
Artificial Intelligence 278 (2020) 103180
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Coalitional games induced by matching problems: Complexity

and islands of tractability for the Shapley value

Gianluigi Greco ∗, Francesco Lupia, Francesco Scarcello

University of Calabria, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 February 2019
Received in revised form 8 August 2019
Accepted 25 September 2019
Available online 3 October 2019

Keywords:
Coalitional games
Matching theory
Shapley value
Computational complexity
Tree decompositions
Monadic second order logic

The paper focuses on cooperative games where the worth of any coalition of agents is
determined by the optimal value of a matching problem on (possibly weighted) graphs.
These games come in different forms that can be grouped in two broad classes, namely
of matching and allocation games, and they have a wide spectrum of applications, ranging
from two-sided markets where buyers and sellers are encoded as vertices in a graph, to
allocation problems where indivisible goods have to be assigned (matched) to agents in a
fair way, possibly using monetary compensations.
The Shapley value and the related notion of Banzhaf value have often been identified
as appropriate solution concepts for many applications of matching/allocation games,
but their computation is intractable in general. It is known that these concepts can be
computed in polynomial time for matching games on unweighted trees and on graphs
having degree at most two. However, it was open whether or not such positive results
could be extended to the more general case of graphs having bounded treewidth, and to
the case of allocation problems on weighted graphs.
The paper provides a positive answer to these questions, by showing that computing the
Shapley value and the Banzhaf value is feasible in polynomial time for the following
classes of games: matching games over unweighted graphs having bounded treewidth,
allocation games over weighted graphs having bounded treewidth, and allocation games
over weighted graphs and such that each good is of interest for two agents at most.
Without such structural restrictions, computing these solution concepts on allocation
games is instead shown to be #P-hard, even in the case of unweighted graphs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Coalitional games and matching problems

Coalitional game theory provides a rich framework for understanding and reasoning about environments populated by
autonomous agents who may want to collaborate with each other in order to obtain higher worth than by acting in isola-
tion. While being traditionally grounded in the economic literature, coalitional games gained popularity in the last few years
within the artificial intelligence research community, where they have been intensively analyzed from the computational
viewpoint [1–5] and where they have been used in a wide spectrum of applications, such as task allocation [6], rideshar-

* Corresponding author.
E-mail addresses: gianluigi.greco@unical.it (G. Greco), francesco.lupia@unical.it (F. Lupia), francesco.scarcello@unical.it (F. Scarcello).
https://doi.org/10.1016/j.artint.2019.103180
0004-3702/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2019.103180
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:gianluigi.greco@unical.it
mailto:francesco.lupia@unical.it
mailto:francesco.scarcello@unical.it
https://doi.org/10.1016/j.artint.2019.103180
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2019.103180&domain=pdf

2 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
ing [7], worth distribution problems based on agents’ skills [8], and definition of mechanisms to pool scarce resources [9,
10].

In abstract terms, a coalitional game G can be formalized as a tuple 〈N, v〉, where N is a set of agents and v is a
function associating each coalition C ⊆ N with the worth v(C) ∈ R that agents in C can guarantee to themselves. This
function is usually given in a compact way, rather than by explicitly listing all possible (exponentially-many) coalitions with
their worth [11–14]. In particular, for each coalition C , the value v(C) often comes from the solution to an underlying
computation/optimization problem, whose precise formulation depends on the specific games that are considered (see, e.g.,
[12,15–19] and the references therein). As an example, in the well-known class of induced subgraph games [11], we are given
a weighted graph whose nodes correspond to the agents and where the value v(C) is defined as the sum of the weights
of the edges in the subgraph induced by C . Other classes of games that have been intensively studied in earlier literature
are still defined on top of graphs/networks, but involve more complex optimization problems related, for instance, to the
computation of minimum spanning trees [20], maximal flows [21–23], optimal connectivity properties [24,25], optimal placements
of facilities [26], minimum traveling salesman paths [27], and minimum vertex covers [28], just to name a few.

In the paper, we focus on this kind of combinatorial approach to succinctly specify coalitional games, and we consider
two classes of games, namely matching and allocation games, where the underlying optimization problem is the computa-
tion of maximum matchings. Being defined by the same optimization problem, matching and allocation games share many
conceptual similarities and can be analyzed by using similar technical machineries. Indeed, the main difference between
these classes of games comes in how we constraint and interpret the underlying graph where maximum matchings have
to be computed: while in matching games the graph can be arbitrary and its nodes one-to-one correspond to agents, in
allocation games the graph is always bipartite, with nodes on one “side” corresponding to agents, and nodes on the other
“side” corresponding to “goods” (or whatever agents are actually interested in).

The interest in matching games goes back to the seventies, when they have been firstly advocated by Shapley and
Shubik [29] as a natural model to study two-sided markets [30]. In this model, the underlying graph G is bipartite and
its edges encode the interactions between a set of buyers and a set of sellers, each of them supplying or demanding
exactly one unit of an indivisible good. The value v(C) of a coalition C , which can mix together buyers and sellers, is the
maximum number of trades that can occur among the members of C—and, indeed, it coincides with the cardinality of the
maximum matching in the subgraph of G induced by the nodes in C , denoted hereafter by G[C]. The extension of this
model to arbitrary graphs (i.e., not necessarily bipartite) was firstly proposed by LeBreton and Weber [31] in the context of
an application for school location and, subsequently, by Eriksson and Karlander [32] to deal with a roommate problem. In
these extensions, moreover, the edges of the underlying graph G are weighted (reflecting the utility of matching the agents
associated to the endpoints), so that v(C) is defined as the weight of a maximum weighted matching in the subgraph of
G induced by the nodes in C . The resulting games go generally under the name of weighted-matching games and they have
been the subject of several research works, which have been aimed at exploiting them in concrete domains, as well as at
analyzing their intriguing theoretical underpinnings (see [33] and the references therein).

Compared to (weighted-)matching games, the formalization of allocation games is more recent. These games have been
proposed in the nineties by Moulin [34] as a framework to analyze fair division problems where monetary compensations
are allowed and utilities are quasi-linear. Their applications range from house allocation to room assignment-rent division,
to (cooperative) scheduling and task allocation, to protocols for wireless communication networks, and to queuing problems.
Similarly to the matching games by Shapley and Shubik [29], we are given a bipartite graph, but here the two “sides” of
the partition are semantically asymmetric: one of them still models the given set of agents (who form the coalitions), while
the other one comprises a number of “goods” to be allocated to agents in an optimal way. An edge connecting an agent i
to a good g means that i is interested in the good g and, in weighted graphs, a weight on the edge reflects i’s valuation
of g . In fact, in most applications, such as in [35–38], goods values do not depend on agents, but are only determined
by objective properties of the goods (e.g., the value of a house, or the quality of a research product in [35,39]). Therefore,
they can be modeled as bipartite graphs with weights on the goods or, viewed in the classical matching framework, as
edge-weighted (bipartite) graphs where, for each good, its incident edges have the same weight. We refer to these games
as the weighted-allocation games, and we do not deal in the paper with the case of arbitrary weights on edges, which is left
for future work.

For every kind of game considered in the paper, we provide a fine-grained analysis to distinguish the results that
hold in the setting where the underlying graphs are weighted and the coalition worth is determined by maximum-weight
matchings, from the results that apply to the unweighted version where the coalition worth is determined by maximum-
cardinality matchings.

1.2. Solutions concepts and the Shapley value

In a coalitional game G = 〈N, v〉 (with transferable utility), it is assumed that the agents forming a coalition C can dis-
tribute the payoff v(C) among themselves in any way. An outcome can be, then, modeled as a profile assigning some payoff
xi to each agent i ∈ N , in a way that the total worth available to the grand-coalition N is distributed, i.e., x1 +· · ·+xn = v(N).
The crucial question is to identify those outcomes, called solution concepts, which can embody some desirable and intuitive
stability and/or fairness properties in the worth distribution.

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 3
Table 1
Summary of complexity results for graphs with and without weights on the edges—numbers refer to the theo-
rems where the results are proven. Specific entries are reported for results provided on graphs without further
restrictions (any), on classes of graphs having bounded treewidth (btw), and on classes of graphs whose degree is
at most two (degree ≤ 2)—for allocation games, the requirement on the degree refers to the nodes correspond-
ing to the “goods” that have to be allocated (that is, it identifies the class of binary-clashes allocation games).
∗,+ results are proven in [47], [38], respectively.

graphs weighted graphs

any btw degree ≤ 2 any btw degree ≤ 2

matching #P-hard∗ in P (4.10) in P∗ #P-hard∗ open in P∗
allocation #P-hard (3.2) in P (5.11) in P (6.1) #P-hard+ in P (5.11) in P (6.1)

The most well-studied solution concept is arguably the core, formalized by Gillies [40] on top of an intuition that goes
back to the work of Edgeworth [41]. The idea is to single out those outcomes that are “stable” w.r.t. deviations of sets of
agents which might want to leave the grand-coalition and form an independent coalition, that is,

∑
i∈C xi ≥ v(C) must hold

for each C ⊆ N . On allocation games and on matching games defined over bipartite graphs, it has been shown that there
always exists (at least) one outcome satisfying these conditions [29,34]. Instead, this is not the case for arbitrary matching
games [42], as the reader can immediately check by considering three agents connected in a triangle (whose edges have
unitary weight), for which the conditions x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 ≥ 1, and x1 + x2 + x3 = 1 cannot be simultaneously
satisfied. However, polynomial-time algorithms have been exhibited to check whether the core of a (possibly weighted)
matching game is not empty and to compute a core outcome (if any exists) [15,43].

Noticeable solution concepts that refine the stability condition of the core are the least-core and the nucleolus [44]. These
concepts have been put under the lens of computational complexity on matching-based games, too. Indeed, they have
been shown to be computable in polynomial time on matching games without weights [45] and on any class of weighted
matching games for which the core is guaranteed not to be empty [43].

Other solution concepts focus on fairness properties rather than on stability conditions. In this context, the prototypical
solution concept is the Shapley value [46], which is based—very roughly—on the idea that the payoff of an agent should be
somehow proportional to the marginal contributions she provides to the payoff of all possible coalitions that can form. This
idea leads to very desirable properties for a division scheme, such as equal treatment of equals and additivity (see Section 2
for a more formal treatment). However, the price to be paid is that, differently from the core (and related concepts), the
Shapley value is computationally intractable.

Indeed, Aziz and de Keijzer [47] have shown that, on matching games, computing the Shapley value is #P-complete,
hence not feasible in polynomial time under the standard complexity assumption that P 	=NP. However, on the positive
side, they showed that the computation is feasible in polynomial time if the maximum degree of the underlying graphs
is two, and they asked whether this result can be extended to some non-trivial class of graphs of degree at least three.
The question has been then addressed by Bousquet [48], who showed that the Shapley value of matching games over trees
can be computed in polynomial time, and left open the problem of assessing whether the result can be extended to larger
classes of graphs having a low degree of cyclicity, formally, to classes of graphs having bounded treewidth [49].

