the reference values in the last 20% of the609

28



time interval, for which the estimated values have typically converged to stable values.610

Analysis of this interval gives an idea on the convergence to the correct value and how611

much the parameter varies in time after converging.612

Table 3: Errors on estimated parameters in last 20% of time interval for numerical measurements

Unknown quantities Load Error [%]
Parameter min avg max

E
static E 0.01 0.01 0.01
sine E 0.01 0.02 0.02

random E -0.02 -0.02 -0.02

E, ρ

static unobservable

sine
E -0.50 -0.22 0.00
ρ -0.30 -0.09 0.15

random
E -0.23 -0.08 0.16
ρ -0.29 -0.07 0.19

degrading E
static E -0.06 0.07 0.19
sine E -0.08 0.24 0.43

random E -0.04 0.16 0.38

E, input
static unobservable
sine E -0.09 -0.08 -0.07

random E 0.18 0.21 0.23

degrading E, input
static unobservable
sine E 0.07 0.39 0.75

random E 0.27 0.56 0.97

5.3.1. Constant Parameter Estimation613

As a first application case, the Young’s modulus is estimated. The density and the614

loads are known. The initial value of the augmented state related to the parameter is615

set to a value 25% higher than the reference value, and its covariance is calculated by616

setting δE = 10−3Hz. This parameter is observable for all considered load cases.617

The evolution of the estimated parameter value over a 1s time interval is shown618

in Figure 15. For the static load case the estimated parameter shows a fast convergence619

to the reference value since the load is applied from the start. For the dynamic cases620

instead the value converges gradually to the correct one, since the initial input is zero621

and it gradually increases, allowing the filter to smoothly correct the value of E.622
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Figure 15: Estimated value of E with numerical data, for all load cases, with δE = 10−3Hz.

As a second application case, both Young’s modulus and density are unknown. The623

results are shown in Figure 16. Only the dynamic load cases can be considered, since624

the density is unobservable for a static input. The initial errors on the augmented states625

related to E and ρ are respectively set at 25% and −30%. The observed convergence626

rate is slower and thus a larger δp of 1Hz is adopted. The converged parameter values627

estimated by the filter accurately match the reference ones.628

Figure 16: Estimated values of E and ρ with numerical data, for sine and random loads, with δE = 1Hz,
δρ = 1Hz.
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5.3.2. Degrading Parameter Estimation629

A fundamental application of the presented methodology is the tracking of a param-630

eter that deteriorates in time. In order to generate numerical data for the deterioration631

case, a simulation is run using the pROM during which the Young’s modulus, starting632

from the correct value, decreases at a rate of 10%/s. It should be noticed how this type633

of simulation during which the parameters vary continuously is enabled by the use of634

the pROM, as it allows to update the model in an efficient way (i.e. without having to635

recreate the ROM).636

The results of the estimation of only E, with δE = 1Hz, are shown in Figure 17. The637

large covariance value needed to allow the correct tracking of the parameter variation638

causes measurement noise to propagate to the estimated parameter. This can be seen as639

an acceptable solution as the average error remains small.640

Figure 17: Estimated value of degrading E with numerical data, for all load cases, with δE = 1Hz.

5.3.3. Parameter and Input Estimation641

As a more complex application case, both the Young’s modulus and the input are642

considered as unknown. In this case the filter has to be able to discern between the643

influence of a change of parameter values from a time-varying input. The results of the644

coupled estimation of constant E (δE = 10−3Hz) and a dynamic load (ωu,2 = 80Hz,645

ωu,3 = 2000Hz) are shown in Figure 18. The system is unobservable for the static load646

case. Both dynamic load cases show excellent results with a correct and fast estimation of647

the parameters. The estimated input displays some noise given by the necessity for larger648

related covariance values, as explained in subsection 5.2, to avoid lag. The estimated649

sensor errors for both strain sensors and accelerometers are shown in Figure 19. It can650

be observed how the AAE is always at least one order of magnitude lower that the MRA.651

Some exceptions are in the accelerometers with lower MRA, due to accelerations being652

more sensitive to the noise introduced by the input estimation. The estimation procedure653

also shows good results for the case where the Young’s modulus is varying in time, with654

an unknown input and known density. The results are shown in Figure 20. Here, δE is655

set to 1 Hz and thus more noise is added.656
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Figure 18: Estimated values of E and inputs with numerical data, for the sine and random load cases,
with δE = 10−3Hz, ωu,2 = 80Hz and ωu,3 = 2000Hz. The right figures show a zoom of the 0.9s to 1s
range.
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(a) Sine load case

(b) Random load case

Figure 19: Estimated sensors error for the case shown in Figure 18.
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Figure 20: Estimated value of degrading E and input with numerical data, for the sine and random load
cases, with δE = 1Hz, ωu,2 = 80Hz and ωu,3 = 2000Hz. The right figures show a zoom of the 0.9s to
1s range.

