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Abstract 10	

Soil organic matter (SOM) has beneficial effects on soil properties for plant growth and production. Moreover, SOM 11	

changes carbon dioxide concentrations in the atmosphere and can influence climate warming. Conventional methods for 12	

SOM determination based on laboratory analyses are costly and time consuming. Use of soil reflectance spectra is an 13	

alternative approach for SOM estimation and has the advantage of being rapid, non-destructive and cost effective. This 14	

method assumes that residuals are independent and identically distributed. However, in most cases this assumption does 15	

not hold owing to spatial dependence in soil samples. The aim of the paper was to test the potential of laboratory Vis–16	

NIR spectroscopy to develop an approach of partial least square regression (PLSR) with correlated errors for estimating 17	

spatially varying SOM content from laboratory-based soil Vis–NIR spectra and producing a continuous map using a 18	

geostatistical method. 19	

The study area was the Turbolo watershed (Calabria, southern Italy), which is representative of Mediterranean areas 20	

being highly susceptible to soil degradation. Topsoil samples were collected at 201 locations. To reduce the lack of 21	

linearity that may exist in the spectra, reflectance (R) spectra were transformed in absorbance spectra (log (1 / R)). 22	

Partial least squared regression (PLSR) analysis was then used to predict SOM from reflectance spectra. To take into 23	

account spatial correlation between observations, the significant latent variables from PLSR were used as regressors in 24	

a linear mixed effect model with correlated errors of SOM. The spatial approach and traditional PLSR were compared 25	

through the calculation of root mean square prediction error (RMSPE). In order to pro- duce a continuous map, the 26	

estimated SOM data were interpolated by ordinary kriging. The approach is particularly advantageous when the data 27	

exhibit a pronounced spatial autocorrelation and could be used in digital soil mapping. 28	

	29	

	30	



1.	 Introduction	1	

	2	

Soil	organic	matter	(SOM)	is	a	key	attribute	of	soil	and	environmental	quality	because	it	is	an	important	sink	and	3	

source	of	main	plant	and	microbial	nutrients	(Nieder	and	Benbi,	2008).	Moreover,	SOM	exerts	an	important	4	

influence	on	the	physical,	chemical	and	biological	properties	and	functions	of	soil	(McBratney	et	al.,	2014;	Nieder	5	

and	Benbi,	2008),	because	its	depletion	may	reduce	aggregate	stability,	resulting	in	crusting	and	compaction,	as	6	

well	as	nutrient	supply	(Mabit	and	Bernard,	2009).	Moreover,	organic	matter	increases	the	soil's	nutrient	cycling	7	

capability	(McBratney	et	al.,	2014)	and	provides	a	large	pool	of	macronutrients	such	as	nitrogen,	phosphorous	8	

and	sulfur,	which	are	very	important	for	soil	fertility.	In	addition,	SOM	has	a	positive	influence	on	water	9	

retention	capacity,	porosity	and	cation	exchange	capacity	(CEC).	10	

On	the	global	scale,	carbon	stored	in	soils	represents	one	of	the	largest	reservoirs	of	organic	carbon	and	11	

consequently,	by	either	sequestering	or	releasing	carbon	in	the	atmosphere,	soil	can	alter	the	terrestrial	carbon	12	

balance	and	thereby	the	greenhouse	effect	(Lal,	2004;	Lützow	et	al.,	2006).	13	

In	recent	decades,	visible,	near-infrared	(Vis–NIR)	reflectance	spectroscopy	has	been	found	to	be	useful	in	14	

measuring	soil	properties	because	the	techniques	are	rapid,	relatively	inexpensive,	and	require	minimal	sample	15	

preparation	and	no	hazardous	chemicals;	furthermore,	they	are	non-invasive	and	several	soil	properties	can	be	16	

measured	from	a	single	scan	(e.g.	Demattê	et	al.,	2006;	McBratney	et	al.,	2006;	Reeves	et	al.,	2001,	2002;	17	

Shepherd	and	Walsh,	2002;	Stenberg	et	al.,	2010;	Viscarra	Rossel	et	al.,	2006).	18	

There	is	widespread	interest	in	Vis–NIR	reflectance	spectroscopy,	even	though	soil	Vis–NIR	spectra	are	largely	19	

non-specific,	resulting	from	overlapping	absorptions	of	constituents	often	present	in	small	concentrations	in	the	20	

soil	(Viscarra	Rossel	and	Behrens,	2010).	The	method	is	based	on	the	simplified	assumption	that	the	soil	21	

reflectance	in	the	350–2500	nm	spectral	region	is	a	linear	combination	of	the	spectral	signatures	of	its	22	

compositional	components	weighted	by	their	abundance	(Ben-Dor,	2002;	Curran,	1994;	Ge	et	al.,	2007).	23	

Therefore,	changes	in	the	chemical,	physical	and	mineralogical	properties	of	the	soil	produce	distinct	spectral	24	

features	that	can	be	detected	through	reflectance	spectroscopy	(Aïchi	et	al.,	2009;	Conforti	et	al.,	2013a;	Nanni	25	

and	Demattê,	2006;	Shepherd	and	Walsh,	2002;	Viscarra	Rossel	et	al.,	2006).	In	particular,	soil	reflectance	26	

spectra	are	heavily	dependent	on	SOM,	as	well	as	on	other	properties	such	as	soil	moisture	and	texture	(Aïchi	et	27	

al.,	2009;	Stevens	et	al.,	2008).	28	

Vis–NIR	reflectance	spectroscopy	requires	only	a	few	seconds	to	measure	a	soil	sample,	but	the	relevant	29	

information	needs	to	be	mathematically	extracted	from	the	spectra	so	that	it	can	be	correlated	with	soil	30	



properties.	To	analyze	soil	reflectance	spectra	chemometrics	techniques	and	multivariate	calibrations	(Martens	1	

and	Næs,	1989;	Stenberg	et	al.,	2010;	Viscarra	Rossel	and	Behrens,	2010),	such	as	multiple	linear	regression	2	

(MLR),	principal	components	regression	(PCR),	partial	least-squares	regression	(PLSR)	and	artificial	neural	3	

networks	(ANN)	(e.g.	Aïchi	et	al.,	2009;	Conforti	et	al.,	2013b;	Farifteh	et	al.,	2007;	Shepherd	and	Walsh,	2002;	4	