Similar bad news come from allocation problems, for which the Shapley value is known to be intractable (#P-complete)
when the underlying graphs are weighted [38], but it was not known whether such an intractability result extends to the
case of unweighted graphs. Moreover, no analysis was so far conducted to isolate subclasses of practical interest where the
computation can be carried out efficiently. In particular, prior to our work, it was not assessed whether the Shapley value
of allocation problems can be computed efficiently on trees and, more-generally, on graphs having bounded treewidth, or
on graphs whose nodes have a small degree.

1.3. Contribution

In the paper, we address the above research questions related to matching and allocation games, and we provide a
comprehensive analysis of the intrinsic complexity of the Shapley value by devoting special care to the identification of
islands of tractability.

A summary of our results is reported in Table 1. Note that we have considered all the settings previously addressed in
the literature and discussed in Section 1.2, by distinguishing weighted graphs from unweighted ones, and by dealing with
graphs without structural restrictions, with graphs having bounded treewidth, and with graphs having bounded degree (in
particular, degree at most two). The picture that emerges is rather clear and complete, with the only missing entry referring
to the complexity of weighted-matching games on graphs having bounded treewidth.1

1 Assessing whether our tractability result in Theorem 4.10 can be extended to weighted-matching games is one of the challenging open problems that
we leave for further research—see Section 8.

4 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
In more details, our contribution is as follows:

(1) We take a closer look at the complexity of allocation games and we show that #P-hardness still holds even if the
underlying bipartite graphs are not weighted. The reduction is entirely different from the one exhibited in the weighted
case [38].

(2) We analyze matching and allocation games on graphs having bounded treewidth, by providing polynomial-time algo-
rithms that are able to compute the Shapley value and, with minor modifications, the Banzhaf value [50], a closely-
related solution concept. On the two classes of games, tractability results are established via a similar proof scheme
that evidences the connection that exists between them. Indeed, such results are established (i) by pointing out novel
and useful properties for matchings, (ii) by using these properties to get rid of matching optimization problems and
solve instead suitable counting problems, and (iii) by exploiting known tractability results for Monadic Second Order
logic (MSO) formulas [51] on graphs having bounded treewidth. The first two points required rather involved technical
elaborations and the graph-theoretical results we have derived are of independent interest. In fact, these tractability
results are the main technical achievements of this paper and our proof techniques might well find applications in dif-
ferent contexts. It is worthwhile noting that the tractability result we establish on matching games positively answers
the open problem posed by Aziz and de Keijzer [47] and Bousquet [48]. Moreover, the tractability result on allocation
games works for weighted games, too (where weights encode objective values of the goods). With this respect, it is
relevant to observe that dealing with weights poses additional challenges in order to use the ingredient (iii) discussed
above, as they cannot be supported “natively” in the MSO formalism.

(3) We show that the Shapley value of weighted-allocation games can be computed in polynomial time on binary-clashes
allocation games, that is, on those games where at most two agents can be interested in the same good, without any
restriction on the number of goods each agent is interested in. This tractability result about allocation games comple-
ments the analogous structural result that was already proven in the literature for matching games where, however, all
nodes are required to have degree at most two [47].

An interesting feature of our approach to show tractability of the Shapley value is that, since polynomial-time algorithms
for evaluating MSO formulas on graphs having bounded treewidth have been implemented in systems that are already
available to the research community, the MSO encoding provides us with a declarative, yet “executable” specification for its
computation. Therefore, on a more practical level,

(4) We implement the algorithms discussed in (2), by delegating the evaluation of the MSO encodings to the state-of-the-art
MSO solver Sequoia [52]. The effectiveness of the resulting prototype is then tested on a number of benchmark graphs,
derived either synthetically or from a concrete application for the evaluation of the quality of research in Italy [35,39].
Results of this experimentation are discussed in the paper, too.

Note that the analysis we carry out in this paper extends some preliminary results on the complexity of the Shapley value
we discussed in [53,54]. In particular, the polynomial time algorithm we present for weighted-allocation games over graphs
having bounded treewidth is entirely novel and significantly generalizes2 the one illustrated in the conference version [54].
Moreover, results of a comprehensive experimental activity were missing in [53,54], where only a few preliminary tests of
synthetic datasets had been considered.

1.4. Organization

The rest of the paper is organized as follows. Section 2 presents the notation and overviews some basic concepts related
to coalitional games and to the notion of treewidth. The complexity of allocation games over arbitrary graphs is discussed
in Section 3. Structural tractability results for matching and weighted-allocation games are presented in Section 4 and
Section 5, respectively. The analysis of weighted-allocation games defined over graphs for which the degree of the nodes
associated with goods is at most two is conducted in Section 6. Our prototype system and the experimental activity we
have carried out are discussed in Section 7. Conclusions are eventually drawn in Section 8, where a number of avenues for
further research are also illustrated.

2. Preliminaries

In this section, we recall some background concepts related to coalitional games and to structural decomposition methods
that we shall use in the rest of the paper.

2 A different approach has been used in [54], where we proved tractability only for classes of games whose interaction graphs (whose nodes are the agents
and where edges connect those pair of agents that are interested in the same good) have bounded treewidth. To appreciate the significant improvement
of the result presented in this extended version, observe that a bipartite graph with one good g connected to n distinct agents is actually a tree, but the
corresponding interaction graph is the n-nodes clique, whose treewidth is n − 1.

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 5
Fig. 1. Illustration of examples in Section 2: (a) the graph G ′ defining the weighted-matching game Gm
G ′ ; (b) the graph G ′′ defining Gm

G ′′ ; and (c) the graph
G ′′′ defining the weighted-allocation game Ga

G ′′′ .

2.1. Weighted-matching and weighted-allocation games

A coalitional game can be formalized as a tuple G = 〈N, v〉 where N = {1, ..., n} is a set of agents and where v is
a function associating each coalition C ⊆ N with the worth v(C) ∈ R that agents in C can guarantee to themselves by
collaborating with each other; in particular, the worth function satisfies v(∅) = 0.

In the paper, we consider classes of coalitional games defined in terms of matching problems of graphs. To formalize
these classes, let us first introduce some notions.

Let G = (V , E, w) be a weighted graph, where V is a set of nodes, E is a set of (undirected) edges, and w : E �→R is a
function equipping each edge e ∈ E with the value w(e) ∈ R+ ∪ {0}. A set M ⊆ E of edges is said to be a matching in the
graph G if e1 ∩ e2 = ∅, for each pair of distinct edges e1, e2 ∈ M . The weight of M is the value

∑
e∈M w(e), shortly denoted

as w(M). If w(M) ≥ w(M̄) holds for each matching M̄ , then we say that M is a maximum weighted matching and we denote
the value w(M) as max(G). These notions are illustrated below.

Example 2.1. Consider the weighted graph G ′ = (V ′, E ′, w ′) shown in Fig. 1(a), with V ′ = {1, 2, 3, 4, 5} being the set of
its nodes and with the matching M = {{1, 3}, {2, 5}} being depicted in bold. Note that w(M) = w({1, 3}) + w({2, 5}) =
2.5 + 3.2 = 5.7. In fact, it can be checked easily that M is the maximum weighted matching in G ′ (so that max(G ′) = 5.7).
For instance, for the matching M̄ = {{1, 5}, {2, 3}}, we have w(M̄) = 5.6 < w(M). �

Assume now that a weighted graph G = (V , E, w) is given. The weighted-matching game induced by G = (V , E, w) is the
tuple Gm

G = 〈V , vm
G 〉, where nodes are transparently viewed as agents and where vm

G is the function associating with each
coalition C ⊆ V the value of the maximum matching of the subgraph G[C] induced by the nodes in C , that is, vm

G (C) =
max(G[C]).

Example 2.2. Consider the game Gm
G ′ = 〈V ′, vm

G ′ 〉 induced by graph G ′ in Example 2.1: for the grand coalition V ′ we have
vm

G ′ (V ′) = max(G ′[V ′]) = max(G ′) = 5.7, as witnessed by the maximum weighted matching shown in Fig. 1(a); instead,
for the coalition {1, 2, 3}, we have vm

G ′ ({1, 2, 3}) = 4.2, since {{2, 3}} is the maximum weighted matching in the subgraph
induced by the nodes {1, 2, 3}.

For another example, consider the game Gm
G ′′ = 〈V ′′, vm

G ′′ 〉 induced by the weighted graph G ′′ shown in Fig. 1(b). Note that
G ′′ is bipartite3 and its “sides” are the sets {1, 2} and {3, 4, 5}: for the grand coalition we have vm

G ′′ (V ′′) = max(G ′′) = 5.7;
for the coalition {1, 2, 4, 5}, we have vm

G ′′ ({1, 2, 4, 5}) = 3.5, because of the matching M ′′ = {{1, 4}, {2, 5}}. �
Similarly to the case of the game Gm

G ′′ discussed in Example 2.2, in allocation games we are given a weighted bipartite
graph G = (V 1 ∪ V 2, E, w) such that |e ∩ V 1| = |e ∩ V 2| = 1 holds, for each e ∈ E . However, the two “sides” V 1 and V 2
consist of nodes of different kinds: V 1 is the set of agents, while V 2 is a set of goods (or whatever the agents are interested
in). Moreover, in this paper, we consider weights interpreted as objective values of the goods, that is, values that depends
only on properties of goods rather than on subjective valuations attributed to them by the various agents. These values
can be viewed equivalently as weights on the nodes in V 2, or as weights on the edges of the graph, provided that the
weights of all edges incident to any good g ∈ V 2 are equal. Such a weighted bipartite graph defines a weighted-allocation
game Ga

G = 〈V 1, va
G〉 where, for each coalition C ⊆ V 1, va

G(C) = max(G[C ∪ V 2]). That is, the worth of C is the one associated
with the best way to match the nodes in C (agents) with the nodes of the other side V 2 (the goods).

Example 2.3. Consider the game Ga
G ′′′ = 〈{1, 2}, va

G ′′′ 〉 induced by the bipartite weighted graph G ′′′ shown in Fig. 1(c), where
1 and 2 are agents and X , Y , and Z are goods (with some associated values). The edges shown in the figure mean that agent

3 Weighted-matching games over bipartite graphs are usually called assignment games [29]. For completeness, recall that G = (V , E, w) is bipartite if
V = V 1 ∪ V 2 and |e ∩ V 1| = |e ∩ V 2| = 1 holds, for each e ∈ E .

6 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
1 is interested in all goods, while agent 2 is interested only in goods X and Y . For the grand coalition, we have va
G ′′′ ({1, 2}) =

5.7 = max(G ′′′[{1, 2, X, Y , Z}]) because of the (global) optimum matching M ′′′ = {{2, X}, {1, Y }}, which in particular assigns
the good Y with value 2.5 to agent 1. On the other hand, va

G ′′′ ({1}) = 3.2, because in this case agent 1 can take the best
good X , whose value is indeed 3.2. The same holds for agent 2, hence va

G ′′′ ({2}) = 3.2, too. �
If the function w of a weighted graph G = (V , E, w) is such that w(e) = 1, for each e ∈ E , then we say that G is an

unweighted graph (or simply a graph) and, for brevity, we write G = (V , E). In the following, the games discussed above are
just called matching and allocation games, if defined over (unweighted) graphs.