5.3.4. Parameter and input estimation with non-zero initial conditions657

The former results have been obtained with measurements on a model starting at zero658

initial conditions. In order to demonstrate the robustness of the filter, input and constant659

Young’s modulus are estimated based on a set of measurements with non-zero initial660

conditions. This is obtained by simulating the system for 2s and discarding the interval661

from the start up to 1s. The results of the coupled estimation, with the same setting as662

in the former section, are shown in Figure 21. The estimated values show an excellent663

convergence to the reference ones. The main difference with respect to former cases is664

in the initial steps, where a less gradual convergence behavior is observed. This can be665

explained by the fact that the filter is setup with different initial conditions, resulting in a666
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larger initial mismatch that is compensated with quick variations of estimated quantities.667

Figure 21: Estimated values of E and inputs with numerical data and non-zero initial conditions, for the
sine and random load cases, with δE = 10−3Hz, ωu,2 = 80Hz and ωu,3 = 2000Hz. The right figures
show a zoom of the 1.9s to 2s range.

6. Experimental Validation668

In this section, the experimental setup (Figure 22) is presented and the estimation669

methodology is validated using experimental data.670
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Figure 22: Instrumented blade

The main parameters of the FE model (Figure 2a) representing the physical blade,671

namely Young’s modulus, Poisson’s ratio, density and stiffness of the bolts, have been672

identified by a modal testing procedure and model updating [42] using a commercial673

FE pre- and post-processing software package [32]. The identified parameter values are674

listed in Table 4. The damping parameters for the proportional Rayleigh model have675

been identified using an optimization procedure aimed at finding the values that minimize676

the error between the experimental and numerical FRFs for one input point (the shaker’s677

application point) and two representative outputs (accelerometers on sections D and H678

in the global y direction). The identification has been carried out in the 0-50Hz range.679

Table 4: Experimentally identified model parameters

E [GPa] ρ [Kg/m3] ν α β K [N/mm]
116.04 4873 0.34208 0.02 0.0005 33167.2

A zero-input acquisition has been done in order to measure the noise level for every680

sensor. The strain gages and accelerometers as used for data acquisition have noise levels681

in the order of 10−7m/m and 10−3m/s2, respectively.682

The measurement campaign consisted of separately applying static and dynamic loads683

to the blade and acquiring data to be used for the estimation. A static load has been684

applied at the blade tip by suspending a mass of known value ms = 1.5Kg. A 20Hz685

sine load, following the one as used for the numerical validation, has been applied on a686

point at the middle of the bottom face of the blade by means of an electrodynamic modal687

shaker. The tip of the shaker was connected to the blade via a mechanical impedance688

sensor to measure the applied force.689

The measurements have been acquired using a sampling period of 1ms. Since the690

estimator uses a time step of 0.1ms, these are linearly interpolated between sampling691

points in order to match the filter’s time step. An overview of the relative errors for692

the parameter and input estimation using experimental data is shown in Table 5 for the693

different considered load cases. The observed errors are small for most cases, with larger694

variation ranges when compared with the numerical application cases. The different cases695

36



are further discussed below. For each of them, the filter has been setup as described in696

subsection 5.2.697

Table 5: Errors on estimated parameters in the last 20% of the considered time interval for experimental
measurements

Unknown quantities Load Error [%]
Parameter min avg max

E
static E 0.03 0.04 0.06
sine E 1.95 2.00 2.05

E, ρ
static unobservable

sine
E 2.09 3.45 5.01
ρ -2.38 -1.00 -0.08

E, input
static unobservable
sine E 0.46 0.52 0.63

6.1. Parameter Estimation698

6.1.1. Young’s modulus699

For the case where the Young’s modulus is estimated, with a known density and700

input, the augmented state covariance value is calculated by choosing δE = 10−3Hz.701