Viscarra	Rossel	et	al.,	2006)	are	generally	used.	5	

However,	these	techniques	assume	that	SOM	residuals	(measured	SOM	minus	predicted	SOM)	are	identically	and	6	

independently	distributed:	in	other	words,	SOM	observations	should	be	independent	of	each	other	to	guarantee	7	

optimality	of	the	prediction	model	(Ge	et	al.,	2007).	Since	soil	properties	generally	exhibit	significant	spatial	8	

correlation	with	different	degrees	of	spatial	dependence,	the	use	of	PLSR	combined	with	a	linear	mixed	effect	9	

model	(LMEM)	(Lark,	2009;	Stein,	1999)	is	expected	to	produce	more	accurate	estimates.	LMEM	uses	the	10	

significant	latent	variables	from	PLSR	as	fixed	effects	and	the	spatial	covariance	function	of	residuals	as	the	11	

stochastic	(random)	component	to	predict	SOM.	12	

Moreover,	in	the	perspective	of	site-specific	management,	SOM	content	needs	to	be	estimated	spatially	in	order	13	

to	produce	accurate	continuous	maps,	which	can	improve	the	information	on	local	variation	required	by	land	14	

managers	and	farmers	(Viscarra	Rossel	and	McBratney,	1998).	However,	from	this	point	of	view,	the	combined	15	

approach	still	leaves	the	task	unfinished	because	the	SOM	predictions	are	made	only	at	the	sampled	locations.	A	16	

geostatistical	analysis	allows	to	map	the	spatial	pattern	of	SOM	prediction	(Brown	et	al.,	2006;	Mouazen	et	al.,	17	

2007;	Sarkhot	et	al.,	2011;	Viscarra	Rossel	et	al.,	2011),	which	is	much	more	informative	than	the	map	of	sparse	18	

observations	for	estimating	carbon	storage	in	the	soil.	19	

The	objective	of	the	paper	was	to	develop	an	approach	of	partial	least	square	regression	(PLSR)	with	correlated	20	

errors	for	estimating	spatially	varying	soil	organic	matter	from	laboratory-based	soil	Vis–NIR	spectra	and	21	

producing	a	continuous	map	using	a	geostatistical	method.	To	estimate	SOM,	PLSR	was	combined	with	a	linear	22	

mixed	effect	model	(LMEM),	which	used	the	significant	latent	variables	from	PLSR	as	fixed	effects,	whereas	23	

spatial	correlation	between	residuals	as	stochastic	(random)	component.	24	

	25	

2.	 Materials	and	methods	26	

	27	

2.1.	 Study	area	28	

	29	

The	study	area	was	the	Turbolo	watershed,	located	in	the	north	of	Calabria	(southern	Italy)	between	39°32′25″N	30	



and	39°29′51″N	latitude,	16°12′57″E	and	16°05′21″E	longitude	(Fig.	1),	and	covers	an	area	of	29.2	km2.	1	

Elevation	ranges	from	75	to	1015	m	a.s.l.,	and	slopes	from	0°	to	56.5°,	then	the	landscape	is	characterized	by	2	

large	variability.	The	streams	have	a	sub-dendritic	drainage	pattern,	and	the	length	of	the	main	channel	is	about	3	

13	km.	4	

The	climate	is	sub-humid,	with	average	annual	precipitation	of	1200	mm	and	average	air	temperature	of	16	°C	5	

(Conforti,	2009;	Conforti	et	al.,	2011).	Rainfall	mostly	occurs	from	November	to	February,	with	frequent	high-6	

intensity	rainstorms.	The	pedoclimatic	regime	is	xeric	and	thermic,	shifting	to	udic	and	mesic	in	the	upper	7	

reaches	(ARSSA,	2003).	8	

The	western	part	of	the	Turbolo	watershed	is	characterized	by	steep	slopes	shaped	on	Paleozoic	metamorphic	9	

rocks	(mainly	gneiss	and	schist),	intensely	fractured	and	weathered	and	in	many	places	covered	by	a	thick	10	

regolith	(Fig.	1).	In	a	wide	eastern	part	of	the	study	area,	the	morphology	is	characterized	by	gentle	slopes	and	11	

terraces	cut	on	sedimentary	terrains	of	Neogene–Quaternary	ages	mostly	clays,	sands	and	conglomerates	12	

(Lanzafame	and	Zuffa,	1976).	13	

The	main	soil	groups	occurring	in	the	study	area	(Fig.	2a),	according	to	the	soil	map	of	Calabria	(ARSSA,	2003),	14	

are	Luvisols,	Cambisols,	Vertisols	and	Fluvisols	(IUSS	Working	Group	WRB,	2006).	15	

The	soil	profiles	frequently	appear	truncated	or	severely	degraded	by	water	erosion	and	gravitational	processes	16	

(Conforti	et	al.,	2012;	Conforti	et	al.,	2014;	Lucà	et	al.,	2011;	Scarciglia	et	al.,	2012).	The	prevailing	soil	textural	17	

classes	are	sandy	loam	and	sandy	clay	loam	(Buttafuoco	et	al.,	2012;	Conforti,	2009).	18	

From	the	point	of	view	of	land	use	(Fig.	2b),	about	half	of	the	study	area	is	characterized	by	agriculture,	mainly	19	

crops	and	olive	groves,	whereas	more	than	20%	has	a	shrubby	and	herbaceous	cover	often	left	to	pasture	20	

(Conforti,	2009).	The	remaining	area	consists	of	woodland,	especially	in	the	western	part	of	the	basin	(Fig.	2b).	21	

Finally,	erosion	may	be	extreme	on	bare	slopes.	22	

	23	

2.2.	 Soil	sampling	and	analysis	24	

	25	

Composite	soil	samples	were	collected	at	201	locations	within	the	study	area	(Fig.	1)	by	using	an	auger	sampler;	26	

soil	sampling	depth	was	set	at	0.20	m,	because	this	represents	the	most	frequent	value	of	A-	horizon	depth	in	the	27	

area.	28	

The	sampling	sites	were	selected	by	subdividing	the	study	area	into	300	m	×	300	m	cells	and	within	each	of	29	

which,	one	point	was	chosen	to	be	representative	of	the	cell	area	on	the	basis	of	main	soil–landscape	features	30	



(geological	substrate,	topographic	characteristics,	soil	types,	land	use/cover	and	development/degradation	1	

conditions	of	the	topsoil).	The	locations	of	the	sampling	sites	were	recorded	with	a	GPS	Garmin	eTrex30,	with	an	2	

accuracy	of	3–5	m.	3	

To	ensure	a	soil	homogeneous	mixture,	soil	samples	were	dried,	ground	and	sieved	at	2	mm	prior	to	analysis.	4	