2.2. Solution concepts for coalitional games

A fundamental problem for a coalitional game G = 〈N, v〉 is to single out the most desirable outcomes, usually called
solution concepts, in terms of appropriate notions of worth distributions, i.e., of payoff vectors of the form (x1, ..., x|N|) ∈R|N|
where xi + · · · + x|N| equals the worth associated with the whole set N of agents. This question was studied in economics
and game theory with the aim of providing arguments and counterarguments about why such proposals are reasonable
mathematical renderings of the intuitive concepts of fairness and stability [55].

In the paper, we focus on the Shapley value [46], which is a well-known solution concept such that the payoff associated
with each agent i ∈ N is given by the following weighted average of her marginal contributions to all coalitions:

φi(G) =
∑

C⊆N\{i}

|C |!(|N| − |C | − 1)!
|N|!

(
v(C ∪ {i}) − v(C)

)
,

where v(C ∪ {i}) − v(C) is the marginal contribution of i to the coalition C ∪ {i}.

Example 2.4. For the allocation game Ga
G ′′′ induced by the graph G ′′′ shown in Fig. 1(c), the Shapley value of agent 1 is

given by

φ1(Ga
G ′′′) = 1!0!

2!
(

va
G ′′′({1,2}) − va

G ′′′({2})
)

+ 0!1!
2!

(
va

G ′′′({1}) − va
G ′′′(∅)

)
=

= 1
2

(
5.7 − 3.2

)
+ 1

2

(
3.2 − 0

)
= 5.7

2

As a further example, for a game Ĝ = 〈N, ̂v〉 defined over agents in N = {1, 2, 3} and such that v̂({1, 2}) = v̂({2, 3}) =
v̂({1, 3}), v̂({1}) = v̂({2}) = v̂({3}) and v̂(∅) = 0, we have:

φ1(Ĝ) = 2!0!
3!

(
v̂({1,2,3}) − v̂({2,3})

)
+ 1!1!

3!
(

v̂({1,2}) − v̂({2})
)
+

1!1!
3!

(
v̂({1,3}) − v̂({3})

)
+ 0!2!

3!
(

v̂({1}) − v̂(∅)
)

= v̂({1,2,3})
3

Moreover, note that φ1(Ĝ) = φ2(Ĝ) = φ3(Ĝ). �
Distributions computed according to the Shapley value are often perceived as “fair”, as they satisfy the following desirable

properties:

• φ1(G) + · · · + φ|N|(G) = v(G); (efficiency)
• If v(C ∪ {i}) − v(C) = 0 for each C ⊆ N , then φi(G) = 0; (nullity)
• If v(C ∪ {i}) = v(C ∪ { j}) for each C ⊆ N \ {i, j}, then φi(G) = φ j(G); (symmetry)
• If there are two games G1 = 〈N, v1〉 and G2 = 〈N, v2〉 such that (additivity)

v(C) = v1(C) + v2(C) for each C ⊆ N , then φi(G) = φi(G1) + φi(G2).

A solution concept related to the Shapley value is the Banzhaf value [50], which for each agent i in the game G = 〈N, v〉
is given by the (simple) average of her marginal contributions to all coalitions:

βi(G) = 1

2|N|−1

∑
C⊆N\{i}

(
v(C ∪ {i}) − v(C)

)
.

2.3. Structural properties and MSO formulas

Many intractable problems are known to be solvable in polynomial time when restricted to classes of instances whose
structures are represented as acyclic graphs or even hypergraphs. However, typical instances arising from real applications
are hardly precisely acyclic. Yet, they are often not very intricate and, in fact, tend to exhibit some limited degree of
cyclicity, which sometimes suffices to retain most of the nice properties of acyclic ones. Therefore, several efforts have been

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 7
Fig. 2. A width-2 tree decomposition of G ′ in Example 2.5 and the formula ξ3COL in Example 2.6.

spent to investigate invariants that are suited to identify nearly-acyclic (hyper)graphs, leading to the definition of a number
of so-called (purely) structural decomposition-methods [56], such as the tree decompositions [49] and, after some years, the
(generalized) hypertree [57], fractional hypertree [58], component hypertree [59], and greedy hypertree [60,61] decompositions.

These methods aim at transforming a given cyclic (hyper)graph into an acyclic one, by organizing its edges or its nodes
into a polynomial number of clusters, and by suitably arranging these clusters as a tree, called decomposition tree. The
original problem instance can then be evaluated over such a tree, with a cost that is exponential with respect to a measure
of the complexity of the clusters, also called width of the decomposition, and polynomial if this width is bounded by some
constant. In the paper, we focus on the treewidth notion, according to which the width of a decomposition is given by the
maximum cardinality (minus one) of the set of nodes occurring in any of the clusters of the decomposition tree.

Formally, a tree decomposition of a graph4 G = (V , E) is a pair 〈T , χ 〉, where T is a tree and χ is a labeling function
assigning to each vertex p in T a set of nodes χ(p) ⊆ V , such that the following conditions are satisfied: (1) for each node
x ∈ V , there exists p in T such that x ∈ χ(p); (2) for each edge {x, y} ∈ E , there exists p in T such that {x, y} ⊆ χ(p); and,
(3) for each node x ∈ V , the subgraph of T induced by all nodes p such that x ∈ χ(p) is connected.

The width of 〈T , χ 〉 is the number maxp∈T (|χ(p)| − 1). The treewidth of G , denoted by t w(G), is the minimum width
over all its tree decompositions. Treewidth is known to be a true generalization of acyclicity: G is acyclic if and only if
t w(G) = 1. A class of graphs has bounded treewidth if there is some k with t w(G) ≤ k, for every graph G in the class.

Example 2.5. Consider again the graph G ′ in Example 2.1. The treewidth of this graph is 2. Indeed, t w(G ′) > 1 holds, because
the graph contains cycles; and t w(G) ≤ 2, because there is a tree decomposition, shown in Fig. 2(a), having width 2. �

A general approach to show tractability results over graphs having bounded treewidth is to exploit some deep connec-
tions that have been established in the literature to relate tree decompositions with logical sentences expressed in terms of
Monadic Second Order Logic (MSO).

Indeed, any graph G = (V , E) can be viewed as a relational structure, whose domain is V and where the set of its edges
is encoded as a binary (symmetric) relation rE = ⋃

{x,y}∈E {(x, y), (y, x)}. Over structures of this kind, we can build monadic
second order (MSO) logic formulas by using the relation rE , individual variables, the logical connectives ∨, ∧, and ¬, and the
quantifiers ∃ and ∀. Second order formulas allow the use of node and edge variables, ranging over the possible subsets of N
and rE , respectively, of the membership relation ∈, and of the quantifiers ∃ and ∀ over node and edge variables. In addition,
it is often convenient to use symbols like =, ⊆, ⊂, ∩, ∪, and → with their usual meaning, as abbreviations. The fact that a
Monadic Second Order formula ξ holds over a graph G is denoted by G |= ξ .

Example 2.6. The well-known 3-coloring problem on a graph G = (V , E) can be encoded via the MSO formula ξ3COL re-
ported in Fig. 2(b): G |= ξ3COL if and only if there exists a partition of the nodes in V into three disjoint sets of nodes R , B ,
and Y (corresponding to nodes colored red, blue, and yellow) and such that no adjacent nodes take the same color. �

An important property of bounded treewidth graphs for MSO is given by Courcelle’s theorem.

Theorem 2.7 (cf. [51]). Let ξ be a fixed MSO sentence, let k be a fixed constant, and let Ck be a class of graphs having treewidth bounded
by k. Then, for each G ∈ Ck, deciding whether G |= ξ is feasible in linear time.

For instance, from the above theorem and Example 2.6, we can immediately conclude that 3-colorability is a property
that can be checked in linear time on classes of graphs having bounded treewidth—in general, the problem is known to be
NP-complete (see, e.g., [62]).

To our ends, we need a recently proposed histogram version of Courcelle’s theorem, which is about counting solutions
to MSO formulas having a given size, on graphs having bounded treewidth. Let ξ(C) be a MSO sentence, where C is a free,
i.e., not quantified, node set variable and, for each C̄ ⊆ V , let ξ(C̄) denote the formula where C is fixed to be the set C̄ . For

4 On weighted graphs, we shall just ignore the weight associated with the edges.

8 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
instance, if ξ3COL(R) is the formula obtained from the one reported in Fig. 2(b) by dropping the existential quantification on
R , then ξ3COL({1, 3}) asks whether the graph can be colored in a way that nodes 1 and 3, and only those nodes, get color
red. Now, for each graph G = (V , E) and natural number d ∈ {1, ..., |V |}, define histogram(ξ(C), G, d) as the number of
subsets C̄ ⊆ V such that |C̄ | = d and G |= ξ(C̄). For instance, histogram(ξ3COL(R), G, 3) returns the number of the (valid)
colorings where there are precisely three nodes having the color red. The following result shows that histogram can be
computed in polynomial time whenever applied on classes of graphs having bounded treewidth.

Theorem 2.8 (simplified from [63]). Let ξ(C) be a fixed MSO sentence, let k be a fixed constant, and let Ck be a class of
graphs having treewidth bounded by k. Then, for each G = (V , E) ∈ Ck and for each natural number d ∈ {1, ..., |V |}, computing
histogram(ξ(C), G, d) is feasible in deterministic logspace (hence, polynomial time).

Before leaving this section, we note that the tractability results we have mentioned have been proven in the literature by
means of techniques that are entirely constructive and are, very roughly, based on dynamic programming algorithms that
efficiently process tree decompositions in a bottom-up fashion (that is, from the leaves to an arbitrarily chosen root). Details
on these algorithms can be found in the references we have mentioned above—see, also, [64] and the references therein. In
fact, such algorithms have been implemented in systems that are already available to the research community, and on top
of which we built our prototype (see Section 7).

3. Intractability of computation

In the last few years, the Shapley value has been intensively put under the lens of the computational complexity. Indeed,
a number of works have pointed out the intrinsic complexity of computing this value over different compact encodings
for coalitional games. For instance, we know that it is tractable on induced subgraph games [11], on games defined via
(read-once) marginal contribution networks [65,66], on multi-attribute coalitional games [67], on games defined over multi-issue
domains [68], and on a number of classes of games defined to formalize certain game-theoretic centrality measures [69]
(see, also, [70] for further complexity results on such game-theoretic centrality measure and for fast algorithms for their
computation). On the other hand, computing the Shapley value is known to be NP-hard on network flow games [22] and on
knapsack budgeted games [71], while it is known to be #P-complete on a number of classes of games, including minimum base
games on matroids [72] and voting games [11,73,74]. For the latter class of games approximation algorithms have been also
studied [75], while fully polynomial-time randomized approximation scheme are known to exist for supermodular coalitional
games [76].

