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Abstract 

The Calcare di Base Formation is a part of the Rossano Basin characterizing the Foreland 

Basin System of the north-eastern Calabria. Messinian argillaceous marls from the Calcare di 

Base Formation have been studied to characterize the sedimentary evolution of this formation 

during the post-orogenic phases of the Calabria-Peloritani Arc. The mineralogical assemblage 

of the argillaceous marls is dominated by phyllosilicates (illite, chlorite, illite/smectite mixed 

layers and trace of kaolinite), carbonate minerals (calcite, aragonite and dolomite), quartz and 

trace of feldspars (both K-feldspars and plagioclase), gypsum and celestine. The 

paleoweathering index records changes at the source, reflecting variations in the tectonic 

regime as shown in the A-CN-K plot where the studied samples describe a trend typical of a 

source area in which active tectonism allows erosion of all zones within weathering profiles 

developed on source rocks. The studied samples are derived from an environment in which 



non-steady-state weathering conditions prevailed. This trend could record deformational 

events that affected the Mediterranean area during the Miocene. The Th/Sc vs. Zr/Sc ratios 

and Al-Zr-Ti plot suggest that the samples likely record a recycling effect from their basement 

rocks. The geochemical proxies of these samples suggest a provenance from a mainly felsic 

source. The Messinian argillaceous marls record deposition probably occurred in a semi-

closed marine environment mainly subject to hypersalinity with local episodes of meteoric 

water influx, during a period characterized by persistent dry and warm/arid conditions 

alternating with relatively wet conditions. 

 

Keywords: Calcare di Base, Messinian, provenance, argillaceous marls, Rossano Basin, 

composition 

 

Running Head: Argillaceous marls from the Calcare di Base Fm. 

 

 

1. Introduction 

During the late Miocene, the Mediterranean region was affected by the Messinian Salinity 

Crisis, one of the greatest evaporitic events in Earth’s history. This crisis was characterized by 

combination of tectonic processes (which led to a reduction in the exchange of water between 

the Mediterranean Sea and the Atlantic Ocean) and paleoclimate conditions (a regional dry 

and warm climate) (Fauquette et al. 2006; Rouchy & Caruso 2006; Di Stefano et al. 2010; 

Mongelli et al. 2012 and references therein). Different basin scenarios have been hypothesized 

to explain the origin of the Messinian evaporites: deep desiccated basin model, shallow-water 

desiccated basin model or deep non-desiccated basin model (Hsu et al. 1973; Nesteroff, 1973; 

Selli, 1973) or the newer scenario proposed by CIESM (2007) and composed by three stages. 



The first stage (5,96-5,6 Ma) is characterized by the onset of Messinian Salinity Crisis and by 

the deposition of the so-called "Lower Evaporites" (selenite in shallow basins and Tripoli 

Formation). The second stage (5,6-5,55 Ma) is recorded by relative sea-level drop and erosion 

of evaporitic basins. Finally, the third stage (5,55-5,33 Ma) is characterized by a clastic and 

evaporitic sedimentation (“Upper Evaporites”) containing brackish to fresh water faunas. 

The “Calcare di Base” is a  lithostratigraphic unit composed of carbonate, marls, and locally 

gypsum. The unit was formed during the Messinian Salinity Crisis and it outcrops  mainly in 

Sicily and Calabria. Its genesis and spatio/temporal distribution is still debated.  

It is the first product of the Messinian evaporitic suite (Ogniben, 1957).  This formation has 

been interpreted either as an evaporitic and/or microbial deposit (Decima et al.  1988; Barone 

et al.  2006; Guido et al.  2007; Caracciolo et al. 2013). It grades laterally into primary selenite 

of the Lower Gypsum Unit (Roveri et al. 2008a, 2008b) above the lower Messinian Tripoli 

Formation or as a product of in situ collapse due to dissolution of intervening halite or gypsum 

beds (Pedley & Grasso, 1993) laterally equivalent to primary selenite (Garcia-Veigas et al. 

1995;  Rouchy & Caruso, 2006). There are three main types of limestone deposits commonly 

included in the Calcare di Base (e.g., Manzi et al., 2010): i) sulfur-bearing limestones which 

were derived from post depositional bacterial sulfate reduction (Dessau et al. 1959) (Calcare 

di Base-1); ii) interbedded dolostones, sapropels, and diatomites usually found at the top or 

above the Tripoli Formation (Calcare di Base-2); iii) micritic limestones of evaporative and/or 

bacterial origin occurring as resedimented deposits, commonly brecciated, forming m-thick 

beds associated with clastic gypsum (Calcare di Base-3). 

The Calcare di Base and correlated strata have been recognized in the Rossano, Crotone, 

Catanzaro Trough, Crati and Amantea Basins, and along the Tyrrhenian piedmont area (e.g., 

Critelli, 1999; Barone et al.  2008; Cianflone & Dominici, 2011; Cianflone et al. 2012; 

Caracciolo et al. 2013) (Fig. 1). In the north-eastern Calabrian Foreland Basin, the Calcare di 



Base forms tabular bodies up to 45 m thick made up of carbonates interbedded  with 

argillaceous marls (e.g., Barone et al. 2006, 2008).  

In the Rossano Basin, the litostratigraphic unit of the Calcare di Base has been interpreted to 

have formed by microbial activity (Guido et al.  2007) although Manzi et al. (2010) 

interpreted the same outcrop as originated from gravity flows redepositing unconsolidated 

limestones. Barone et al. (2008) describe the Calcare di Base as a 0-45 m thick 

lithostratigraphic unit characterized by massive and brecciated (with gypsum and halite 

pseudomorphs) limestone facies interbedded, in some areas, with 10-60 cm thick beds of 

massive and laminar argillaceous marls. The latter authors suggest an evaporitic and microbial 

origin followed by subaerial exposure, erosion, and karstification producing strong increase in 

sedimentary detritus (Barone et al.  2006, 2008). 

The aim of this paper is to contribute to the debate of the origin of the Calcare di Base using a 

multidisciplinary study of facies analysis and geochemical and mineralogical tools on the 

argillaceous marls of the Rossano Basin. 