Each	sample	was	then	split	into	two	sub-samples:	one	was	used	for	the	laboratory	spectral	measurements,	while	5	

the	determination	of	SOM	content	was	conducted	on	the	other	sub-sample,	by	the	Walkley–Black	method	(Sequi	6	

and	De	Nobili,	2000).	7	

	8	

2.3.	 Measurement	and	pre-treatment	of	Vis–NIR	spectroscopy	data	9	

	10	

Vis–NIR	reflectance	of	soil	samples	was	measured	in	the	laboratory,	under	artificial	light,	using	an	ASD	FieldSpec	11	

Pro	350–2500	nm	spectroradiometer	(Analytical	Spectral	Devices	Inc.,	Boulder,	Colorado,	USA),	which	combines	12	

three	spectrometers	to	cover	the	spectrum	portion	(350	and	2500	nm),	with	a	sampling	interval	of	1.4	nm	for	13	

the	350–1000	nm	region	and	2	nm	for	the	1000–2500	nm	region.	FieldSpec	Pro	provided	output	at	spectral	14	

resolution	of	1	nm	through	a	weighted	cubic	spline	algorithm	for	interpolation,	thus	producing	2151	spectral	15	

bands.		Two	100	W	halogen	lamps	with	a	zenith	angle	of	30°,	located	at	a	distance	of	approximately	0.50	m	from	16	

the	soil	sample	were	used	as	light	sources.	The	soil	samples,	which	were	gently	pressed	and	leveled	with	a	17	

spatula	to	obtain	a	smooth	surface,	were	set	inside	a	black	cylinder	of	10-cm	diameter	and	1-cm	height	during	18	

the	measurements.	The	spectroradiometer	was	located	in	a	nadir	position	with	a	distance	of	10	cm	from	the	19	

sample,	allowing	the	radiance	measurements	within	a	circular	area	of	approximately	4.5-cm	diameter.	The	noise	20	

level	in	the	spectral	signal	was	reduced	through	averaging	30	spectra	for	each	soil	sample.	In	addition,	to	21	

eliminate	any	possible	spectral	anomalies	due	to	geometry	of	measurement,	four	replicate	scans	were	acquired	22	

by	rotating	the	soil	sample	by	90°	and	were	averaged	in	post-processing.	A	Spectralon	panel	(30	×	30	cm2,	23	

Labsphere	Inc.,	North	Sutton,	USA)	was	used	as	white	reference	to	compute	reflectance	values.	A	reference	24	

spectrum	under	the	same	conditions	of	measurement	was	acquired	immediately	before	the	first	scan	and	after	25	

every	set	of	eight	samples.	26	

The	spectral	reflectance	curves	were	finally	averaged	at	10	nm,	so	reducing	the	number	of	wavelengths	from	27	

2151	to	216,	to	smooth	the	spectra	and	keep	down	the	risk	of	over-fitting	(Shepherd	and	Walsh,	2002).	28	

In	order	to	further	reduce	residual	noise	and	enhance	the	absorption	frequencies,	a	number	of	spectral	data	pre-29	

processing	techniques	were	applied	before	statistical	analysis:	30	



•	 The	measured	reflectance	(R)	spectra	were	transformed	into	apparent	absorbance	through	log	(1	/	R)	to	1	

reduce	noise,	offset	effects,	and	to	enhance	the	linearity	between	measured	absorbance	and	SOM	concentration.	2	

•	 The	absorbance	spectra	were	mean-centered	to	ensure	that	all	results	would	be	interpretable	in	terms	3	

of	variation	around	the	mean.	4	

•	 Subsequently,	the	absorbance	spectra	were	smoothed	through	a	median	filter	algorithm	with	a	first	5	

derivative	to	remove	an	additive	baseline	(Viscarra	Rossel,	2008).	6	

•	 Finally,	absorbance	spectra	were	normalized	through	the	multiplicative	scatter	correction	(MSC)	(Geladi	7	

et	al.,	1985)	to	reduce	the	effect	of	scattering.	8	

	9	

Details	on	pre-processing	methods	can	be	found	in	Martens	and	Næs	(1989)	and	in	Næs	et	al.	(2004).	10	

	11	

2.4.	 Analysis	of	Vis–NIR	data	12	

	13	

The	approach	aims	at	establishing	a	mathematical	relationship	between	the	response	variable	y	(measured	14	

values	of	SOM)	and	the	set	of	predictors	X	(spectral	data).	Among	the	available	multivariate	statistical	methods,	15	

partial	least	squares	regression	(PLSR)	(Geladi	and	Kowalski,	1986)	was	preferred.	PLSR	is	a	common	16	

chemometrics	meth-	od	in	Vis–NIR	analysis	(Martens	and	Næs,	1989;	Viscarra	Rossel	et	al.,	2006).	The	idea	17	

behind	PLSR	is	to	find	a	few	linear	combinations	(com-	ponents	or	factors)	of	the	original	X-values	and	to	use	18	

only	these	linear	combinations	in	the	regression	equation	(Næs	et	al.,	2004).	In	this	way,	the	irrelevant	and	19	

unstable	information	is	discarded	and	only	the	most	relevant	part	of	the	X-variation	is	used	for	regression;	the	20	

problem	of	collinearity	is	solved	and	more	stable	regression	equations	obtained	(Næs	et	al.,	2004).	PLSR	reduces	21	

the	Vis–NIR	matrix	(reflectance	by	observation)	to	a	small	number	of	statistically	significant	components	and	is	22	

based	on	latent	variable	decomposition	of	two	sets	of	variables:	the	set	X	of	predictors	(matrix	n	×	N,	where	n	is	23	

the	number	of	observations	and	N	is	the	number	of	wavelengths)	and	the	set	y	of	response	variable	(vector	n	×	1	24	

of	SOM	measurements).	The	latent	variables	are	orthogonal	factors	that	maximize	the	covariance	between	25	

independent	(X)	and	dependent	variables	(y),	and	explain	most	of	the	variations	in	both	predictors	and	26	

responses.	For	more	details	on	the	PLSR	method,	see	e.g.	Martens	and	Næs	(1989).	27	

The	optimal	number	of	latent	variables	was	chosen	through	a	leave-	one-out	cross-validation	(Efron	and	28	

Tibshirani,	1993)	as	the	number	that	minimizes	the	predicted	residual	sum	of	squares	(PRESS).	29	