The observed error is close to zero for the static load input and 2% on average for702

the sine load case. The results are shown in Figure 23. The values of the estimated703

sensors as compared to the measured experimental values display a small error, as shown704

in Figure 24. The main mismatch is present for the sensors mounted closer to the root705

of the blade, where it is assumed that the boundary conditions have a larger influence on706

the system dynamics and that the error can thus be attributed to the unmodeled system707

dynamics related to these boundary conditions. Figure 24 includes also the AAE of708

the simulated measurements generated through a forward simulation with the reference709

parameter value. These show a similar behavior to estimated ones, proving that the error710

is not introduced by the filter but it is due to a mismatch in the model.711

Figure 23: Estimated value of E with experimental data, for the static and sine load cases, with δE =
10−3Hz.
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(a) Static load case

(b) Sine load case

Figure 24: Estimated sensor errors for the case shown in Figure 23.

6.1.2. Young’s Modulus and Density712

For the case where the Young’s modulus and density are jointly estimated, with a713

known input, the augmented state covariance values are calculated by choosing δp = 1Hz.714

The static load case leads to an unobservable system, hence only the sine load case is715

considered. The observed error has an average value of 1% for density and 3.45% for716

stiffness, which can be considered acceptable. The results are shown in Figure 25. As717

can be seen in Figure 26, the convergence of the ratio between the two parameters is718

quicker then for the single values. A small error for the full field of sensors can also be719

observed in this case, as shown in Figure 27. The larger required value for δp = 1Hz720

introduces more noise as well as a low frequency variation of the estimated parameter721

values. This could be attributed to a small model mismatch. This mismatch is assumed722

to be filtered out by the smaller value of δE = 10−3Hz in the former case where only the723

Young’s modulus is estimated.724
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Figure 25: Estimated values of E and ρ with experimental data, for the sine load case, with δE = 1Hz,
δρ = 1Hz.

Figure 26: Value of the ratio between estimated E and ρ for the case shown in Figure 25.

Figure 27: Estimated sensors error for the case shown in Figure 25.
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6.2. Parameter and Input Estimation725

For the joint estimation of the Young’s modulus and an unknown input, the asso-726

ciated augmented state covariance values are calculated choosing δE = 10−3Hz and727

ωu,2 = 80Hz. As the system is unobservable for a static load, the sine input load case728

is considered. An average error on the estimated Young’s modulus below 1% can be729

observed, as shown in Figure 28. While the full field of strain sensors is accurately es-730

timated, the acceleration estimated sensors exhibit a larger error as compared to the731

previous cases Figure 29. As explained above for the numerical case, this could be at-732

tributed to the high frequency load content introduced by the filter due to the larger733

augmented state covariance values.734

Figure 28: Estimated values of E and input with experimental data, for the sine load case, with δE =
10−3Hz and ωu,2 = 80Hz.

Figure 29: Estimated sensors error for the case shown in Figure 28.
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7. Conclusions735

In this work, the integration of a parametric Reduced Order Model (pROM) in an736

augmented Extended Kalman Filter (EKF) is presented, allowing for the joint estima-737

tion of states, inputs and material parameters of an industrial scale structural dynamic738

system. A projection-based parametric Model Order Reduction (pMOR) scheme that739

exploits the affine dependency on the parameters of the full model and uses a constant740

global reduction basis is proposed to achieve an efficient reduced model that maintains741

an explicit dependency on the parameters. The integration of the pROM in the EKF742

algorithm enables the efficient parameter estimation.743

An observability analysis shows that in a general case a number of position-level744

measurements at least equal to the number of unknown inputs and parameters is re-745

quired. Furthermore, several considerations on the observability of specific combinations746

of unknown mass and stiffness parameters and inputs are discussed.747

The proposed methodology is applied to a scaled wind turbine blade. The pROM748

is numerically validated by comparing time and frequency results with a standard (i.e.749

non-parametric) Reduced Order Model (ROM). Estimation of parameters, inputs and750

states on both numerical and experimental data shows that the proposed approach is751

able to correctly estimate the unknown quantities together with the full field of strains752

and accelerations using a small set of strain sensors. Practical considerations on the753

setup of the filter are discussed, with a focus on the augmented state covariance values;754

these show how using an adapting scheme for the selection of covariance values would be755

helpful and should be explored in future research.756

Future efforts will be aimed at estimating anisotropic constitutive material parame-757

ters, as well as developing an extended Optimal Sensor Placement (OSP) approach that758

considers the augmented states related to the material parameters.759
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