Concerning the encodings we consider in the paper, it is known that the Shapley value is intractable, formally
#P-complete, on matching games [47]. Moreover, the same complexity result has been proven to hold over weighted-
allocation games [38].

In this section, we sharpen the result discussed above and we show that #P-hardness still holds5 if we consider the
restriction to the (unweighted) allocation games, which are induced by unweighted graphs. To establish the result, we
proceed by first proving the intractability of the Banzhaf value.

Theorem 3.1. On allocation games, computing the Banzhaf value is #P-hard.

Proof. Let G = (V 1 ∪ V 2, E) be a bipartite graph with V 1 = {1, ..., n} and V 1 ∩ V 2 = ∅. Recall that computing the number of
subsets C ⊆ V 1 of nodes to which all nodes in V 2 can be matched is #P-hard [78].

Consider the bipartite graph G ′ = (V 1 ∪ {n + 1} ∪ V 2, E ∪ {{n + 1, x} | x ∈ V 2}), which is obtained by adding to G ′ a novel
fresh node (n + 1) connected to all nodes in V 2. Consider then the allocation game Ga

G ′ = 〈V 1 ∪ {n + 1}, va
G ′ 〉 induced by G ′ ,

where V 1 ∪ {n + 1} is the given set of agents. Observe that, for any given coalition C ⊆ V 1, va
G ′ (C ∪ {n + 1}) − va

G ′ (C) = 0 if
and only if C ⊆ V 1 is a set of nodes to which all nodes in V 2 can be matched. Eventually, βn+1(Ga

G ′) × 2n is the number of
subsets C ⊆ V 1 for which some node in V 2 cannot be matched, and 2n − βn+1(Ga

G ′) × 2n is the desired number, which can
be computed in polynomial time once the Banzhaf value βn+1(Ga

G ′) is known. �
Now, we show that the Banzhaf value of allocation games can be computed in polynomial time based on the knowledge

of the Shapley value, so that this latter concept turns out to be #P-hard too. This property was already known to hold
over (certain) simple games [79]. For its proof, we shall exploit the fact that, for each agent i ∈ N , the Shapley value can be
rewritten as follows:

φi(G) =
n−1∑
h=0

h!(n − h − 1)!
n! βi(G,h), (1)

5 As commonly done in the literature, hardness results for #P are given under Turing reductions (see, e.g., [77]).

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 9
Fig. 3. Illustration in the proof of Theorem 3.2: Construction of the graph Gα based on G .

where, for each h ∈ {0, ..., n − 1},

βi(G,h) =
∑

C⊆N\{i}, |C |=h

(v(C ∪ {i}) − v(C)).

Theorem 3.2. On allocation games, computing the Shapley value is #P-hard.

Proof. The line of the proof is to exhibit a reduction from the Banzhaf to the Shapley value.6 Let G = (V 1 ∪ V 2, E) be
a bipartite graph with V 1 = {1, ..., n} and V 1 ∩ V 2 = ∅. Let i be an agent in V 1 and, for each α ∈ {1, ..., n}, consider the
bipartite graph Gα = (V 1 ∪{n + 1, ..., n +α} ∪ V 2 ∪{g1, ..., gα}, E ∪ Eα) depicted in Fig. 3 and such that Eα = {{i, g1}, {g1, n +
1}, {n + 1, g2}, ..., {gα, n +α}}. Consider the allocation games Ga

G = 〈V 1, va
G 〉 and Ga

Gα
= 〈V 1 ∪ {n + 1, ..., n +α}, va

Gα
〉 induced

by G and Gα , respectively.
Let C ⊆ V 1 ∪ {n + 1, ..., (n +α − 1)} and observe that if {i, n + 1, ..., (n +α − 1)} � C , then va

Gα
(C ∪ {n +α}) − va

Gα
(C) = 1.

Otherwise, i.e., if {i, n + 1, ..., (n +α − 1)} ⊆ C , then va
Gα

(C ∪ {n +α}) − va
Gα

(C) = va
G(C ′ ∪ {i}) − va

G(C ′), where C ′ = C \ {i, n +
1, ..., n + α}. Therefore, for each h ∈ {0, ..., (n + α − 1)}, we have that:

βn+α(Ga
Gα

,h) =
{

κn+α(h) + βi(Ga
G ,h − α) if h ≥ α

κn+α(h) if h < α

where κn+α(h) is the number of coalitions C such that |C | = h and such that {i, n +1, ..., (n +α −1)} � C . Note that κn+α(h)

can be computed in polynomial time.
By using the above expression for βn+α(Ga

Gα
, h) in Equation (1), we can derive that:

φn+α(Ga
Gα

) = ∑n+α−1
h=0

h!(n+α−h−1)!
(n+α)! κn+α(h) + ∑n−1

h=0
(h+α)!(n−h−1)!

(n+α)! βi(Ga
G ,h).

Eventually, by instantiating α with each value in {1, ..., n}, we get a system of n linear equations over the variables
βi(Ga

G , 0), ..., βi(Ga
G , n − 1). By multiplying by (n + α)! all the terms of the corresponding equation, we get a system where

(h + α)!(n − h − 1)! is the coefficient of any term of the form βi(Ga
G , h). Given the form of these coefficients, the equations

are easily seen to be linear independent—see [47,79].
Therefore, the values of βi(Ga

G , 0), ..., βi(Ga
G , n − 1) for which the system admits a solution are univocally determined.

Moreover, they might be computed in polynomial time (e.g., by Bareiss’s implementation of Gaussian elimination [80]), if
we were able to compute in polynomial time φn+α(Ga

Gα
), for each α ∈ {1, ..., n}. To conclude, just notice that the Banzhaf

value of agent i in GA is precisely given by βi(Ga
G) = 1

2n−1

∑n−1
h=0 βi(Ga

G , h). �
4. Matching games over graphs of bounded treewidth

The question of whether the Shapley value is tractable on classes of graphs having bounded treewidth was stated as
an open problem in earlier literature [47]. In this section, we provide a positive answer to the question by exhibiting a
rather involved algorithm that exploits three distinct ingredients. First, in Section 4.1 we establish some graph-theoretic
results on matchings on graphs. After these results, we are able to get rid of the optimization problems, and to identify
instead in Section 4.2 a different way to deal with marginal contributions in matching games. Finally, in Section 4.3 we
show that the Shapley value (and the Banzhaf value) can be computed by counting suitable solutions (corresponding to
coalitions) of an MSO formula, so that tractability can be established via the histogram-based version of Courcelle’s Theorem
(cf. Theorem 2.8).

6 Note that the arguments in the proof can be used to prove similar reductions on different classes of games, provided there is a way to extend the game
at hand with a single player that has a fixed effect on the Banzhaf value.

10 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
Fig. 4. Illustration of examples in Section 4: (a) the graph G and the matching M , identified by the edges depicted in bold; (b) a matching that does not
block node 5; and (c) a maximum matching that blocks node 5.

4.1. Basic results on matchings

Assume hereinafter that a graph G = (V , E) is given. Let M be a matching in G . A node x ∈ V is said M-matched if
there is some edge e ∈ M with x ∈ e; otherwise, x is M-exposed. A path is a sequence of distinct nodes π1, ..., πm , with
m > 1, such that {π j, π j+1} ∈ E , for each j ∈ {1, ..., m − 1}. The path is said M-alternating if each pair of adjacent edges
satisfy {π j, π j+1} ∈ M and {π j+1, π j+2} /∈ M , or vice-versa (j ∈ {1, ..., m − 2}). Moreover, the path is M-augmenting if it is
M-alternating, and π1 and πm are M-exposed; in fact, they are the only M-exposed nodes occurring in the path.

Note that M is a maximum matching (i.e., one including the maximum possible number of edges over all matchings) if
and only if there is no M-augmenting path [81].

Example 4.1. Consider the graph G and the matching M = {{1, 5}, {2, 3}} shown in Fig. 4(a). Note that node 4 is M-exposed
and, for instance, the path 5, 1, 4 is M-alternating. However, node 5 is M-matched and thus the path is not M-augmenting.
In fact, there is no M-augmenting path, since the reader can check that M is a maximum matching. �

The following definition introduces a crucial notion for analyzing matching games.

Definition 4.2. A node x ∈ V is blocked by a matching M if

• x is M-exposed, and
• for each M-alternating path π1, ..., πm with π1 = x, it holds that πm is M-matched.

Example 4.3. Consider again the setting of Example 4.1. It is easy to check that node 5 is not blocked by the matching
M = {{1, 5}, {2, 3}}. Moreover, note that 5 is not blocked by the matching {{2, 3}}, while it is blocked by {{1, 4}, {2, 3}}. �

Actually, since any single edge is an alternating path, the following is an equivalent characterization of Definition 4.2.

Fact 4.4. A node x ∈ V is blocked by M if and only if for each M-alternating path π1, ..., πm with π1 = x, it holds that πm

is M-matched and {π1, πm} /∈ M .

We next show that, for this notion, it is not necessary to focus on maximum matchings.

Lemma 4.5. A node i ∈ V is blocked by some maximum matching if and only if it is blocked by some matching.

Proof. Assume that i is blocked by a matching M1 for which there exists an M1-augmenting path π ′
1, ..., π

′
h . Consider the

matching M2 obtained from M1 by removing all edges traversed by π ′
1, ..., π

′
h and by adding all edges in E \ M1 traversed by

π ′
1, ..., π

′
h . That is, M2 is the matching obtained by “augmenting” M1 via the path π ′

1, ..., π
′
h . Clearly, |M2| > |M1|. Moreover,

note that each node π ′
j , with j ∈ {1, ..., h}, is not M2-exposed. Now, let π̄1, ..., π̄q be any M2-alternating path with π̄1 = i.

We shall show that the node π̄q is not M2-exposed and {π̄1, π̄q} /∈ M2.