The	best	prediction	of	the	leave-one-out	cross-validation	model	was	evaluated	using	the	coefficient	of	30	



determination	(R2)	and	root	mean	square	error	of	prediction	(RMSE).	1	

Besides	centering	the	predictors	and	the	response	variable,	they	were	also	scaled	to	standard	deviation	equal	to	2	

one.	Scaling	serves	to	place	all	predictors	and	response	on	an	equal	footing	relative	to	their	variation	in	the	data.	3	

Pre-treatment	of	data	was	performed	with	PArLeS	v.	3.1	software	developed	by	Viscarra	Rossel	(2008),	and	4	

PLSR	with	the	procedure	PLS	of	SAS/STAT	statistical	package	software	(SAS	Institute	Inc.,	2013	release	9.3).	5	

	6	

2.5.	 REML-estimation	of	SOM	with	spatially	correlated	errors	7	

	8	

The	regression	method	implemented	in	the	PLS	procedure	fits	the	observed	data	through	the	use	of	the	ordinary	9	

least	squares	(OLS)	method,	which	assumes	that	residuals	of	prediction	are	independent	and	identically	10	

distributed.	Since	SOM	observations	are	expected	to	be	autocorrelated,	the	variogram	estimated	from	the	11	

residuals	is	biased	because	its	point	estimates	depend	in	a	non-linear	way	on	the	estimates	of	the	coefficients	of	12	

regressors	(Lark	et	al.,	2006).	The	state	of	the	art	for	this	problem	is	to	use	the	residual	maximum	likelihood	13	

(REML)	estimation	of	the	spatial	variance	model	in	combination	with	the	empirical	best	linear	unbiased	14	

predictor	(E-BLUP)	(Patterson	and	Thompson,	1971).	According	to	this	approach,	SOM	is	computed	from	a	linear	15	

mixed	effect	model	(LMEM)	comprising	an	additive	combination	of	the	factors	extracted	with	PLS	as	fixed	16	

effects,	one	random	effect,	which	is	the	spatially	dependent	random	variable	in	a	geostatistical	context	and	an	17	

independent	random	variable.	The	advantage	of	REML,	to	estimate	variance	parameters	for	the	random	effect,	is	18	

that	it	reduces	the	bias	found	in	maximum	likelihood	or	OLS	estimates	(Cressie,	1993).	Spatial	covariance	19	

models,	originally	developed	for	Geostatistics,	are	also	used	in	the	mixed	effect	model	approach	(Diggle	et	al.,	20	

1998);	therefore,	correlation	structure	can	be	described	by	a	variogram	of	spatial	residuals.	21	

The	LMEM	may	be	written	as:	22	

	23	

z	=	Xβ	+	Zu	+	ε	 	 	 1	24	

	25	

where	the	vector	z	contains	the	SOM	observations,	X	is	an	n	×	p	design	matrix	consisting	of	the	n	observations	of	26	

the	p	fixed	effects	(the	factors	extracted	with	PLS),	the	vector	β	contains	the	p	fixed-effect	coefficients;	u	is	the	27	

spatially	dependent	random	variable;	Z	is	the	design	matrix	and	the	term	ε	is	a	vector	of	independent	random	28	

errors.	The	random	terms	u	and	ε	are	assumed	to	be	jointly	Gaussian	and	independent	of	each	other.	The	term	ε,	29	

in	particular,	represents	both	independent	measurement	errors	and	variation	at	a	spatial	scale	smaller	than	the	30	



one	of	sampling	and	is	the	nugget	effect	in	geostatistics.	If	u	is	assumed	to	be	drawn	from	a	second-order	1	

stationary	random	process,	its	correlation	matrix	will	depend	only	on	the	relative	locations	of	the	observations,	2	

and	its	covariance	function	will	be	an	authorized	mathematical	model	of	the	distance	between	observations	used	3	

in	geostatistics.	The	parameters	of	such	a	function	will	be	estimated	by	REML	because	this	removes	dependence	4	

of	the	estimates	on	the	fixed-effect	coefficients.	These	coefficients	are	the	ones	that	maximize	the	residual	log-5	

likelihood	function	and	are	found	numerically	through	the	use	of	a	ridge-stabilized	Newton–Raphson	algorithm	6	

(Lindstrom	and	Bates,	1988).	Once	the	parameters	of	covariance	function	and	the	coefficients	of	fixed	effects	are	7	

estimated,	the	predictions	are	computed	at	the	sites	where	the	factors	are	known.	8	

The	spatial	association	of	the	residuals	from	PLSR	was	tested	in	different	ways:	9	

•	 Calculating	the	Moran's	I	(Moran,	1950)	and	Geary's	c	(Geary,	1947)	spatial	autocorrelation	statistics	10	

and	comparing	these	to	their	expect-	ed	values	under	a	null	spatial	(completely	randomized)	model;	11	

•	 Fitting	a	mathematical	model	to	the	experimental	variogram	of	the	residuals;	12	

•	 Performing	a	likelihood	ratio	test	to	assess	whether	the	simplifications	used	in	the	non-spatial	13	

correlation	model	are	still	applicable	with	spatially	correlated	errors	(Oman,	1991;	Wolfinger,	1993).		14	

This	test	requires	computation	of	the	restricted	log-likelihood	(LLR)	for	each	model,	evaluated	at	the	REML	15	

estimates	of	parameters.	The	likelihood	ratio	statistic	for	comparing	the	reduced	(non-spatial)	model	to	the	full	16	

(spatial)	model	is:	17	

	18	

χ2	=	-[LLR(reduced	model)−LLR(full	model)]:	 	 	 2	19	

	20	

Under	the	null	hypothesis	that	the	reduced	model	is	no	different	from	the	full	one;	the	likelihood	ratio	statistic	is	21	

distributed	as	Chi-	squared	with	the	number	of	freedom	degrees	equal	to	the	difference	in	the	number	of	22	

parameters	of	each	of	the	two	models.	Because	the	fixed	part	is	the	same	for	the	two	models,	only	the	number	of	23	

parameters	in	the	variance–covariance	structure	needs	to	be	considered.	24	

Since	REML	estimation	entails	an	explicit	assumption	that	ε	has	a	Gaussian	distribution,	the	distributional	25	

assumptions	for	the	mixed	effect	model	are	tested	by	calculating	the	descriptive	statistics	of	residuals	and	26	

comparing	residuals	with	the	corresponding	quantiles	of	the	standard	normal	variable.	27	