The chemical and mineralogical composition of sediments provide important clues regarding 

paleo-environmental conditions at the time of deposition, including the nature of 

paleoweathering and paleoredox conditions, which yield insights into the paleoclimate (e.g., 

Nesbitt & Young, 1982; Wronkiewicz & Condie, 1989; Algeo & Maynard, 2004; Peltola et al. 

2008). The mineralogy and chemistry of clastic sedimentary rocks is affected by factors such 

as rock characteristics, chemical weathering, sorting processes during transport and 

sedimentation, and post-depositional diagenetic reactions (McLennan et al. 1993). 

Furthermore, geochemical proxies provide information on the parental affinity and source 

area(s) of clastic sediments (e.g., Fedo et al. 1995; Mongelli et al. 2006, 2012; Critelli et al. 

2008; Zaghloul et al. 2010; Caracciolo et al. 2011; Perri et al.  2008, 2011a, 2011b, 2012a, 

2012b, 2013; Perri 2014). 



2. Geological settings 

The Rossano Basin represents the southern sector of the Italian Foreland Basin system located 

on the north-eastern margin of the Calabria-Peloritani Arc. The Calabria-Peloritani Arc 

represents a fault-bounded exotic terrane connecting the NW-SE-trending Southern Apennines 

with the E-W-trending Sicilian Maghrebids (Critelli & Le Pera, 1995, 1998; Critelli, 1999; 

Bonardi et al. 2001 and references therein). It is made up both of units involving pre-Alpine 

basements made of continental crust crystalline rocks and covered by Meso-Cenozoic 

sediments, as well as by ophiolitic units, some of them containing High Pressure/Low 

Temperature Alpine metamorphism and a pre-Miocene tectonism. 

The Rossano Basin is the inland portion of a larger Neogene to Quaternary basinal area 

including the entire Ionian Calabrian continental margin (the Crotone-Spartivento Basin). It 

was filled with an upper Serravallian to middle Pleistocene continental to deep-marine 

succession (Roda 1964, 1967; Critelli, 1999; Van Dijk et al. 2000, Barone et al. 2008; Zecchin 

et al. 2012, 2013; Tripodi et al. 2013) that was a tectonically active basin up to the present 

(e.g. Zecchin et al. 2011; Perri et al. 2012b). 

 

2a. Stratigraphy of the Rossano Basin 

The base of the Rossano Basin is characterized by transgressive sediments of Serravallian?–

Tortonian age that unconformably overlie the early Miocene Paludi Formation and its 

underlying low grade metamorphic (Bocchigliero Complex) and plutonic rocks (Sila 

Batholith) (e.g., Barone et al. 2008) (Fig. 2). 

The onset of sedimentation included alluvial conglomerates (Conglomerati Irregolari: Roda, 

1964), which are overlain by a nearshore succession consisting of sandstones and fossiliferous 

sandstones (Arenaceo-Conglomeratica Unit). The succession in turn passes upward into 

deeper-water sediments (Argilloso-Marnosa Formation) characterized by an alternation of 



decimetric indurated dark clay and light grayish or light blue marl whose origin is related, at 

least in its upper part, to astronomical cyclity (Barone et al. 2008). During the late Tortonian, 

the Agilloso-Marnosa Formation received huge volumes of olistostromes eroded from the 

«Argille Scagliose Formation» (Sicilide Complex: Ogniben, 1955, 1962). These rocks are 

composed of a variegated clay matrix and olistholiths of various types (calcarenite to 

calcilutite), marl, chert and quartzose sandstone, equivalent to the typical successions of the 

Sicilide Complex of southern Apennines (Critelli & Le Pera, 1998; Critelli, 1999; Zecchin et 

al. 2012). 

The transgressive sedimentary fill evolved from cyclic alternations of shale and marl to 

biosiliceous clay of the Tripoli Formation which delineates the Tortonian–Messinian 

boundary. The Tripoli Formation is overlain by the Calcare di Base Formation, which is 

formed in the studied sector (Figs. 2 and 3) by a tabular carbonate stratum composed of 

evaporites,  microbial facies and interbedded with laminar and massive clays and marls (e.g., 

Barone et al. 2008). 

The Calcare di Base Formation is overlain, above of an erosional angular unconformity, by the 

Molassa di Castiglione Unit, made up of a basal conglomerate, breccias, and cross to planar 

stratification sandstones interpreted as nearshore deposits (e.g., Barone et al. 2008). 

The Argille Marnose Salifere Unit, consisting of a succession of halite and clayey marls with 

gypsum-bearing arenites, characterizes the eastern part of the Rossano Basin (Barone et al. 

2006). These gypsum-bearing arenites are graded and include plane-parallel lamination and 

ripple intervals; these deposits are interpreted as turbidites. The Argille Marnose Salifere Unit 

is overlain by large olistostrome bodies having olistoliths and large clasts of Mesozoic and 

Cenozoic limestone, marl, quartzarenite, and chert of the Sicilide Complex terranes of the 

southern Apennines (e.g., Ogniben, 1955, 1969; Critelli, 1999; Critelli et al., 2013; Tripodi et 

al. 2013). 



In the Rossano Basin, the transition from evaporitic to normal marine environments is 

characterized by the Garicchi Unit (marls and clays with thin turbidite sandstones) and 

Molassa di Palopoli (conglomerates and sandstones lobes) referred to fluvio-deltaic and 

deeper-water tubidite systems (e.g., Dominici, 2005) (Fig. 3). 

 

2b. Facies association  

In the Rossano Basin the Calcare di Base outcrops for about 3 km northeastward of Cropalati 

(Fig. 2). The unconformity erosionally truncates the limbs of asymmetric folds involving the 

Calcare di Base, which also underwent previous subaerial exposure, erosion, and 

karstification. As a response to this folding and karstification event, related to both the 

Messinian Salinity Crisis and to the local regional tectonic phase (i.e., rifting of the southern 

Tyrrhenian Basin; Patacca et al. 1990) a marked increase in sedimentary detritus (Molassa di 

Castiglione) is detected. 

Based on facies and stratigraphic analyses carried out on two sedimentological logs (Fig. 4), 

we have been recognized three facies associations (Fig. 5). The recognition of facies 

associations of the Calcare di Base in the Rossano Basin, represents the first step for the 

reconstruction of the sedimentary environment (e.g., Dominici, 2005). 