Claim 4.5.(A). π̄1, ..., π̄q and π ′
1, ..., π

′
h do not share any edge. By contradiction, consider the smallest index k ∈ {1, ..., q−1}

and an index j ∈ {1, ..., h−1} such that π ′
j = π̄k and π ′

j+1 = π̄k+1. Note that if k = 1, then the path π̄k, π ′
j+1, ..., π

′
h would

witness that i is not blocked by M1, which is impossible. Indeed, we would have that π̄k = i and that π̄k, π ′
j+1, ..., π

′
h is

M1-alternating, with π ′
h being M1-exposed (for this latter property, just recall that π ′

1, ..., π
′
h is M1-augmenting). This means

that we necessarily have k > 1, and that π̄1, ..., π̄k is an M1-alternating path. Now, in the case where j = 1 holds, we have

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 11
π̄k = π ′
1. Therefore, the path π̄1, ..., π̄k would again witness that i is not blocked by M1, which is impossible. So, we have j >

1. Hence, the node π̄k = π ′
j is adjacent to the nodes π̄k−1, π ′

j−1, and π̄k+1 = π ′
j+1. Recall that π ′

1, ..., π
′
h is M1-alternating

and assume first that the edge {π ′
j, π

′
j−1} is in M1. Then, {π̄k−1, π ′

j} /∈ M1 because π ′
j (= π̄k) is matched to someone

else. Because M1 and M2 are equal for edges in the path π̄1, ..., π̄k below k, it follows that π̄1, ..., π̄k−1, π ′
j, π

′
j−1, ..., π

′
1 is

M1-alternating. The same holds if we assume instead that the edge {π ′
j , π

′
j−1} is not in M1. Indeed, in this case {π ′

j, π
′
j+1} ∈

M1 and thus, by definition of M2, {π̄k, π̄k+1} /∈ M2 and {π̄k−1, π̄k} ∈ M2 by alternation, that is, {π̄k−1, π ′
j} ∈ M1, because the

two matchings are equal below k. Again, we get that π̄1, ..., π̄k−1, π ′
j, π

′
j−1, ..., π

′
1 is M1-alternating. Since π ′

1 is M1-exposed,
this contradicts that i is blocked by M1. �

Given the above claim, we derive that π̄1, ..., π̄q is also M1-alternating; hence, {π̄1, π̄q} /∈ M1. It then follows that
{π̄1, π̄q} /∈ M2, because we have observed that π̄1 = i cannot occur in the path π ′

1, ..., π
′
h and thus cannot become

M2-matched. To conclude, we show that π̄q is M2-matched. This is trivial if π̄q ∈ {π ′
1, ..., π

′
h}. Otherwise, if π̄q /∈ {π ′

1, ..., π
′
h},

then π̄q is M2-matched because it is M1-matched and it does not occur in the path where the two matchings may differ.
Now, either M2 is a maximum matching, or we can repeat the above construction, until we eventually get a sequence

M1, M2,, M	 of matchings such that i is blocked by each of them and |M1| < |M2| < ... < |M	|, with the latter being a
maximum matching of the given graph. �
Example 4.6. Recall from Example 4.3 that node 5 is blocked by the matching {{1, 4}, {2, 3}}. This is actually a maximum
matching. In fact, it can be checked that {{1, 4}, {2, 3}} is the only matching blocking node 5. �
4.2. Characterization of marginal contribution

Given the graph G = (V , E), recall from Section 2 that Gm
G = (V , vm

G) denotes the matching game induced by G . The
second ingredient of our proof is a connection between the value of the marginal contribution vm

G (C ∪ {i}) − vm
G (C) and the

fact that agent i ∈ V is blocked by some matching in the subgraph G[C ∪ {i}] (induced over the nodes in C ∪ {i}, where
C ⊆ V).

Lemma 4.7. The following statements are equivalent:

(1) vm
G (C ∪ {i}) − vm

G (C) = 0;
(2) i is blocked by some matching M in G[C ∪ {i}].

Proof. (1)⇒(2) Let M be a maximum matching in G[C]. Since vm
G (C ∪ {i}) − vm

G (C) = 0, M is also a maximum matching
in G[C ∪ {i}]. Consider, then, any M-alternating path π1, ..., πm in G[C ∪ {i}] with π1 = i. Since M is a matching in G[C]
and i /∈ C , then π1 is clearly M-exposed in G[C ∪ {i}]. In particular, {π1, πm} /∈ M . Assume now, by contradiction, that πm is
M-exposed, too. Then, π1, ..., πm is M-augmenting in G[C ∪ {i}], which is impossible.

(2)⇒(1) Because of Lemma 4.5, we can assume that M is a maximum matching in G[C ∪ {i}]. Because i is blocked by
M , we know that i must be M-exposed. Then, M is also a maximum matching in G[C] and we have concluded, since
vm

G (C ∪ {i}) − vm
G (C) = 0 holds. �

In fact, we can continue the chain of equivalences of Lemma 4.7, by providing a number of conditions that can easily be
checked. To this end, recall that the edges of G can be encoded as the binary (symmetric) relation rE defined as the set of
pairs

⋃
{x,y}∈E {(x, y), (y, x)}.

Lemma 4.8. The following statements are equivalent:

(2) i is blocked by some matching M in G[C ∪ {i}];
(3) There are sets B ⊆ rE , I ⊆ V , and O ⊆ V satisfying on G the following conditions:

(a) i /∈ I ;
(b) ∀x, y ∈ C ∪ {i}, ((x, y) ∈ B)

) → (y ∈ I);
(c) ∀x ∈ C ∪ {i}, ∀y ∈ C,

(
(x, y) ∈ rE ∧ (x ∈ I)

) → (y ∈ O);

(d) ∀x ∈ C ∪ {i}, x ∈ O →
(

∃z ∈ C such that (x, z) ∈ B
)

;

(e) ∀x, y, y′ ∈ C ∪ {i},
((

(x, y) ∈ B ∧ (x, y′) ∈ B
) ∨ (

(y, x) ∈ B ∧ (y′, x) ∈ B
) ∨ (

(y, x) ∈ B ∧ (x, y′) ∈ B
))

→ (y = y′);

(f) ∀x ∈ C, (i, x) ∈ rE →
((

(i, x) /∈ B
) ∧ (x ∈ O)

)
.

Before detailing the proof of the result, we provide an intuition on the above conditions (encoding that i is blocked by
some matching M in G[C ∪ {i}]) and we propose an exemplification.

12 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
A crucial role in conditions (a),...,(f) is played by the set B . This set consists of the edges in M , which are however
oriented according to the way they are traversed along some M-alternating path starting at node i; in particular, note that
condition (e) states that, by looking at the undirected version of B , every node cannot have more than one incident edge.
The remaining conditions are instead meant to check that i is M-exposed and that every M-alternating path starting at
i terminates in a node that is M-matched. Concerning the latter property, note that because of condition (b) the set I
includes all destination nodes for edges in B , that is, I contains all M-matched nodes that can be reached by traversing
some M-alternating path starting at i. Of course, starting from a node in I , we might extend the given M-alternating path
by traversing one further edge. The set O then includes all destination nodes of such edges (c), and we require that such
nodes are M-matched too (d). Finally, given the above definitions of I and O , it is immediate to check that conditions (a),
(b) and (f) guarantee that i is M-exposed.

Example 4.9. Consider the coalition C = {1, 2, 3, 4} and Fig. 4, which shows two examples of sets B , I , and O . Intuitively,
B encodes a matching, whose edges are however oriented according to the way they are traversed along some alternating
path starting at node 5. Note that certain edges can be traversed in both directions. Indeed, for the matching {{1, 4}, {2, 3}},
the paths 5, 1, 4, 3, 2 and 5, 2, 3, 4, 1 witness that the two edges {1, 4} and {2, 3} are traversed in both directions.

Note that the sets in Fig. 4(b), with B = {(2, 3)} violate condition (d). Instead, the sets in Fig. 4(c), with B =
{(1, 4), (2, 3), (4, 1), (3, 2)} satisfy all conditions and, by Lemma 4.8, they witness that node 5 is blocked by some matching
(in fact, precisely by the maximum matching {{1, 4}, {2, 3}}). �
Proof of Lemma 4.8. (2)⇒(3) Assume that i is blocked by some matching M in G[C ∪{i}], and consider the sets B , I , and O
built as follows. For each edge {x, y} in G[C ∪ {i}] if there is an M-alternating path π1, ..., πm in this subgraph with π1 = i
and such that x = π j and y = π j+1, for some index j ∈ {1, ..., m − 1}, and {x, y} is in M , then (x, y) is in B , x ∈ O , and y ∈ I .
For each edge {i, y} ∈ E \ M , we set y ∈ O . No other element is in B , I , or O . Note that the sets trivially satisfy (a), (b), and
(e).

Concerning (c), let π1, ..., πm be an M-alternating path in G[C ∪ {i}] with π1 = i such that, for some index j ∈ {2, ..., m},
π j = x with x ∈ I and {π j−1, π j} ∈ M hold. Note that π j−1 ∈ O . Then, assume that {x, y} is in E with y ∈ C and y 	= π j−1.
We have that {x, y} /∈ M and π1, ..., π j, y is M-alternating. Since i is blocked by M , y is M-matched and {π1, y} /∈ M .
Therefore, there is an edge {y, z} ∈ M and the path π1, ..., π j, y, z is M-alternating, too. By construction, this entails that
y ∈ O .

Concerning (d), assume first that there is an M-alternating path π1, ..., πm with π1 = i such that, for some index j ∈
{1, ..., m − 1}, π j = x with x ∈ O and where {π j, π j+1} ∈ M holds. In this case, (x, π j+1) ∈ B holds, by construction. The
other possibility is that {i, x} ∈ E \ M . In this case, since i is blocked by M , there must be a node z 	= i such that {x, z} ∈ M .
Again, by construction, we have (x, z) ∈ B .

Concerning (f), note that there is no x ∈ V with {i, x} ∈ M; otherwise, the path i, x would witness that i is not blocked
by M . By construction, we hence have (i, x) /∈ B and x ∈ O .

(3)⇒(2) Assume that B , I , and O satisfy all the properties listed in the statement. Consider the set M = {{x, y} | (x, y) ∈
B, x ∈ C ∪ {i}, y ∈ C ∪ {i}}. Because of (e), it is immediate that M is a matching in G[C ∪ {i}]. Moreover, by (a), (b), and (f),
we derive that there is no node y ∈ V such that {i, y} is in M , that is, i is M-exposed. Consider then any M-alternating
path π1, ..., πm of G[C ∪ {i}] with π1 = i. We shall show that πm is M-matched.

To this end, we first claim that, for each natural number h ≥ 1 such that 2h + 1 ≤ m, it holds that {π2h−1, π2h} /∈ M ,
(π2h, π2h+1) ∈ B , π2h ∈ O . For h = 1, we have just to observe that {π1, π2} /∈ M and, by (f) π2 ∈ O . Moreover, from (d) we
necessarily have (π2, z) ∈ B with z = π3, because {π2, π3} ∈ M , by alternation, and (e) must hold. So, let us assume that
the property holds at some natural number h, and we show that it holds at h + 1 with 2(h + 1) + 1 ≤ m, too. Indeed, we
know that (π2h, π2h+1) ∈ B and hence {π2h, π2h+1} ∈ M , by construction. Moreover, by (b), π2h+1 ∈ I . By (c), π2h+2 ∈ O . By
alternation, {π2h+1, π2h+2} /∈ M . Then, as in the base case, by (d) and (e), (π2h+2, π2h+3) ∈ B and {π2h+2, π2h+3} ∈ M .

In the light of this result, if m is odd, then we can immediately conclude that πm is M-matched. Otherwise, we know
that (πm−2, πm−1) ∈ B . By (b), πm−1 ∈ I . By (c), πm ∈ O . By (d), there is a node z such that (πm, z) ∈ B . Then, we conclude
that πm is M-matched. �
4.3. MSO encoding

We are now ready to discuss the third ingredient of our elaboration, namely the use of tractability results for the
evaluation of monadic second-order formulas on bounded-treewidth graphs.