The	two	procedures,	PLSR	and	the	combination	of	PLSR	with	linear	mixed	effect	model,	are	also	compared	by	28	

root	mean	square	prediction	error	(RMSPE)	calculated	through	cross-validation.	29	

The	linear	mixed	effect	model	approach	was	implemented	using	MIXED	procedure	of	SAS/STAT	software	(SAS	30	



Institute	Inc.,	2013	release	9.3).	1	

To	form	the	SOM	predictions	at	an	unsampled	site	in	order	to	produce	a	continuous	map,	the	estimates	were	2	

interpolated	by	ordinary	kriging	(Webster	and	Oliver,	2007).	All	geostatistical	analyses	were	carried	out	with	the	3	

software	package	ISATIS®,	release	2014	(Géovariances,	2014).	4	

	5	

3.	 Results	and	discussion	6	

	7	

Table	1	presents	summary	statistics	for	SOM	data.	The	SOM	contents	varied	spatially	from	a	minimum	value	of	8	

0.30%	to	a	maximum	of	6.50%,	with	a	mean	value	of	2.62%	(Table	1).	The	SOM	dataset	was	characterized	by	a	9	

positively	skewed	distribution	(0.84)	(Table	1,	Fig.	3).	10	

To	analyze	the	relationship	of	SOM	with	soil	type	and	land	use,	the	measured	SOM	data	were	classified	into	four	11	

classes	(i.e.	high,	medium,	low	and	very	low)	based	on	the	USDA	textural	classes	(Table	2	and	Fig.	2)	(Soil	Survey	12	

Staff,	2010)	and	then	compared	with	soil	types	and	land	use	(Fig.	4).	13	

The	comparison	between	the	classes	of	topsoil	SOM	content	and	the	ones	of	soil	type	and	land	use	showed	that	14	

high	SOM	contents	were	prevalently	recorded	in	the	Cambisols	and	Luvisols	(Fig.	4a)	and	in	woodland	areas	(Fig.	15	

4b).	Low	SOM	content	values	were	measured	in	topsoil	samples	of	cropland,	which	are	often	characterized	by	16	

intense	water	erosion	and	tillage-induced	erosion	due	to	unsustainable	agricultural	practices	(Conforti,	2009).	17	

Moreover,	topsoil	samples	with	very	low	SOM	content	were	associated	with	barren	lands,	mostly	on	land	with	18	

intense	erosive	processes	(Conforti	et	al.,	2013a,	b).	19	

A	visual	inspection	of	the	set	of	spectra	allowed	us	to	detect	that	they	are	affected	by	variations	in	SOM	content.	20	

The	mean	reflectance	spectra	of	the	four	classes	of	SOM	content	(Fig.	5)	showed	a	tendency	to	de-	crease	with	21	

SOM,	as	reported	by	other	authors	(Ben-Dor,	2002).	The	overall	shape	of	the	Vis–NIR	spectra	was	generally	22	

similar	for	all	sam-	ples	and	most	displayed	some	degree	of	steep	slope	between	400	and	900	nm.	All	soil	23	

reflectance	spectra	exhibited	high	absorption	peaks	around	1400	nm,	1900	nm	and	2200	nm	(Fig.	5).	These	24	

features	may	be	associated	with	clay	minerals,	OH	features	of	free	water	at	1400	and	1900	nm,	and	lattice	OH	25	

features	at	1400	and	2200	nm	(Ben-Dor,	2002).	The	spectra	also	showed	a	small	absorption	peak	around	2200	26	

nm,	which	may	be	due	to	organic	molecules	(e.g.,	CH2,	CH3,	and	NH3),	Si\OH	bonds,	cation\OH	bonds	in	27	

phyllosilicate	minerals	(e.g.,	kaolinite,	montmorillonite)	(Clark	et	al.,	1990).	28	

We	retained	eight	PLSR	factors	(latent	variables)	since	they	resulted	to	be	significant	by	cross-validation	and	29	

explained	more	than	80%	of	variation	in	both	predictors	and	response.	We	deemed	acceptable	a	loss	of	less	than	30	



20%	of	the	information	for	the	construction	of	a	prediction	model	of	SOM.	1	

The	spatial	autocorrelation	of	the	residuals	from	PLSR	was	verified	with	both	Moran's	I	and	Geary's	c,	tests	2	

(Table	3).	The	observed	Moran's	I	coefficient	(Table	3)	was	statistically	greater	(0.217)	than	the	expected	value	3	

(−	0.005)	indicating	a	positive	spatial	autocorrelation	of	the	residuals.	The	Geary's	c	index	(Table	3)	confirmed	4	

the	positive	spatial	autocorrelation	of	the	residuals	and	was	less	(0.681)	than	the	expected	value	(1).	5	

An	exponential	model	with	a	practical	range	equal	to	600	m	was	fitted	to	the	experimental	variogram	of	6	

residuals.	The	non-spatially	correlated	component	(nugget	effect)	was	about	twice	(0.23%2)	the	structured	7	

component	(partial	sill	=	0.13%2),	which	may	be	due	to	the	rather	coarse	sampling	scale	of	soil.	The	estimated	8	

parameters	of	the	variogram	model	were	used	as	input	values	to	initialize	the	iterative	procedure	of	fitting	in	the	9	

mixed	effect	model	estimator.	10	

The	REML	estimated	parameters	(partial	sill,	range,	nugget	effect)	of	the	exponential	model	of	covariance	11	

function	of	residuals	and	the	estimates	of	the	intercept	(β0)	and	the	coefficients	(βi)	of	the	eight	latent	variables	12	

(fixed	effects)	are	shown	in	Table	4.	The	exponential	spatial	variance	model	was	preferred	to	other	authorized	13	

variance	models	on	the	basis	of	the	residual	likelihood,	because	all	the	LMEMs	had	the	same	fixed-effect	14	

structure.	15	

All	the	fixed	effects	and	residual	(nugget	effect)	were	highly	significant;	the	parameters	of	the	covariance	16	

function	were	significant	at	a	probability	level	of	about	0.10.	The	weak	stochastic	component,	related	to	spatial	17	

autocorrelation,	was	probably	due	to	a	too	coarse	sampling	scale.	However,	the	likelihood	ratio	test:	18	

	19	

χ2	=	-[LLR(nonspatialmodel)−LLR(spatialmodel)]	20	

					=	-(-419.9	+	413.4)	=	6.5	21	

	22	

was	significant	at	probability	level	of	p	<	0.05,	which	means	that	the	residuals	of	SOM	estimation	were	spatially	23	

correlated;	therefore,	the	use	of	the	mixed	effect	model	approach	after	PLS	regression	is	justified	and	expected	to	24	

improve	the	prediction	of	SOM.	25	

Table	5	shows	the	summary	statistics	of	the	residuals	from	the	fitted	LMEM	calculated	with	cross-validation	and	26	