These two sedimentological logs are characterized by peculiar argillaceous marl beds which 

represent important stratigraphic markers (Fig. 4). 

Facies A  

The Facies A consists of dm-thick beds of massive limestone made up of micritic, peloidal 

mudstone or wackestone with minor quartz, feldspar grains and fragments of phyllite and 

siltstones, interbedded with dm-sized vacuolar lenses characterized by gypsum and halite 

molds and carbonate pack breccia and float breccia (Fig. 5A-B). The clasts consist of beige 

and light green, folded or flat pebbles derived from calcilutite. 



Facies B 

The Facies B consists of dm thick, channelled limestone bodies marked by erosional surfaces 

filled with clay chips, flat pebbles, and rip-up clasts within a planar to wavy fine lamination 

that are generally oriented parallel to layering but sometimes showing oblique laminae (Fig. 

5C). Facies B is commonly related to Facies A. 

Facies C 

The Facies C is characterized by dm- to cm-thick layers of varicoloured, argillaceous marls, 

which show planar or gently undulated laminae and ripples. Some cm-thick rippled layers of 

graded calcilutite are interbedded with argillaceous marls (Fig. 5D). In some outcrops the 

contact between Facies C and Facies A and B, is associated with cilindric or conic depressions 

perpendicular to bedding and filled by breccias, which are interpreted as freatic conduits and 

vadose channels (Fig. 5E). Facies A and Facies B pass laterally into a clastic facies that is also 

interbedded with Facies C. This clastic facies consists of dm- to cm-thick calcarenite beds 

with minor siliciclastic lithic grains and massive to graded breccias containing abundant clay 

chips, nodular gypsum, minor granite, low-grade metamorphics and rounded sandstone 

pebbles (Fig. 5F).  

 

Facies A is interpreted as related to bacterial activity, which induced carbonate precipitation, 

as suggested Guido et al. (2007). Furthermore the presence of molds and pseudomorphs of 

carbonate minerals after evaporite minerals (gypsum and halite) within lenses of carbonate 

pack breccia and float breccia highlights the growth of evaporitic crystal clusters from 

groundwater brines in the vadose zone. Facies A is interbedded with Facies B. This can be 

interpreted as a result of the filling of small tidal channels that dissect intertidal environments. 

Facies C records a sharp transition from hypersaline brine (mesohaline-penesaline) to normal 

saline seawater, probably related to rainfall episodes. In these conditions the sedimentation is 



driven from erosion processes of the carbonate facies and sedimentary and crystalline units of 

the continental areas. At the same time, karst processes related to the relative change in sea 

level affect the Calcare di Base. 

The facies observed in the Calcare di Base in the Rossano Basin, suggest a shallow marine 

environments where carbonate precipitation was controlled by bacterial activity followed by 

diagenesis in the vadose zone by growing and dissolution of evaporite minerals. The 

association of Facies A, Facies B, and Facies C can be interpreted as being formed in a typical 

subtidal-intertidal environments. The clastic facies is mainly derived from the erosion of 

Facies A and Facies B and from Miocene terrigenous units and metamorphic-plutonic rocks of 

the Sila Unit formed by gravity deposits located along a gentle ramp (e.g., Critelli & Le Pera, 

1998, Le Pera et al. 2000, 2001, Dominici, 2005). 

 

3. Sampling and Methods 

A set of 16 argillaceous marl samples from beds interlayered within the Calcare di Base 

Formation (Fig. 4)  were collected along the Rossano Basin (Figs. 1 and 2). 

Samples were cleaned for geochemical analyses. Weathered coats and veined surfaces were 

cut off. The rocks were crushed and milled in an agate mill to a very fine powder. 

The powder was disaggregated in an ultrasonic bath at low power for a few minutes. The 

mineralogy of the whole rock powder has been obtained by X-ray diffraction (XRD) using a 

Philips 1710 diffractometer (CuKα radiation, graphite secondary monochromator, sample 

spinner; step size 0.02; speed 3sec for each step) at the Università della Calabria (Italy). 

Semiquantitative mineralogical analysis of the bulk rock was carried out on random powders 

measuring peak areas using the WINFIT computer program (Krumm, 1996).  

Elemental analyses for major and some trace elements (Nb, Zr, Y, Sr, Rb, Ba, Ni, Co, Cr, V) 

concentrations were obtained using X-ray fluorescence spectrometry (Philips PW 1480) at the 



Università della Calabria (Italy), on pressed powder disks of whole rock samples (prepared by 

milling to a fine grained powder in a agate mill) and compared to international standard rock 

analyses of the United States Geological Survey. X-ray counts were converted into 

concentrations by a computer program based on the matrix correction method according to 

Franzini et al. (1972) and Leoni & Saitta (1976). Total loss on ignition (L.O.I.) was 

determined by heating the samples for three hours at 900 °C. Instrumental Neutron Activation 

Analysis (INAA) at the Activation Laboratories (Ancaster, Canada) was used to determine the 

abundance of the rare earth elements (La, Ce, Nd, Sm, Eu, Yb and Lu) and Sc, Cs and Th. The 

estimated precision and accuracy for trace element determinations are better than 5%, except 

for those elements having a concentration of 10 ppm or less (10 to 15%) (e.g., Boström & 

Bach 1995; Melaku et al. 2004; Mongelli et al. 2006; Perri et al. 2011a; Liu et al. 2013). 

The chemical composition of sediments (e.g., Th, Sc, and rare-earth elements) is best suited 

for provenance and tectonic setting determination studies, because of their relatively low 

mobility during sedimentary processes (e.g., McLennan et al. 1993; Cullers, 2000; Cullers & 

Podkovyrov 2002; Mahjoor et al. 2009 and references therein). The relative distribution of the 

immobile elements that differ in concentration in felsic and basic rocks such as La and Th 

(enriched in felsic rocks) and Sc, Cr, and Co (enriched in basic rocks relative to felsic rocks) 

has been used to infer the relative contribution of felsic and basic sources in fine grained 

sediments from different tectonic environments (e.g., Wronkiewicz & Condie, 1989). The REE 

pattern of fine grained siliciclastic sediments and some elemental ratios are assumed to reflect 

the exposed crustal abundances in the source area (McLennann et al. 1993; Mongelli et al. 

1996; Cullers, 2000; Mongelli, 2004, among others).  