Theorem 4.10. On matching games defined over classes of graphs having bounded treewidth, the Shapley value can be computed in
polynomial time.

Proof. Let G = (V , E) be a graph. Consider Equation (1) in Section 3 and note that, for each agent i ∈ V , the Shapley value
of the matching game Gm

G = 〈V , vm
G 〉 can be computed in polynomial time if we are able to compute in polynomial time, for

each coalition cardinality h ∈ {1, . . . , |V | − 1}, the values

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 13
βi(Gm
G ,h) =

∑
C⊆V \{i}, |C |=h

(
vm

G (C ∪ {i}) − vm
G (C)

)
.

We do that by defining a Monadic Second Order (MSO) formula Fi(C) = ∃B, I, O
, to be evaluated on the graph G ,
viewed as a relational structure with relation symbol rE and domain V . In this second-order formula,
 is the conjunc-
tion of (the first-order) Conditions (a)–(f) in Lemma 4.8, B is an existentially-quantified edge-set variable, I and O are
existentially-quantified node-set variables, and C is a free node-set variable. Then, given Lemma 4.7 and Lemma 4.8, the
number of coalitions C ⊆ V \ {i} having |C | = h for which vm

G (C ∪{i}) − vm
G (C) = 0 holds coincides with the number of node-

sets Ĉ ⊆ V \{i} with |Ĉ | = h for which G |= Fi(Ĉ). This number can be computed in polynomial time because of Theorem 2.8
and, based on it, βi(Gm

G , h) can be computed easily (in polynomial time, too) by observing that vm
G (C ∪ {i}) − vm

G (C) ∈ {0, 1},
for each C ⊆ V \ {i}. �

A similar approach can be used to prove the tractability of the Banzhaf value on graphs having bounded treewidth. In
this case we are even able to derive a linear time algorithm, rather than a polynomial-time one.

Theorem 4.11. On matching games defined over classes of graphs having bounded treewidth, the Banzhaf value can be computed in
linear time.

Proof. We shall show that, for each node i ∈ V , we can compute in linear time the value of the expression
∑

C⊆V \{i}(vm
G (C ∪

{i}) − vm
G (C)). Indeed, we can proceed as in the proof of Theorem 4.10, by eventually noticing that the number of coalitions

C ⊆ V \ {i} for which vm
G (C ∪{i}) − vm

G (C) = 0 holds coincides with the number of node-sets Ĉ ⊆ V \ {i} for which G |= Fi(Ĉ).
Then, the statement follows easily, by recalling that counting all instantiations of a free node-set variable leading to satisfy
a given MSO formula was shown to be feasible in linear time over graphs having bounded treewidth [82]. �
5. Weighted-allocation games over graphs of bounded treewidth

In this section we show that the Shapley value can be computed in polynomial time over weighted-allocation games in-
duced by graphs having bounded treewidth. The high-level idea is similar to the one we have exhibited for matching games
in Section 4: we need some way to avoid the computation of maximum matching problems for evaluating the marginal
contributions to the various coalitions and, instead, identify suitable properties of the coalitions that can be checked by
a Monadic Second Order formula. Then, the desired values can be computed by counting solutions of MSO formulas over
bounded-treewidth graphs, which is feasible in polynomial time. Contrasted with the properties used in the previous sec-
tion, the technical machinery developed for dealing with weighted-allocation problems is quite different.

Recall that we deal with weighted-allocation games induced by bipartite graphs of the form G = (N ∪ G, E, w) where
N = {1, ..., n} encodes a set of agents, G encodes a set of goods (or whatever the agents are interested in), and each
good g ∈G is characterized by a value, denoted by val(g), which depends on its properties only, rather than by subjective
valuations from the different agents. Formally, all edges incident to g have the same weight, that is, w(e) = w(e′) = val(g),
for each pair of edges with e ∩ e′ = {g}.7 By slightly abusing notation, whenever S ⊆ G is a set of goods, val(S) denotes
the sum of their values (with val(∅) = 0, by convention).

In this section any matching M , which is by definition a set of edges, will be viewed also as a function mapping each
agent i ∈ N to the set {g ∈ G | {i, g} ∈ M} containing the good allocated to i, if any. Thus, M(i) is either a singleton or the
empty set. Moreover, let img(M) = {g ∈ G | M(i) = {g} for some i ∈ N}, and denote by val(M) the sum of the values of
these goods.

Example 5.1. Consider the weighted graph G = (N ∪ G, E, w) shown in Fig. 5(a), where N = {1, 2, 3, 4, 5} and G =
{g1, g2, g3}. The edges in bold in the figure depict the matching M with M(1) = {g2}, M(4) = {g3}, and M(2) = M(3) =
M(5) = ∅. Note that val(M) = val(g2) + val(g3) = 5.3 + 3.2. �

In the following, let {w1, ..., wm} = {val(g) | g ∈ G} ∪ {0} be the set of all values associated with goods in G (plus
the null value 0, if not present), and assume that w1 < w2 < · · · < wm , with w1 = 0. Plain (unweighted) allocation games
correspond to the special case of this setting where m = 2 and w2 = 1, that is, we have only the binary values {0, 1}.

5.1. Dependent agents and marginal contributions

The first ingredient we put in place for establishing the desired tractability result is a property that allows us to get rid
of the optimization problems needed to obtain the maximum weighted matching involved in the computation of marginal
contributions. Here, a crucial gadget is provided by the following definition, which allows us to identify a set of agents that
“depends” on the agent i, when considering a coalition C and a matching M .

7 We assume, w.l.o.g., that each good g ∈G has at least one incident edge.

14 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
Fig. 5. Illustration of examples in Section 5: (a) the graph G and the matching M; and (b) the graph G3.2.

Definition 5.2. Let C ⊆ N be a set of agents and let M be a matching in G = (N ∪G, E, w). Then, the set depi(G, C, M) of
agents that are dependent on player i ∈ N with respect to C and M is the smallest set satisfying the following properties:

1. i ∈ depi(G, C, M);
2. if j ∈ depi(G, C, M), M(j) = {g}, z ∈ C , and {g, z} ∈ E , then z ∈ depi(G, C, M).

The second property is also called the closure condition of the dependency set.

Example 5.3. Consider again the weighted graph G and the matching M shown in Fig. 5(a), plus the coalition C = {1, 2, 3, 4}.
Then, dep1(G, C, M) = {1, 4}. Indeed, agent 1 belongs to dep1(G, C, M) by definition, M(1) = {g2} and {g2, 4} is in E . Note
that agent 5 does not belong to dep1(G, C, M) because 5 does not belong to the coalition C (otherwise it would be included
in the set, too, by the closure condition). �

We next show that the existence of a matching for such dependent agents where all of them get goods having value at
least σ > 0 is a necessary and sufficient condition to say that the marginal contribution of i to C is at least σ . To prove the
result, we need to recall a property that is already known to hold on allocation games and to elaborate a novel technical
lemma—which is of interest in its own in the context of matching theory and is, indeed, stated here in a way more general
than it is actually required for our subsequent elaborations.

Lemma 5.4 (cf. [34,38]). Let C and C ′ be sets of agents such that C ′ ⊆ C ⊆ N. Then, va
G(C) ≥ va

G(C ′). Moreover, if M is a maximum
weighted matching in G[C ∪G], then there is a maximum weighted matching M ′ in G[C ′ ∪G] such that img(M ′) ⊆ img(M).

Lemma 5.5. Let C ⊆ N, let i ∈ N \ C , let σ ∈ R be a real number with σ > 0, and assume there is a matching M in G[C ∪ {i} ∪G]
such that val(M(j)) ≥ σ , for each j ∈ depi(G, C, M). Then, every maximum weighted matching M̄ in G[C ∪ {i} ∪ G] is such that
val(M̄(j)) ≥ σ holds, for each j ∈ depi(G, C, M̄).

Proof. Consider any maximum weighted matching M̄ in G[C ∪ {i} ∪ G]. Notice preliminarily that, for each agent z ∈ C \
depi(G, C, M), M̄(z) cannot be a singleton {ĝ} where ĝ = M(ẑ) holds for some agent ẑ ∈ depi(G, C, M). Otherwise, this
would entail that z belongs to depi(G, C, M), by the closure property of this set. We now claim the following two properties.

Claim 5.5.(A). It holds that val(M̄(i)) ≥ σ . Assume by contradiction that val(M̄(i)) < σ . We claim that there is a se-
quence of agents j1, ..., jh belonging to depi(G, C, M) and starting at i = j1 ∈ depi(G, C, M) such that:

1. for each index x ∈ {1, ..., h-1}, M̄(jx+1) = M(jx);
2. M(jh) ∩ img(M̄) = ∅.

Note first that M(j1) 	= ∅, since j1 ∈ depi(G, C, M) and, hence, val(M(j1)) ≥ σ > 0. Let {g1} = M(j1) and recall that g1 can-
not be assigned by M̄ to any agent outside depi(G, C, M). Then, either {g1} ∩ img(M̄) = ∅, or g1 is assigned to some agent,
say j2 ∈ depi(G, C, M), for which we have M̄(j2) = {g1} = M(j1). In the former case, we immediately stop the construc-
tion of the sequence; otherwise, we continue by applying the same reasoning on j2. Indeed, since j2 is in depi(G, C, M),
M(j2) 	= ∅. In particular, by letting {g2} = M(j2), then either {g2} ∩ img(M̄) = ∅, or g2 is assigned to some agent, say
j3 ∈ depi(G, C, M). Again, in the former case we stop with h = 2, otherwise we continue.

After at most |depi(G, C, M)| steps, we eventually reach some agent jh ∈ depi(G, C, M) such that {gh} = M(jh) and {gh} ∩
img(M̄) = ∅. Moreover, val(M(jh)) ≥ σ > val(M̄(j1)). By using this sequence, define the matching M̄ ′ : C ∪ {i} → G as
M̄ ′(jx) = M̄(jx+1), for each x ∈ {1, ..., h-1}; M̄ ′(jh) = M(jh); and M̄ ′(j′) = M̄(j′), for any other agent j′ ∈ (C ∪{i}) \{ j1, ..., jh}.

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 15
Note that M̄ ′ is a matching in C ∪ {i} and val(M̄ ′) = val(M̄) − val(M̄(j1)) + val(M(jh)) > val(M̄), which contradicts
the optimality of M̄ . �

Claim 5.5.(B). For each p ∈ depi(G, C, M̄), val(M̄(p)) ≥ σ . To prove the claim, let D be the minimal subset of
depi(G, C, M̄) such that:

• i ∈ D;
• if j ∈ D , z ∈ depi(G, C, M̄), val(M̄(z)) ≥ σ , M̄(j) = {g}, and {g, z} ∈ E , then z ∈ D .

By construction of D and Claim 5.5.(A) about M̄(i), all agents in D get goods having value at least σ according to M̄ .
However, if the statement of the claim does not hold, then there exists some agent pk+1 ∈ depi(G, C, M̄) \ D such that
val(M̄(pk+1)) < σ and {gk, pk+1} ∈ E for some good gk ∈ G such that M̄(pk) = gk and pk ∈ D . Intuitively, pk+1 is at the
“external boundary” of D , and cannot enter D because val(M̄(pk+1)) < σ .