Fig.	6	displays	the	q–q	plot.	The	residuals	were	symmetrically	distributed	and	showed	no	evident	departure	from	27	

the	normality	assumptions	of	the	model,	supporting	the	assumption	of	a	Gaussian	random	process	28	

superimposed	on	an	ex-	ternal	drift	represented	by	the	spectral	latent	variables.	Moreover,	the	RMSPE	of	LMEM	29	

was	0.59,	smaller	than	RMSPE	found	for	traditional	PLSR	model	(0.69),	which	is	further	evidence	of	the	30	



advantages	of	the	proposed	approach.	1	

The	utility	of	using	reflectance	data,	synthetized	in	eight	latent	variables	as	fixed	effects,	for	spatial	prediction	of	2	

SOM	was	also	proved	with	the	Akaike	information	criterion	(Akaike,	1973),	which	was	small-	er	for	the	3	

estimated	LMEM	compared	with	the	one	of	the	no-external	drift	models,	in	which	the	one	fixed	effect	was	an	4	

overall	mean	(intercept)	(419.4	against	913.9).	5	

The	above	results	are	quite	promising;	however,	the	estimated	relation	between	SOM	and	spectroradiometric	6	

data	needs	to	be	tested	further	across	a	wider	range	of	soils,	characterized	by	different	properties,	texture,	7	

parent	material	and	age	of	landscape,	to	confirm	its	wider	applicability.	8	

To	produce	a	continuous	map	of	LMEM	SOM	predictions,	a	bounded	isotropic	variogram	model	was	estimated,	9	

after	checking	the	occurrence	of	anisotropy	with	a	variogram	map	(not	shown),	including	a	nugget	effect	10	

(1.07%2)	and	two	spherical	models	with	ranges	of	about	753	m	and	2066	m,	respectively.	The	results	of	cross	11	

validation	were	quite	satisfactory	because	the	mean	of	the	estimation	error	(−0.01%)	and	the	mean	squared	12	

deviation	ratio	(1.06)	were	close	to	0	and	1,	respectively.	13	

The	interpolated	map	of	the	LMEM	SOM	predictions,	obtained	using	ordinary	kriging,	is	reported	in	Fig.	7.	The	14	

map	shows	that	high	contents	of	SOM	(N	5%)	can	be	observed	along	the	slopes	in	the	western	part	of	the	study	15	

area,	which	is	characterized	by	Cambisols	formed	on	metamorphic	rocks;	in	addition,	the	SOM	shows	higher	16	

values	where	Fluvisols	are	developed	and	with	scrub/herbaceous	land	cover	and	olive	groves.	Low	values	of	17	

SOM	(on	average	b	2%)	were	mapped	in	the	central	and	eastern	portion	of	the	Turbolo	catchment,	where	there	18	

are	Luvisols	and	Cambisols	and	land	use	characterized	mainly	by	crops	and	olive	groves	(Fig.	2).	In	these	areas,	19	

the	low	content	of	SOM	could	be	due	to	tillage	erosion	caused	by	mechanized	agriculture,	which	promotes	the	20	

oxidation	of	SOM	and	leads	to	increased	soil	erosion	(Rasmussen	et	al.,	1998).	Spatial	distribution	of	SOM	shows	21	

that	the	low	contents	were	found	in	the	areas	where	soils	(e.g.	Vertisols	and	Fluvisols)	developed	on	clayey	and	22	

sandy	parent	materials	(Fig.	1),	often	truncated	by	erosive	processes	(Conforti	et	al.,	2011).	Moreover,	a	visual	23	

inspection	of	the	map	shows	that	the	lowest	values	of	SOM	are	located	in	hilly	barren	lands,	where	clay	lithology	24	

outcrops.	25	

From	what	previously	shown,	it	results	that,	by	simply	adding	two	columns	of	spatial	coordinates	to	reflectance	26	

data	and	modifying	the	regression	method,	it	is	possible	to	improve	SOM	prediction	and	produce	a	continuous	27	

representation	of	SOM	spatial	variation.	28	

	29	

4.	 Conclusions	30	



	1	

In	this	study,	a	combined	method	(PLSR-regression	with	correlated	errors)	was	used	with	Vis–NIR	spectra	to	2	

determine	organic	matter	in	soil	within	the	context	of	digital	soil	mapping.	The	key	objective	was	to	develop	an	3	

approach,	which	accounted	for	spatial	dependence,	4	

		5	

should	it	occur,	whereas	it	is	generally	ignored	in	regression	methods.	The	results	showed	that	the	approach	6	

proposed	can	improve	the	prediction	of	SOM	and	that	soil	reflectance	spectra,	if	treated	with	prop-	er	analytical	7	

procedures,	can	serve	as	excellent	co-variables	for	SOM	estimation.	The	proposed	methodology	could	be	8	

incorporated	into	remote/proximal	sensing	for	digital	soil-property	mapping	by	using	remotely	or	proximally	9	

sensed	hyperspectral	images	as	exhaustive	variables,	known	at	each	node	of	an	interpolation	grid,	where	only	a	10	

small	number	of	reference	measurements	would	be	needed	to	estimate	calibration	function.	The	use	of	11	

geostatistical	techniques,	such	as	multicollocated	cokriging	or	kriging	with	external	drift	(Castrignanò	et	al.,	12	

2011),	could	extend	SOM	prediction	to	the	whole	area	monitored	by	the	remote	or	proximal	sensor.	13	

	14	

Acknowledgments	15	

	16	

The	authors	thank	the	reviewers	for	their	critical	comments	and	suggestions,	which	greatly	improved	the	quality	17	

of	our	manuscript.	We	are	grateful	to	Kevin	O'Connel	for	his	help	in	polishing	the	English	of	this	paper.	18	

	 	19	



References 1	

Aïchi, H., Fouad, Y., Walter, C., Viscarra Rossel, R.A., Lili Chabaane, Z., Sanaa, M., 2009. Regional predictions of soil 2	

organic carbon content from spectral reflectance measurements. Biosyst. Eng. 104, 442–446. 3	

Akaike, H., 1973. Information Theory and an Extension of the Maximum Likelihood Principle. In: Petrov, B.N., Csaki, 4	