 

 

 



4. Mineralogy 

The results of whole-rock XRD analyses are shown in Table 1. The argillaceous marls are 

mainly composed of phyllosilicates (mostly illite, chlorite, illite/smectite mixed layers and 

traces of kaolinite) and CaCO3 phases (calcite and aragonite), which prevail over quartz, 

dolomite, and minor/trace amounts of gypsum, feldspars and celestine. Phyllosilicates range 

from 37% to 57% of of the total abundances of the minerals. The CaCO3 phases (calcite and 

aragonite) are the second most abundant minerals, with values ranging from 16% to 37% for 

calcite and up to 3% for aragonite. Quartz is also abundant (ranging from 15% to 27%); 

dolomite shows values up to 6%, whereas feldspars (both K-feldspars and plagioclase), 

gypsum and celestine are minor or in trace in many samples (Tab. 1). 

 

5. Whole-rock geochemistry 

To better examine the geochemical features of the studied samples, the argillaceous marl 

compositions are normalized to standard clay-rich lithologies of the PAAS (Post-Archaean 

Australian Shales; Taylor & McLennan 1985) (Fig. 6). The elemental concentrations and the 

ratios are given in Table 2; means, standard deviations, and ranges of values for the elemental 

contents and some ratios are given in Table 3. 

Ca and Sr share the same distribution over the entire studied succession, matching the 

abundance of the CaCO3 phases, such as calcite and aragonite. Sr, however, is strongly 

enriched relative to the PAAS, rather than Ca, since its distribution is also related to celestine, 

occurring in many samples as a minor or trace phase. Mg is enriched relative to the PAAS due 

to the abundance of dolomite (Tab. 1). Furthermore, a weak correlation between Mg and Si, Al 

and Fe suggests that clay minerals played a minor role in hosting Mg, indicating that Mg 

fluctuations are influenced mainly by the distribution of dolomite. 



The Si, Ti, Al, Na, K and P concentrations have a similar distribution throughout the 

succession, and are generally depleted relative to values in the PAAS. The degree of depletion 

of Na, K and Al is probably related to the paucity of feldspars (Fig. 6). Nb, having similar 

geochemical behavior to that of Ti, is strongly depleted in concentration relative to that in the 

PAAS (Fig. 6).  

Fe, Mn and the TEs (Transition trace Elements; e.g., Sc, V, Cr, Co and Ni) yield a trend 

similar as those in the PAAS, with some samples showing a weak enrichment relative to the 

PAAS (Fig. 6). Fe, showing positive correlation with all TEs, is hosted by mica-like clay 

minerals; thus, the supply of these elements, having the same mineralogical controls on their 

distribution, is mainly related to the presence of clay minerals.  

The distribution of HFSEs (High Field Strength Elements; e.g., REE , Zr, Th and Y) are 

different; Th and Y concentrations, similarly to Nb, are strongly depleted to those in the 

PAAS, whereas Zr is enriched in many samples (Fig. 6). Most investigations have reported 

rather low concentrations of REE (Rare Earth Elements) in sedimentary carbonate rocks (e.g., 

Taylor & McLennan, 1985). In marine carbonates, a distinct Ce depletion is common, 

reflecting Ce depletion in seawater relative to the other REE (Taylor & McLennan, 1985). The 

studied samples show low total REE contents (average ΣREE=77.89±7.30); both LREE and 

HREE are depleted relative to the PAAS and Upper Continental Crust (UCC) values (Fig. 7). 

Generally, the chondrite-normalized REE patterns (Fig. 7) show a marked LREE to HREE 

fractionation (values of (La/Yb)ch ranging from 7.96 to 11.89 with many samples 

characterized by (La/Yb)ch values higher than those of PAAS and UCC and a mean of 

(La/Yb)ch=9.70±0.96; Tab. 3) than PAAS (9.17) and UCC (9.21) and a negative Ce anomaly 

(Ce/Ce*=0.74±0.04) typical of seawater environment. 

The LILEs (Large Ion Lithofile trace Elements; e.g., Rb, Cs and Ba) are associated in 

sediments with the detrital minerals (e.g. Plank & Langmuir 1998). The Rb, Cs and Ba 



concentrations, similar to K, are depleted relative to those in the PAAS (Fig. 6). In the present 

case, the ‘lack’ of feldspar means that Rb, Cs and K are likely hosted by the 2:1 clay minerals 

as revealed by XRD analysis. 

 

6. Discussion  

6.a Paleoweathering, paleoclimate and depositional environment 

Various indices have been used to reconstruct paleoweathering conditions, including the 

chemical index of alteration (CIA; Nesbitt & Young, 1982), the chemical index of weathering 

(CIW; Harnois, 1988), the plagioclase index of alteration (PIA; Fedo et al. 1995), and the 

weathering index (Ohta & Arai, 2007). The chemical index of alteration (CIA) is expressed as 

the molar volumes of [Al/(Al+ Ca*+ Na+K)]x100, where Ca* represents the CaO only from 

the silicate fraction (Nesbitt & Young, 1982). As the samples contain some carbonate, the 

CPA (chemical proxy of alteration) after Buggle et al. (2011) (or CIW´- chemical index of 

weathering after Cullers, 2000) is often additionally used. In this study, both the CIA (Nesbitt 

& Young, 1982; with the CaO values of the silicate fraction only) and the CIA’ (the molar 

volumes of [Al/(Al+ Na+K)]x100 and, thus, calculated without the CaO content) have been 

used. 

The argillaceous marls have CIA values (average CIA=69.05±3.24) typical of moderate 

paleoweathering conditions. The A-CN-K plot (Fig. 8a) of the samples show a weathering 

trend parallel to the A–CN edge, departing from a granitic source toward the shale 

composition and indicating non-steady state weathering conditions. Tectonism and climate 

generally determine the relative rates of erosion and chemical weathering (Taylor & 

McLennan, 1985; McLennan et al. 1993). The pattern in the A-CN-K plot (Fig. 8a) is typical 

of a source area in which active tectonism allows erosion of all zones within weathering 

profiles developed on source rocks (Nesbitt et al. 1997). Furthermore, the samples are 



characterized by a weathering trend (Fig. 8b) and CIA’ (average CIA’=75.38±1.25) similar to 

CIA values, also testifying to moderate paleoweathering conditions.  