Now, if pk+1 belongs to the set depi(G, C, M), then we can apply precisely the same construction as in the proof of
Claim 5.5.(A), by just using pk+1 = j1 instead of i = j1, in order to contradict the optimality of M̄ . Hence, we next consider
the case where pk+1 /∈ depi(G, C, M). In this case, by construction of D and since pk ∈ D , there is a sequence of agents
pk+1, pk, . . . , p1 = i, such that ps ∈ D , M̄(ps) = {gs} (hence with val(gs) ≥ σ), and {gs, ps+1} ∈ E , for each s ∈ {1, . . . , k}.

We complete the proof of the claim by showing that the existence of this sequence again leads to a contradiction.
Consider the good gk = M̄(pk) and notice that gk cannot be assigned by M to some agent in depi(G, C, M), otherwise pk+1
should belong to this set (but we are now considering the case where pk+1 /∈ depi(G, C, M)). Then, consider the agent pk−1
and the good gk−1 such that M̄(pk−1) = {gk−1}. Either gk−1 is not used by M for agents in depi(G, C, M), or pk belongs to
depi(G, C, M). By continuing this way along the path from pk+1 to i, we eventually can find the minimum value of r ≥ 0
(in the worst case with r = k − 1) for which the agent pk−r ∈ depi(G, C, M) ∩ D is such that M̄(pk−r) = {gk−r} and gk−r is
not assigned by M to some agent in depi(G, C, M). Now, as in the proof of Claim 5.5.(A), we can find a sequence of agents
j1, . . . , jh , belonging to depi(G, C, M) and starting at pk−r = j1 such that:

1. for each index x ∈ {1, ..., h-1}, M̄(jx+1) = M(jx);
2. M(jh) ∩ img(M̄) = ∅.

By using this sequence, define the matching M̄ ′ : C ∪ {i} →G as follows:

• M̄ ′(jh) = M(jh);
• if h > 1, M̄ ′(jx) = M̄(jx+1), for each x ∈ {1, ..., h-1};
• M̄ ′(px+1) = M̄(px), for each x ∈ {k − r, ..., k}; and
• M̄ ′(j′) = M̄(j′), for any other agent j′ ∈ (C ∪ {i}) \ { j1, . . . , jh, pk−r+1, . . . , pk+1}.

Note that M̄ ′ is a matching in G[C ∪ {i} ∪G] and it total value is val(M̄ ′) = val(M̄) − val(M̄(pk+1)) + val(M(jh)) >
val(M̄). Indeed, val(M̄(pk+1)) < σ while val(M(jh)) ≥ σ , since jh ∈ depi(G, C, M). This contradicts the optimality
of M̄ . �

The property of interest immediately follows by the claim above. �
We have now all the technical ingredients in place to characterize marginal contributions in terms of a property of the

dependent agents.

Theorem 5.6. The following statements are equivalent:

(1) va
G(C ∪ {i}) − va

G(C) ≥ σ ;
(2) there is a matching M in G[C ∪ {i} ∪G] such that val(M(j)) ≥ σ , for each j ∈ depi(G, C, M).

Proof. (1)⇒(2) Assume by contradiction that (2) does not hold. Let M̄ be a maximum weighted matching in G[C ∪ {i} ∪G].
Hence, there exists some j ∈ depi(G, C, M̄) with val(M̄(j)) < σ . Consider then the two following cases.

Case j = i: in this case, val(M̄(i)) < σ . Because the restriction of M̄ to G[C ∪ G] is a matching in G[C ∪ G], we have
va

G(C) ≥ val(M̄) −val(M̄(i)) > val(M̄) −σ = va
G(C ∪{i}) −σ , and hence va

G(C ∪{i}) − va
G(C) < σ , which contradicts

(1).
Case j 	= i: in this case, val(M̄(i)) ≥ σ and val(M̄(j)) < σ . By definition of depi(G, C, M̄), there exists a sequence of agents

i = j′1, j′2, ..., j′h = j such that M̄(j′x) = {gx} and {gx, j′x+1} ∈ E , for each x ∈ {1, ..., h-1}, and val(M̄(j′h)) < σ . By using
this sequence, define the matching M̄-i such that M̄-i(j′x+1) = M̄(j′x), for each x ∈ {1, ..., h-1}; and M̄-i(j′′) = M̄(j′′),
for any other agent j′′ ∈ C \ { j′2, ..., j′h}. Note that M̄-i is a matching in G[C ∪G] and its total value is val(M̄-i) =
val(M̄) −val(M̄(j′h)). For the new matching we have va

G (C) ≥ val(M̄) −val(M̄(j′h)) > val(M̄) −σ . Again, we get
va (C ∪ {i}) − va (C) < σ , which contradicts (1).
G G

16 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
(2)⇒(1) Let M be a matching in G[C ∪{i} ∪G] such that val(M(j)) ≥ σ for every j ∈ depi(G, C, M). By Lemma 5.5, there
exists a maximum weighted matching M̄ in G[C ∪ {i} ∪G] such that val(M̄(j)) ≥ σ still holds for each j ∈ depi(G, C, M̄).
Consider now the coalition C . By Lemma 5.4, there exists a maximum weighted matching M̄-i in G[C ∪ G] such that
img(M̄-i) ⊆ img(M̄). Recall that va

G (C ∪ {i}) = val(img(M̄)) and va
G (C) = val(img(M̄-i)). Hence, if M̄(i) ∩ img(M̄-i) = ∅,

then va
G(C ∪ {i}) − va

G(C) = val(img(M̄)) − val(img(M̄-i)) = val(g′) ≥ σ . So, assume that M̄(i) ⊆ img(M̄-i), which en-
tails the existence of a sequence of agents i = j1, ..., jh belonging to C ∪ {i} and such that M̄-i(jx+1) = M̄(jx), for each x ∈
{1, ..., h − 1}, and M̄(jh) ∩img(M̄-i) = ∅. In fact, by definition of dependent agents, we actually have that jh ∈ depi(G, C, M̄).
Hence, val(M̄(jh)) ≥ σ holds. Again, we derive va

G(C ∪ {i}) − va
G(C) = val(img(M̄)) − val(img(M̄-i)) = val(M̄(jh))

≥ σ . �
5.2. MSO encoding

The encoding in terms of Monadic Second Order logic will exploit not only the characterization provided by Theorem 5.6,
but also a rewriting of the Shapley value on the basis of the various possible values (cf. the real number σ in the statement
of the theorem) that marginal contributions can assume. In fact, we next show that it is enough to consider the distinct
values of the goods in the given instance, whose number is thus bounded by the input size.

More formally, recall that {w1, ..., wm} is the set of all values associated with goods in G with 0 = w1 < w2 < · · · < wm .
Let i ∈ N be an agent, let h ∈ {0, ..., n − 1}, let 	 ∈ {1, ..., m}, and let us denote by #coal	i (G, h) the number of coalitions
C such that |C | = h and va

G(C ∪ {i}) − va
G(C) ≥ w	 . Then, the coefficients βi(Ga

G , h) in the expression for the Shapley value
illustrated in Equation (1) can be rewritten in terms of these values #coal	i (G, h).

Theorem 5.7. For each agent i ∈ N and h ∈ {0, ..., n − 1},

βi(Ga
G ,h) = wm × #coalmi (G,h) +

m−1∑
	=1

w	 ×
(

#coal	i (G,h) − #coal	+1
i (G,h)

)
.

Proof. Recall that, for each i ∈ N and h ∈ {0, ..., n − 1},

βi(Ga
G ,h) =

∑
C⊆N\{i}, |C |=h

(va
G(C ∪ {i}) − va

G(C)).

Consider an arbitrary coalition C ⊆ N \ {i} with |C | = h. Let M be a maximum weighted matching in G[C ∪ {i} ∪G] and
define I = {g ∈G | {g, x} ∈ M}. Because of Lemma 5.4, there is a maximum weighted matching M ′ in G[C ∪G] such that, by
letting I = {g ∈G | {g, x} ∈ M}, we get I ′ ⊆ I . Now, if I = I ′ , then we clearly have va

G(C ∪{i}) − va
G(C) = 0. Otherwise, I \ I ′ is

a singleton {g}, and va
G(C ∪{i}) − va

G(C) = val(g). In both cases, the marginal contribution is a value w	 with 	 ∈ {1, ..., m}.
After the above observation, we can rewrite the expression for the coefficients as βi(Ga

G , h) = ∑m
	=1 w	 × K i

	(G, h), where
K i

	(G, h) is the number of coalitions C with |C | = h and such that va
G (C ∪ {i}) − va

G(C) = w	 . By definition of #coal	i (G, h),
we get K i

m(G, h) = #coalmi (G, h) and, for each 	 ∈ {1, ..., m − 1} we have K i
	(GA, h) = #coal	i (G, h) − #coal	+1

i (G, h). �
The level graph G	 For every level 	 ∈ {1, ..., m}, let graph G	 = (N ∪G	, E) be the subgraph of G induced over the nodes
in N ∪G	 , where G	 = {g ∈ G | val(g) ≥ w	}. For instance, Fig. 5(b) illustrates the graph G3.2 derived from the graph G
shown in (a).

The MSO formula F 	
i (C) Let F 	

i (C) be the following MSO formula, where C is a free node-set variable meant to encode the
coalitions such that va

G (C ∪ {i}) − va
G(C) ≥ w	:

∃M ⊆ rE	
∃D ⊆ N (C ⊆ N ∧ i ∈ D ∧ dep(C, M, D) ∧ goodM(M, D)), where

dep(C, M, D) := ∀ j ∈ D ∀z ∈ C(
∃g ∈G ({z, g} ∈ E	 ∧ { j, g} ∈ M) → z ∈ D

)
goodM(M, D) := ∀x ∈ D ∃g ∈G	(

{x, g} ∈ M ∧
∀x′ ∈ N (x′ 	= x → {x′, g} /∈ M) ∧
∀g′ ∈G (g′ 	= g → {x, g′} /∈ M)

)

The idea is to evaluate this formula on the level graph G	 associated with each value w	 , with M being a possible
matching, and D a superset of the dependent set of agents depi(G	, C, M). The subformula goodM(M, D) checks that M is
indeed a matching where all agents in D get a good having value at least w	 . In this case, we say that M and D witness
that G	 |= F 	(C).
i

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 17
After Theorem 5.6, we easily get the following result.

Lemma 5.8. Let C ⊆ N, let i ∈ N \ C , and let 	 ∈ {1, ..., m}. Then, G	 |= F 	
i (C) if and only if va

G(C ∪ {i}) − va
G(C) ≥ w	 .