F. (Eds.), 2nd International Symposium on Informa- tion Theory. Akademia Kiado, Budapest, pp. 267–281. 5	

ARSSA. 2003. Carta dei suoli della regione Calabria — scala 1:250,000. Monografia divulgativa. ARSSA — Agenzia 6	

Regionale per lo Sviluppo e per i Servizi in Agricoltura, Servizio Agropedologia. Rubbettino, 387 pp. (In Italian) 7	

Ben-Dor, E., 2002. Quantitative remote sensing of soil properties. Adv. Agron. 75, 173–243. 8	

Brown, D.J., Shepherd, K.D., Walsh, M.G., Mays, M.D., Reinsch, T.G., 2006. Global soil char- acterization with VNIR 9	

diffuse reflectance spectroscopy. Geoderma 132, 273–290. 10	

Buttafuoco, G., Conforti, M., Aucelli, P.P.C., Robustelli, G., Scarciglia, F., 2012. Assessing spatial uncertainty in 11	

mapping soil erodibility factor using geostatistical stochastic simulation. Environ. Earth Sci. 66, 1111–1125. 12	

Castrignanò, A., Buttafuoco, G., Comolli, R., Castrignanò, A., 2011. Using digital elevation model to improve soil pH 13	

prediction in an Alpine doline. Pedosphere 21, 259–270. 14	

Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., 1990. High spectral resolution reflectance spectroscopy of 15	

minerals. J. Geophys. Res. 95, 12653–12680. 16	

Conforti, M., 2009. Studio geomorfopedologico dei processi erosivi nel bacino del T. Turbolo (Calabria settentrionale) 17	

con il contributo della spettrometria della riflettenzaPhD Thesis University of Calabria, Italy (310 pp).  18	

Conforti, M., Aucelli, P.P.C., Robustelli, G., Scarciglia, F., 2011. Geomorphology and GIS analysis for mapping gully 19	

erosion susceptibility in the Turbolo Stream catchment (Northern Calabria, Italy). Nat. Hazards 56, 881-898. 20	

Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G., Scarciglia, F., 2012. Soil erosion assessment 21	

using proximal spectral reflectance in VIS–NIR–SWIR region in sample area of Calabria region (Southern Italy). Rend. 22	

Online Soc. Geol. Ital. 21 (Part 2), 1202–1204. 23	

Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G., Scarciglia, F., 2013a. Studying the 24	

relationship between water-induced soil erosion and soil organic matter using Vis–NIR spectroscopy and 25	

geomorphological analysis: a case study in a southern Italy area. Catena 110, 44-58. 26	

Conforti, M., Froio, R., Matteucci, G., Caloiero, T., Buttafuoco, G., 2013b. Potentiality of laboratory visible and near 27	

infrared spectroscopy for determining clay content in for- est soils: a case study from high forest beech (Fagus 28	

sylvatica) in Calabria (southern Italy). EQA Int. J. Environ. Qual. 11, 49–64. 29	



Conforti, M., Pascale, S., Robustelli, G., Sdao, F., 2014. Evaluation of prediction capability of the artificial neural 1	

networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 113, 2	

236–250. 3	

Cressie, N., 1993. Statistics for Spatial Data (Revised Edition). Wiley, New York. Curran, P.J., 1994. Imaging 4	

spectrometry. Program. Phys. Geogr. 18, 247–266. 5	

Demattê, J.A.M., Sousa, A.A., Alves, M.C., Nanni, M.R., Fiorio, P.R., Campos, R.C., 2006. Deter- mining soil water 6	

status and other soil characteristics by spectral proximal sensing. Geoderma 135, 179–195. 7	

Diggle, P.J., Tawn, J.A., Moyeed, R.A., 1998. Model-based geostatistics. J. Appl. Stat. 47, 299–350. 8	

Efron, B., Tibshirani, R., 1993. An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability. 9	

vol. 57. Chapman and Hall, London, UK (436 pp). 10	

Farifteh, J., Van Der Meer, F., Atzberger, C., Carranza, E.J.M., 2007. Quantitative analysis of salt-affected soil 11	

reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 110, 59–78. 12	

Ge, Y., Thomasson, J.A., Morgan, C.L., Searcy, S.W., 2007. VNIR diffuse reflectance spectros- copy for agricultural 13	

soil property determination based on regression-kriging. T ASABE 50, 1081–1092. 14	

Geary, R.C., 1947. Testing for normality. Biometrika 34, 209-242. 15	

Geladi, P., Kowalski, B.R., 1986. Partial least-squares regression: a tutorial. Anal. Chim. 16	

Acta. 185, 1–17. 17	

Geladi, P., MacDougall, D., Martens, H., 1985. Scatter correction for near-infrared reflectance spectra of meat. Appl. 18	

Spectrosc. 39, 491–500. 19	

Géovariances, 2014. Isatis technical references, version 2014. Avon Cedex, France. 20	

IUSS Working Group WRB, 2006. World Reference Base for Soil Resources 2006. World Soil Resources Reports 103. 21	

FAO, Rome. 22	

Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22. Lanzafame, G., Zuffa, G., 23	

1976. Geologia e petrografia del foglio Bisignano (Bacino del Crati, 24	

Calabria). Geol. Romana 15, 223–270. 25	

Lark, R.M., 2009. Kriging a soil variable with a simple nonstationary variance model. J. Agric. Biol. Environ. St. 14, 26	

301–321. 27	

Lark, R.M., Cullis, B.R., Welham, S.J., 2006. On spatial prediction of soil properties in the presence of a spatial trend: 28	

the empirical best linear unbiased predictor (E-BLUP) with REML. Eur. J. Soil Sci. 57, 787–799. 29	

Lindstrom, M.J., Bates, D.M., 1988. Newton–Raphson and EM algorithms for linear mixed- effects models for 30	

repeated-measures data. J. Am. Stat. Assoc. 83, 1014–1022. 31	



Lucà, F., Conforti, M., Robustelli, G., 2011. Comparison of GIS-based gullying susceptibility mapping using bivariate 1	

and multivariate statistics: Northern Calabria, South Italy. Geomorphology 134, 297–308. 2	

Lützow, M.V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., 2006. 3	

Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions — a 4	

review. Eur. J. Soil Sci. 57, 426–445. 5	

Mabit, L., Bernard, C., 2009. Spatial distribution and content of soil organic matter in an agricultural field in eastern 6	

Canada, as estimated from geostatistical tools.  Earth Surf. Proc. Land 35, 278-283. 7	