As a broad measure of weathering, it is possible to use certain molecular ratios. The Rb/K 

ratio has been used to monitor paleoweathering because both K and Rb are incorporated into 

clay minerals and because K is preferentially leached over Rb with increased intensity of 

weathering (e.g., Wronkiewicz & Condie, 1989; Peltola et al. 2008). 

Very low values of Rb/K (<0.01) are found for the argillaceous marls, indicating weak to 

moderate weathering in a dry climate (e.g., Mongelli et al. 2012), as is also indicated by the 

mineralogical composition. The moderate weathering may have occurred under slightly 

warmer conditions than those of the present, as reported by Matson & Fox (2010) for 

southeast Spain. Slight variations of K/Rb ratios suggest that persistent, dry, and warm 

conditions changed to conditions characterized by alternating dry and relatively wet periods, 

typical of the climatic cycle in savannah regions (e.g., Mongelli et al. 2012). 

The argillaceous marls are characterized by higher variations in Sr compared to the other trace 

elements. In sedimentary processes, the distribution of Sr is affected both by strong adsorption 

on clay minerals and extensive substitution of Sr
2+

 for Ca
2+

 in carbonate minerals 

(aragonite>calcite) (e.g., Salminen et al.  2005). High Sr/Ca ratios in carbonate sediments are 

inferred to correspond to aragonite enrichment (Thomson et al. 2004).  The Sr distribution is 

generally controlled by the preferential incorporation into the Ca sites such as in the aragonite 

structure in which Sr and Ca show a good correlation. In the present case, Sr is weakly 

correlated with Ca, testifying for a main link to celestine precipitation and adsorption on clay 

minerals, as shown by XRD analyses (Tab. 1). Furthermore, higher Sr concentrations are 

typical of marine to hypersaline environments (e.g., Land, 1980), whereas lower Sr 

concentrations characterize ancient marine or marine–meteoric environments (Machel & 

Anderson, 1989). The incorporation of Sr
2+

 into aragonite appears to be independent of 



salinity (Gaetani & Cohen, 2006). Sr variations, ranging from 1719 ppm to 14881 ppm (Tab. 

2), suggest a transition from depositional environments, characterized by normal marine 

waters and normal evaporation, to hypersaline environments with strong evaporation. As a 

whole, these data seem to reflect that deposition probably occurred in a semiclosed, marine 

environment subject to hypersalinity with local periodic input of meteoric water (e.g., Guido et 

al. 2007). 

 

6.b Parental affinity, sorting and recycling 

Rare earth elements (REE) and Th, among the HFSE, and some transition elements, including 

Sc, V and Ni, can constrain the average source area composition (e.g., Taylor & McLennan, 

1985; McLennan et al. 1993; Cullers & Podkovyrov, 2002). The abundance of Cr and Ni in 

clastic sediments is considered as an useful indicator in provenance studies. According to 

Wrafter & Graham (1989) a low concentration of Cr indicates a felsic provenance, whereas 

high contents of Cr and Ni are mainly found in sediments derived from ultramafic rocks 

(Armstrong-Altrin et al. 2004). The Cr/Ni ratios are low for the argillaceous marls 

(average=1.28). Furthermore, the Th/Cr ratios (average=0.06) are lower than those of the 

PAAS (Th/Cr=0.13; Taylor & McLennan, 1985) and the UCC (Th/Cr=0.13; McLennan et al. 

2006). The La/Sc, Th/Sc, Th/Co, Th/Cr and Cr/Th ratios are significantly different in felsic 

and basic rocks and may also allow constraints on the average provenance composition 

(Wronkiewicz & Condie, 1989; Cox et al. 1995). These elemental ratios of argillaceous marls 

are compared with those of sediments derived from felsic and basic rocks as well as to the 

UCC (McLennan et al. 2006) and the PAAS (Taylor & McLennan, 1985) values (Tab. 4). The 

average values of the argillaceous marls fall within the range of felsic rocks. In addition, the 

average values of the studied samples are close to those of the PAAS and UCC (Tab. 4), 

suggesting a felsic nature of the source rocks. Felsic igneous rocks are generally enriched in Zr 



relative to mafic lithologies (e.g., Salminen et al. 2005). Many argillaceous marls show Zr 

enrichment relative to the PAAS. Thus, elevated total Zr values are indicative of provenance 

from felsic rocks, especially intrusive granitoids (e.g., Salminen et al. 2005) such as the Sila 

Batholith. The Th/Co vs. La/Sc plot may be used to discriminate sediments from silicic 

sources to those from progressively more basic sources (Fig. 9). The argillaceous marls fall 

within the silicic rock field. Furthermore, the La-Th-Sc diagram (Fig. 10) may be used to 

discriminate the source area composition and the tectonic setting (e.g., Bhatia & Crook, 1986; 

Cullers, 1994). In this diagram the argillaceous marls fall in a region close to the PAAS and 

the UCC again suggesting a mostly silicic provenance (Fig. 10). To better constrain the felsic 

versus mafic or ultramafic character of the detritus, the V-Ni-La*4 ternary diagram (Fig. 11), 

has been used with fields representative of felsic, mafic and ultramafic rocks (e.g., Bracciali et 

al.  2007; Perri et al.  2011b). As a general rule, the studied samples plot close to the UCC and 

PAAS area, reflecting the felsic composition of the source areas (Fig. 11). 

Transport and deposition of clastic sediments involve mechanical sorting affecting the 

chemical composition of terrigeneous sediments and the distribution of provenance and 

paleoweathering proxies (Perri et al. 2013 and references therein). The distribution of the 

chemical components within a suite is mainly determined by the mechanical properties of the 

host minerals. The process basically fractionates Al (clay minerals) from Si (quartz and 

feldspars). Sorting also fractionates Ti which is mostly present in clay minerals and Ti oxides, 

from Zr which occurs in zircon and is sorted with quartz. Ternary plots based on Al, Ti, and Zr 

may used to illustrate the presence of sorting-related fractionations, which are recognized by 

simple mixing trends on a ternary Al-Ti-Zr diagram (Garcia et al. 1991). The argillaceous 

marls show a mixing trend, mostly characterized by changes in the Al/Zr ratio, which could be 

due to a recycling effect (Fig. 12). The presence of sorting related fractionations may also be 

evaluated when the Zr/Sc ratio (Cox et al. 1995), is plotted against the Th/Sc ratio (indicator 



of chemical differentiation; McLennan et al. 1993). The studied samples are not clustered 

along the primary compositional trend but fall along a trend involving zircon addition and thus 

sediment recycling (Fig. 13), consistent with the Al-Ti-Zr diagram.  

 

7. Concluding remarks 

During the late Miocene, Calabria was affected by climatic and environmental changes that 

involved the entire Mediterranean Basin following the Messinian Salinity Crisis. The 

Messinian argillaceous marls, interbedded within the Calcare di Base Formation in the 

Rossano Basin, provide new insight into one of the most intensively studied evaporitic events 

of the Earth’s history. These deposits comprise an admixture of clay minerals, carbonates and 

quartz with minor amount of gypsum, feldspars and celestine. The analyzed samples show 

some geochemical and mineralogical differences, reflecting changes in climatic and 

environmental conditions. Messinian argillaceous marls record deposition that probably 

occurred in a semiclosed marine environment mainly subject to hypersalinity with local 

episodes of meteoric water influx, during a period characterized by persistent dry and 

warm/arid conditions alternated to relatively wet phases, typical of the climatic cycle in 

savannah regions. The presence of celestine indicates concentration of SO4
2−

 in the solution 

from which dolomite formed, as also observed in many modern hypersaline environments 

(e.g., Corzo et al. 2005; Last & Ginn, 2005). Bacterial degradation of organic matter produced 

CO2 and ammonia, thereby increasing alkalinity, which may further explain the formation of 

dolomite under hypersaline conditions (Sánchez-Román et al. 2009). 

The geochemical proxies indicate a felsic composition for the source area(s), mainly 

characterized by the Sila Unit and granitoids of the Sila Batholith. The weathering indices 

indicate moderate paeoweathering conditions related to a source area where active tectonism 

allows erosion of all zones within weathering profiles developed on source rocks. 



Furthermore, the presence of sorting-related fractionations and, thus, a sediment recycling is 

also evaluated using Zr/Sc vs. Th/Sc plot and the Al-Ti-Zr diagram.  
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Figure captions 

Fig. 1 – Simplified geological map of the central-northern sector of the Calabria-Peloritani Arc 

with location of the mentioned basins and sites. 1, Pliocene to Holocene sediments, and 

volcanic and volcaniclastic rocks; 2, Upper Tortonian to Messinian clastics and evaporites; 3, 

Cilento Group (Middle Miocene); 4, San Donato, Verbicaro and Pollino Units (Triassic to 

Miocene); 5, Liguride Complex (Upper Jurassic to Upper Oligocene); 6, Longobucco and 

Caloveto Groups (Lower Jurassic to Lower Cretaceous) and Paludi Formation (Upper 

Oligocene); 7, Sila, Castagna and Bagni basement Units (Paleozoic); 8, Malvito, Diamante-

Terranova, Gimigliano Ophiolitiferous units (Upper Jurassic to Lower Cretaceous).  

Fig. 2 – Geological sketch map of the Rossano Basin (north-eastern Calabria). L1 and L2 are 

the sedimentological logs showed in the Figure 4. 

Fig. 3 – Schematic stratigraphic column of the studied area. 

Fig. 4 - Sedimentological logs of the studied area with the argillaceous marl samples studied in 

this work (L1 is the lower part of the stratigraphic succession, whereas L2 is the upper part). 

Sh, shale; SS, sandstone; Cgl, conglomerate; f, fine; m, medium; c, coarse; gr, gravel; cb, 

cobble; bd, boulder. 

Fig. 5 - Field photos of the facies associations. A) Facies A consists of dm thick of massive 

limestone passing upward to vacuolar mudstone. B) Close-up view of a pocket characterized 

by evaporitic pseudomorphs of Facies A. C) Facies B consists of dm-sized clay chips and rip-

up clasts of argillaceous marls floating in a micritic matrix. D) Green and orange argillaceous 

marls and cm thick layers of graded calcilutite (Facies C). E) Vadose and freatic conduits 

affected the Calcare di Base Formation. F) Close-up view of clastic facies formed by cm thick 

graded calcarenites and dm thick limestone gypsum breccias. 

Fig. 6 - Major and trace element compositional ranges normalized to the PAAS (Post-Archean 

Australian Shale; Taylor & McLennan, 1985). 



Fig. 7 - Rare earth element compositional ranges, chondrite-normalized (Taylor & McLennan, 

1985). The plot of the Post-Archean Australian Shales (PAAS) and the Upper Continental 

Crust (UCC; McLennan et al. 2006) is shown for comparison. 

Fig. 8 – a) Ternary A-CN-K and b) A-N-K diagrams. Legend: Gr, granite; Ms, muscovite; Il, 

illite; Ka, kaolinite; Ch, chlorite; Gi, gibbsite; Sm, smectite; Bi, biotite; A, Al2O3; CN, 

CaO+Na2O; K, K2O; CIA, Chemical Index of Alteration (Nesbitt & Young, 1982).  

Fig. 9 - Th/Co versus La/Sc diagram for argillaceous marls (fields after Cullers, 2002). 

Fig. 10 – La-Th-Sc diagram (after Bhatia & Crook, 1986). The studied samples fall in a region 

close to the PAAS and the UCC point that rules out important mafic supply. 

Fig. 11 - V-Ni-La*10 ternary diagram, showing fields representative of felsic, mafic and 

ultramafic rocks plot separately (e.g., Bracciali et al. 2007; Perri et al. 2011b). The studied 

samples plot close to the felsic composition and to the Paleozoic basement rocks analyzed in 

this work. 

Fig. 12 - Ternary 15Al2O3-300TiO2-Zr plot (Garcia et al. 1991) showing possible sorting 

effects for the studied samples. 

Fig. 13 - Th/Sc versus Zr/Sc plot (after McLennan et al. 1993). Samples depart from the 

compositional trend indicating zircon addition suggestive of a recycling effect. Rock average 

compositions (Rhyolite, Dacite and Andesite) are from Lacassie et al. (2006). 
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Table 1 - Mineralogical composition of the bulk rock (weight percent). Qtz=quartz; 

∑phy=sum of phyllosilicates; Feld=feldspars (k-feldspars+plagioclase); Dol=dolomite; 

Calc=calcite; Arag=aragonite; Gyp=gypsum; Celest=celestine. 