Martens, H., Næs, T., 1989. Multivariate Calibration. John Wiley & Sons, Chichester, United Kingdom, UK. 8	

McBratney, A.B., Minasny, B., Viscarra Rossel, R.A., 2006. Spectral soil analysis and inference systems: a powerful 9	

combination for solving the soil data crisis. Geoderma 136, 272–278. 10	

McBratney, A.B., Stockmann, U., Angers, D., Minasny, B., Field, D., 2014. Challenges for soil organic carbon 11	

research. In: Alfred, E., Hartemink, A.E., McSweeney, K. (Eds.), Soil Carbon. Springer, New York, pp. 3–16. 12	

Moran, P.A.P., 1950. Notes on continuous stochastic phenomena. Biometrika 37, 17–23. 13	

Mouazen, A.M., Maleki, M.R., De Baerdemaeker, J., Ramon, H., 2007. On-line measurement of some selected soil 14	

properties using a VIS–NIR sensor. Soil Tillage Res. 93, 13–27. 15	

Næs, T., Isaksson, T., Fearn, T., Davies, T., 2004. A User-Friendly Guide to Multivariate Calibration and Classification. 16	

Reprinted with Corrections. NIR Publications, Chichester. 17	

Nanni, M.R., Demattê, J.A.M., 2006. Spectral reflectance methodology in comparison to traditional soil analysis. Soil 18	

Sci. Soc. Am. J. 70, 393–407. 19	

Nieder, R., Benbi, D.K., 2008. Carbon and Nitrogen in the Terrestrial Environment. 20	

Springer. 21	

Oman, S.D., 1991. Multiplicative effects in mixed model analysis of variance. Biometrika 78, 729–739. 22	

Patterson, H.D., Thompson, R., 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 23	

58, 545–554. 24	

Rasmussen, P.E., Goulding, K.W.T., Brown, J.R., Grace, P.R., Janzen, H.H., Körschens, M., 1998. Long-term 25	

agroecosystem experiments: assessing agricultural sustainability and global change. Science 282, 893–896. 26	

Reeves III, J.B., McCarty, G.W., Reeves, V.B., 2001. Mid-infrared diffuse reflectance spec- troscopy for the 27	

quantitative analysis of agricultural soils. J. Agric. Food Chem. 49, 766-772. 28	

Reeves III, J., McCarty, G., Mimmo, T., 2002. The potential of diffuse reflectance spectros- copy for the determination 29	

of carbon inventories in soils. Environ. Pollut. 116, S277–S284. 30	



Sarkhot, D.V., Grunwald, S., Ge, Y., Morgan, C.L.S., 2011. Comparison and detection of total and available soil carbon 1	

fractions using visible/near infrared diffuse reflectance spectroscopy. Geoderma 164, 23–32. 2	

SAS Institute Inc, 2013. SAS® 9.3 Guide to Software Updates. SAS Institute Inc., Cary, NC, USA. 3	

Scarciglia, F., Conforti, M., Buttafuoco, G., Robustelli, G., Aucelli, P.P.C., Morrone, F., Casuscelli, F., Palumbo, G., 4	

2012. Integrated study of a soil catena in the Turbolo watershed (Calabria, southern Italy): soil processes, hydrology 5	

and geomorphic dynamics. Rend. Online Soc. Geol. Ital. 21 (Part 2), 1215–1217. 6	

Sequi, P., De Nobili, M., 2000. Determinazione del carbonio organico. In: Violante, P. (Ed.), Metodi di analisi chimica 7	

del suolo, VII.3. Franco Angeli, Roma, pp. 18–25 (in Italian). 8	

Shepherd, K.D., Walsh, M.G., 2002. Development of reflectance spectral libraries for characterization of soil properties. 9	

Soil Sci. Soc. Am. J. 66, 988–998. 10	

Stein, M.L.,  1999.  Statistical  Interpolation  of  Spatial  Data:  Some  Theory  for  Kriging. Springer, New York. 11	

Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., Wetterlind, J., 2010. Visible and near infrared spectroscopy in soil 12	

science. Adv. Agron. 107, 163–215. 13	

Stevens, A., Van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., Ben-Dor, E., 2008. Laboratory, field and 14	

airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma 144, 395–404. 15	

Soil Survey Staff, 2010. Keys to Soil Taxonomy, 11th Edit., USDA — United States Department of Agriculture. 16	

Natural Resources  Conservation  Service,  Washington, DC (338 pp). 17	

Viscarra Rossel, R.A., 2008. ParLeS: software for chemometrics analysis of spectroscopic data. Chemom. Intell. Lab. 18	

90, 72–83. 19	

Viscarra Rossel, R.A., Behrens, T., 2010. Using data mining to model and interpret soil dif- fuse reflectance spectra. 20	

Geoderma 158, 46–54. 21	

Viscarra Rossel, R.A., McBratney, A.B., 1998. Laboratory evaluation of a proximal sensing technique for simultaneous 22	

measurement of soil clay and water content. Geoderma 85, 19–39. 23	

Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O., 2006. Visible, near infrared, mid 24	

infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 25	

131, 59–75. 26	

Viscarra Rossel, R.A., Chappell, A., de Caritat, P., McKenzie, N.J., 2011. On the soil informa- tion content of visible–27	

near infrared reflectance spectra. Eur. J. Soil Sci. 62, 442–453. Webster, R., Oliver, M.A., 2007. Geostatistics for 28	

Environmental Scientists, 2nd ed. Wiley, Chichester. 29	

Wolfinger, R.D., 1993. Covariance structure selection in general mixed linear models.Commun. Stat.-Theor. M. 22, 30	

1076-1106. 31	



Figures and Table 1	

Fig. 1. Location of the study area and topsoil samples. The lithologic map of study area is also reported 2	

Fig. 2. Soil (a) and land use (b) maps. A posting of the measured SOM content values using four classes is also 3	

reported. 4	

Fig. 3. Histogram of measured SOM data. 5	

Fig. 4. Soil samples distribution in the SOM classes for different soil types (a) and land use (b). 6	

Fig. 5. Mean reflectance curves of soils for different classes of SOM. 7	

Fig. 6. q–q plot of residuals for the fitted spatial linear mixed effects model. 8	

Table 1 - Basic statistics of measured SOM content data. 9	

Table 2 - SOM content classified according to the USDA textural classes. 10	

Table 3 - Results for the autocorrelation statistics. 11	

Table 4 - Results of linear mixed model estimation. 12	

Table 5 - Basic statistics of residuals for the fitted spatial linear mixed effects model. 13	
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