 

 Qtz ∑phy  Feld Dol Calc Arag Gyp Celest 

MP1 16 43 1 4 36 0 0 0 

MP2 17 42 1 4 36 0 0 0 

MP3 15 38 tr 4 37 3 2 1 

MP4 17 37 tr 4 37 3 1 1 

MP5 22 47 2 5 22 0 2 tr 

MP6 22 48 2 4 22 0 2 tr 

MP7 18 38 1 0 37 3 2 1 

MP8 15 42 1 0 36 3 2 1 

MP9 27 46 2 6 19 0 0 tr 

MP10 23 54 2 3 17 0 1 0 

MP11 24 53 2 3 17 0 1 0 

MP12 23 45 tr 1 28 2 tr 1 

MP13 22 46 tr 2 27 2 tr 1 

MP14 20 56 2 3 16 1 1 1 

MP15 19 57 2 3 16 1 1 1 

MP16 23 49 2 4 18 3 0 1 

 

 

 

 

 

 

 

 

 

 

 



Table 2 - Major, trace element and ratios distribution in studied samples. 

Samples MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 

Oxides (wt. %)        

SiO2 29,70 29,52 28,49 28,60 37,58 37,15 27,44 26,98 

TiO2 0,32 0,28 0,31 0,34 0,36 0,32 0,30 0,29 

Al2O3 7,17 6,98 6,84 6,52 8,32 8,29 6,65 7,10 

Fe2O3 6,31 6,10 6,37 6,15 5,19 5,16 6,11 6,49 

MnO 0,22 0,21 0,22 0,18 0,12 0,14 0,21 0,19 

MgO 3,32 3,28 6,19 6,05 6,83 6,74 6,00 5,92 

CaO 22,61 22,42 25,42 25,11 15,36 15,21 24,46 23,98 

Na2O 0,40 0,42 0,53 0,49 0,52 0,50 0,41 0,42 

K2O 1,14 1,19 1,09 1,07 1,43 1,39 1,04 1,06 

P2O5 0,11 0,10 0,07 0,10 0,17 0,18 0,07 0,07 

L.O.I. 28,65 28,84 24,41 24,60 24,13 24,86 27,20 26,87 

TOT 99,95 99,34 99,94 99,21 100,01 99,94 99,89 99,37 

Trace elements (ppm)       

Ni 77,00 71,00 70,00 68,00 66,00 67,00 71,00 74,00 

Cr 84,00 80,00 75,00 71,00 93,00 96,00 72,00 75,00 

Co 20,00 18,00 16,00 17,00 20,00 21,00 17,00 19,00 

V  117,00 108,00 90,00 95,00 121,00 119,00 97,00 100,00 

Sc 8,50 8,00 8,40 8,00 8,50 8,20 7,10 7,20 

Ba 148,00 152,00 208,00 200,00 209,00 201,00 197,00 200,00 

Cs 7,80 7,10 7,10 7,50 6,20 6,50 6,00 7,00 

Sr 1921,00 1915,00 13178,00 13250,00 5082,00 5074,00 13256,00 13195,00 

Rb 87,00 81,00 70,00 78,00 101,00 99,00 73,00 75,00 

Nb 6,00 5,00 1,00 2,00 8,00 7,20 1,00 1,00 

Zr 167,00 180,00 566,00 540,00 261,00 259,00 573,00 569,00 

Y 1,00 2,00 1,00 1,00 13,00 9,00 3,00 4,00 

Th 5,60 5,50 6,00 5,70 5,60 5,50 5,10 5,20 

La 21,50 21,10 21,40 21,20 19,90 20,10 20,60 20,50 

Ce 33,00 31,00 35,00 34,00 30,00 32,00 34,00 32,00 

Nd 14,00 15,00 13,00 14,00 15,00 16,00 15,00 14,00 

Sm 3,60 3,80 3,70 3,60 3,30 3,50 3,40 3,50 

Eu 0,80 0,70 0,80 0,90 0,70 0,80 0,70 0,82 

Yb 1,60 1,50 1,70 1,80 1,40 1,50 1,30 1,40 

Lu 0,24 0,23 0,25 0,26 0,21 0,22 0,20 0,21 

Ratios         

CIA 66,18 66,16 65,06 64,38 66,78 67,66 66,62 67,23 

CIA' 75,36 74,02 73,65 73,42 73,72 74,25 75,13 75,96 

La/Sc 2,53 2,64 2,55 2,65 2,34 2,45 2,90 2,85 

Th/Sc 0,66 0,69 0,71 0,71 0,66 0,67 0,72 0,72 

Th/Co 0,28 0,31 0,38 0,34 0,28 0,26 0,30 0,27 

Th/Cr 0,07 0,07 0,08 0,08 0,06 0,06 0,07 0,07 

Cr/Th 15,00 14,55 12,50 12,46 16,61 17,45 14,12 14,42 



Samples MP9 MP10 MP11 MP12 MP13 MP14 MP15 MP16 

Oxides (wt. %)        

SiO2 39,91 38,06 37,98 36,65 37,02 37,59 37,65 38,91 

TiO2 0,33 0,47 0,46 0,37 0,38 0,45 0,44 0,39 

Al2O3 7,93 10,69 10,52 8,26 8,89 10,80 10,95 8,96 

Fe2O3 3,95 11,17 11,02 6,60 6,82 11,54 11,61 8,11 

MnO 0,11 0,12 0,14 0,20 0,19 0,12 0,13 0,25 

MgO 7,13 4,38 4,45 3,78 3,82 3,94 4,01 5,97 

CaO 13,62 11,45 11,12 17,54 17,63 11,22 11,11 13,39 

Na2O 0,36 0,46 0,45 0,36 0,37 0,39 0,42 0,38 

K2O 1,33 1,70 1,69 1,37 1,40 1,70 1,68 1,49 

P2O5 0,11 0,08 0,10 0,12 0,11 0,09 0,10 0,08 

L.O.I. 25,21 21,34 21,95 24,12 23,11 22,05 21,65 22,01 

TOT 99,99 99,92 99,88 99,37 99,74 99,89 99,75 99,94 

Trace elements (ppm)       

Ni 62,00 102,00 95,00 56,00 57,00 101,00 91,00 84,00 

Cr 88,00 119,00 121,00 93,00 101,00 135,00 131,00 102,00 

Co 18,00 32,00 33,00 20,00 23,00 35,00 34,00 25,00 

V  119,00 165,00 159,00 117,00 121,00 190,00 189,00 143,00 

Sc 8,50 9,50 9,60 8,00 8,20 10,20 10,10 9,20 

Ba 202,00 193,00 195,00 268,00 259,00 208,00 211,00 195,00 

Cs 6,90 11,50 10,90 6,60 7,10 11,70 11,10 8,10 

Sr 4440,00 1742,00 1719,00 12396,00 12289,00 10447,00 10339,00 14881,00 

Rb 104,00 120,00 118,00 86,00 91,00 111,00 115,00 93,00 

Nb 3,00 11,00 10,00 4,00 6,00 8,00 9,00 4,00 

Zr 218,00 132,00 143,00 568,00 559,00 474,00 481,00 673,00 

Y 1,00 2,00 3,00 5,00 3,00 2,00 4,00 11,00 

Th 5,90 5,70 5,80 5,50 5,60 6,30 6,10 6,20 

La 20,40 23,30 23,50 19,80 20,10 26,40 25,90 24,80 

Ce 33,00 34,00 35,00 30,00 32,00 39,00 37,00 38,00 

Nd 16,00 15,00 17,00 15,00 16,00 22,00 21,00 19,00 

Sm 3,50 3,70 3,80 3,20 3,30 4,10 4,20 4,30 

Eu 0,70 0,90 1,00 0,70 0,80 1,00 0,90 0,90 

Yb 1,50 1,60 1,70 1,40 1,40 1,50 1,60 1,60 

Lu 0,23 0,24 0,23 0,21 0,22 0,23 0,24 0,24 

Ratios         

CIA 67,42 71,88 73,45 72,63 71,50 72,05 72,84 72,97 

CIA' 75,41 76,39 76,26 75,72 76,64 77,11 77,29 75,78 

La/Sc 2,40 2,45 2,45 2,48 2,45 2,59 2,56 2,70 

Th/Sc 0,69 0,60 0,60 0,69 0,68 0,62 0,60 0,67 

Th/Co 0,33 0,18 0,18 0,28 0,24 0,18 0,18 0,25 

Th/Cr 0,07 0,05 0,05 0,06 0,06 0,05 0,05 0,06 

Cr/Th 14,92 20,88 20,86 16,91 18,04 21,43 21,48 16,45 

 



Table 3 - Means, standard deviations and ranges of elemental concentrations and ratios of the 

studied samples. St. Dev. – standard deviation; Min – minimum value; Max – maximum 

value. 

 

Mean St. Dev. Min Max 

Oxides (wt. %) 

   SiO2 34,33 4,64 26,98 39,91 

TiO2 0,36 0,06 0,28 0,47 

Al2O3 8,43 1,52 6,52 10,95 

Fe2O3 7,42 2,42 3,95 11,61 

MnO 0,17 0,04 0,11 0,25 

MgO 5,11 1,31 3,28 7,13 

CaO 17,60 5,37 11,11 25,42 

Na2O 0,43 0,05 0,36 0,53 

K2O 1,36 0,24 1,04 1,70 

P2O5 0,10 0,03 0,07 0,18 

L.O.I. 24,44 2,35 21,34 28,84 

Trace elements (ppm) 

  Ni 75,75 14,24 56,00 102,00 

Cr 96,00 20,20 71,00 135,00 

Co 23,00 6,46 16,00 35,00 

V  128,13 30,92 90,00 190,00 

Sc 8,58 0,89 7,10 10,20 

Ba 202,88 28,97 148,00 268,00 

Cs 8,07 1,94 6,00 11,70 

Sr 8445,25 4903,36 1719,00 14881,00 

Rb 93,88 15,97 70,00 120,00 

Nb 5,39 3,19 1,00 11,00 

Zr 397,69 186,84 132,00 673,00 

Y 4,06 3,60 1,00 13,00 

Th 5,71 0,32 5,10 6,30 

La 21,91 2,11 19,80 26,40 

Ce 33,69 2,57 30,00 39,00 

Nd 16,06 2,46 13,00 22,00 

Sm 3,66 0,31 3,20 4,30 

Eu 0,82 0,10 0,70 1,00 

Yb 1,53 0,13 1,30 1,80 

Lu 0,23 0,02 0,20 0,26 

Ratios 

    CIA 69,05 3,14 64,38 73,45 

CIA' 75,38 1,21 73,42 77,29 

La/Sc 2,56 0,15 2,34 2,90 



Th/Sc 0,67 0,04 0,60 0,72 

Th/Co 0,26 0,06 0,18 0,38 

Th/Cr 0,06 0,01 0,05 0,08 

Cr/Th 16,75 2,96 12,46 21,48 

(La/Yb)ch 9,70 0,96 7,96 11,89 

Ce/Ce* 0,74 0,04 0,68 0,81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 - Range of elemental ratios of studied samples compared to the ratios those of felsic 

and mafic rocks, upper continental crust (UCC; McLennan et al. 2006), and Post-Archean 

Australian shale (PAAS; Taylor and McLennan, 1985). 

 

Elemental    Average values 

of argillaceous 

marls 

   Range of sediments
1
 

   Upper 

continental crust
2
 

 Post-Archean 

Australian average 

shale
3
 ratio 

      Felsic rocks Mafic rocks         

La/Sc 2.60 2.5 - 16.3 0.4 - 0.8 2.21 2.40 

Th/Sc 0.70 0.8 - 20.5 0.1 - 0.2 0.79 0.90 

Th/Co 1.00 0.6 - 19.4 0.1 - 1.4 0.63 0.64 

Th/Cr 0.10 0.1 - 2.7 0.4 - 0.8 0.13 0.13 

Cr/Th 7.21 4.0 - 15.0 25 - 500 7.69 7.53 
1
Cullers (1994, 2000); Cullers & Podkovyrov (2002); 

2
McLennan et al., 2006; 

3
Taylor & McLennan 

(1985). 
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