Proof. Assume that G	 |= F 	
i (C). Then, there is a matching M and a set of agents D that witness it. In particular all agents in

D , and hence all agents in depi(G	, C, M), get a good whose value is at least w	 . Note that, because the matching M involves
only goods of value at least w	 , using the level graph G	 or the original graph G is immaterial, so that depi(G	, C, M) =
depi(G, C, M) clearly holds. By Theorem 5.6, we then conclude that va

G(C ∪ {i}) − va
G(C) ≥ w	 . For the other direction,

assume that va
G (C ∪ {i}) − va

G(C) ≥ w	 . From Theorem 5.6, we know there exists a matching M in G[C ∪ {i} ∪G] such that
val(M(j)) ≥ w	 , for each j ∈ depi(G, C, M). By choosing D = depi(G, C, M), the formula F 	

i (C) is clearly satisfied by the
graph G	 . �
Simplifying the level graph Before establishing the main result of this section, it is relevant to observe that the level graph
can be actually simplified—without loss of generality—to reduce its treewidth as long as there are goods connected to only
one agent. We shall show in Section 7 that this leads to an impressive speed-up in real-world applications with hundreds
of agents.

Let Simplify be the procedure that modifies G	 by repeating the following steps as long as possible: take any vertex
g ∈G having degree-1 in G	 and let j the one agent connected to it; remove from G	 all edges incident to j, but the edge
{g, j}. Let G ′

	 be the output of Simplify(G). The correctness of the simplification is established below.

Lemma 5.9. Let C ⊆ N, let i ∈ N \ C , and let 	 ∈ {1, ..., m}. Then, G ′
	 |= F 	

i (C) if and only if va
G(C ∪ {i}) − va

G(C) ≥ w	 .

Proof. We prove the lemma by induction, on each stage of the procedure Simplify.
Assume that this is true until a certain step, and let Ḡ	 be the current version of the level graph. Consider the next

step of simplification, where we select a good g ∈ G with val(g) ≥ w	 that is connected to only one agent j in the level
graph Ḡ	 . Consider the new graph G ′

	 obtained from Ḡ	 by removing all edges incident to j, but the edge {g, j}. After the
induction hypothesis and Lemma 5.8, it suffices to show that, for any coalition C , the following statements are equivalent:

(1) Ḡ	 |= F 	
i (C);

(2) G ′
	 |= F 	

i (C).

(2)⇒(1) Consider a pair of sets M ′ and D ′ witnessing G ′
	 |= F 	

i (C). Let M = M ′ ∪ {{g, j}} and D = D ′ ∪ { j}. Note that M
assigns a good of value at least w	 to every agent in D , and that D ⊇ D ′ ⊇ depi(G ′

	, C, M ′). Moreover, D ⊇ depi(G ′
	, C, M)

actually holds, because j is connected only to the good g in G ′
	 . We now claim that D ⊇ depi(Ḡ	, C, M). Indeed, the missing

edges from j to the goods other than g (which are the only difference between G	 and G ′
) cannot lead to include agents in

depi(Ḡ	, C, M) that are not already included in depi(G ′
	, C, M), but the one agent j that belongs to D . Therefore, M assigns

a good of value at least w	 to every agent in D and D ⊇ depi(Ḡ	, C, M), thereby witnessing that Ḡ	 |= F 	
i (C).

(1)⇒(2) Consider a pair of sets M and D witnessing Ḡ	 |= F 	
i (C). In the case where {g, j} ∈ M , then M and D clearly wit-

ness G ′
	 |= F 	

i (C), too. Consider then the case where {g, j} /∈ M . Let M ′ be the set obtained from M by removing the edge in-
volving agent j in M , if any, and by including the edge {g, j}. We claim that the set D ′ = D ∪{ j} is a superset of depi(G ′

	, C, M ′).
Indeed, if j is not in D , then we can observe that depi(G ′

	, C, M ′) = depi(Ḡ	, C, M) ∪ { j}, because j /∈ depi(Ḡ	, C, M)) and
j is connected in G ′

	 only to the good g , which is not connected to any other agent. The claim then follows because
D ⊇ depi(Ḡ	, C, M). Consider now the case where j ∈ D , so that D ′ = D . We first observe that D ⊇ depi(Ḡ	, C, M) trivially
entails that D ′ = D ⊇ depi(G ′

	, C, M). The claim then follows because depi(G ′
	, C, M) ⊇ depi(G ′

	, C, M ′); in fact, moving from
M to M ′ has the effect of isolating j in the computation of the dependent agents. Eventually, because val(g) ≥ w	 , we can
also conclude that the set M ′ assigns goods of values at least w	 to all agents belonging to the set D ′ . Therefore, M ′ and D ′
witness that G ′

	 |= F 	
i (C). �

In fact, as shown in [83], other simplifications might be possible, by removing specific substructures that does not
change the Shapley value. Each simplification leads to smaller graphs and can reduce the treewidth, thus speeding-up the
computation. Investigating more complex forms of simplifications is beyond the scope of this paper, but is an interesting
avenue of further research.

Main results All the technical ingredients are now in place, and we can establish the main result of this section, namely
that the Shapley value and the Banzhaf value can be computed in polynomial time over weighted-allocation games induced
by (simplified) graphs having bounded treewidth.

Theorem 5.10. On weighted-allocation games such that, for every level 	 ∈ {1, ..., m}, the graph Simplify(G) has treewidth bounded
by some constant, the Shapley value and the Banzhaf value can be computed in polynomial time.

18 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
Proof. From the characterization given by Equation (1) in Section 3, in order to compute the Shapley value and the Banzhaf
value in polynomial time for any player i ∈ N , it is sufficient to compute the values βi(Ga

G , h) in polynomial time, for
each coalition cardinality value h ∈ {0, ..., n − 1}. By Theorem 5.7, we can do that by computing in polynomial time the
(polynomially-many) values #coal	i (Ga

G , h), for each h ∈ {0, ..., |N| − 1}, and for each level 	 associated with the value w	 of
some good in G .

Now, recall that #coal	i (Ga
G , h) is the number of coalitions C such that |C | = h and va

G(C ∪ {i}) − va
G(C) ≥ w	 . Given

Lemma 5.9, the number of coalitions C ⊆ N \ {i} for which vA(C ∪ {i}) − vA(C) ≥ w	 holds and with |C | = h coincides
with the number of coalitions Ĉ ⊆ N \ {i} with |Ĉ | = h for which G ′

	 |= F 	
i (Ĉ), where G ′

	 is the output of Simplify(G).
By hypothesis, the treewidth of G ′

	 is bounded by a constant and thus, by Theorem 2.8, for every cardinality value, the
number of coalitions Ĉ such that G ′

	 |= F 	
i (Ĉ) can be computed in polynomial time, that is, #coal	i (Ga

G , h) can be computed
in polynomial time. �

Now, note that t w(Simplify(G)) ≤ t w(G) ≤ t w(G) clearly holds, for any level 	. Hence, the following comes as an
immediate corollary of Theorem 5.10.

Corollary 5.11. On weighted-allocation games defined over classes of graphs having bounded treewidth, the Shapley value and the
Banzhaf value can be computed in polynomial time.

6. Degree-based tractability results

So far, we have studied islands of tractability for the Shapley value of matching-based coalitional games, by singling out
them based on the notion of tree decomposition. In this section, we study different classes of games defined by restricting
the underlying graphs on the basis of the degree of their nodes. The analysis moves from the observation that weighted-
matching games are known to be tractable when restricted to classes of graphs where each node has at most degree two
(i.e., it has two adjacent nodes) [47]. Our goal is to show that a similar condition—in fact, a much less restrictive condition
as we shall discuss below—can guarantee tractability of weighted-allocation games, too.

We use the same notation as in Section 5. Assume that a bipartite graph G with nodes N ∪ G is given, and let
{w1, ..., wm} = {val(g) | g ∈G} ∪ {0} be the set of all values associated with goods in G, where 0 = w1 < w2 < · · · < wm .
Any matching M is also viewed as a function mapping each agent i ∈ N to the set M(i) = {g ∈ G | {i, g} ∈ M}. Moreover,
denote by �(i) the set {g ∈G | {i, g} ∈ E} of the goods to which i is connected in G .

A binary-clashes allocation game is a weighted-allocation game such that at most two agents can be interested in the
same good (without any restriction on the number of goods each agent is interested in). That is, for every good g ∈ G,
|{i ∈ N | g ∈ �(i)}| ≤ 2.

Theorem 6.1. The Shapley value and the Banzhaf value of binary-clashes allocation games can be computed in polynomial time.

Before proving the result, we point out that it guarantees tractability even for classes of binary-clashes allocation games
defined by unbounded treewidth graphs, for which the elaborations in Section 5 cannot be applied.

Example 6.2. Consider a class of binary-clashes allocation games defined by graphs of the form {Gn | n > 0} where, for each
Gn , the agent set is {1, ..., n}, the good set is Gn = {gi, j | i, j ∈ {1, ..., n} ∧ i 	= j}, and for each good node gi, j ∈Gn , the only
two edges incident to it are {i, gi, j} and { j, gi, j}. That is, only the two agents i and j are interested in such a good gi, j .
Note however that every agent is interested in n − 1 different goods.

It is immediate to check that, for any n, every tree decomposition of Gn must necessarily include a vertex covering all
nodes in {1, ..., n}; therefore, t w(Gn) ≥ n − 1. This means that Theorem 5.10 does not apply to this class of games, on which
the tractability of the Shapley value (and Banzhaf value) follows instead by Theorem 6.1. �

We now start the elaboration of the proof of Theorem 6.1. To this end, we need some further notation. For each level
	 ∈ {1, ..., m} over the possible values, define the graph G	 = G[N ∪G], where G	 = {g ∈ G | val(g) ≥ w	}. For any pair
of distinct agents j′, j′′ , define the goods above this level they are jointly interested in as �	(j′, j′′) = �(j′) ∩ �(j′′) ∩ {g |
val(g) ≥ w	}.

We next focus on some agent i for which we would like to compute the Shapley value. Denote by coni(G) the set of
all agents (including i) that are reachable from agent i in G	 . Define the agent interaction graph G

i,	 as the graph having
the agents in coni(G) as the set of its nodes, and where two agents j′ and j′′ are connected with an edge if and only if
�	(j′, j′′) 	= ∅.

We now start the proof of Theorem 6.1, by first pointing out a useful property that relates the set we have just defined
with the coefficients #coal	i (G, h), which are the number of coalitions C such that |C | = h and va

G (C ∪ {i}) − va
G(C) ≥ w	 .

We use, as a technical ingredient, the notion of dependent agents and Theorem 5.6 in Section 5.

Lemma 6.3. Let h ∈ {0, ..., n − 1} and assume that one of the following conditions holds:

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 19
(a) There are j and j′ in coni(G) with |�	(j, j′)| ≥ 2;
(b) There is an agent j in coni(G) and a good g ∈ �(j) with val(g) ≥ w	 such that g /∈ �(j′), for each j′ 	= j;
(c) The graph G

i,	 contains a cycle.

Then, #coal	i (G, h) = (n−1)!
(n−1−h)!h! .

Proof. (a) Assume that there are two agents j′ and j′′ in coni(G), and a pair of (distinct) goods {g′, g′′} ⊆ �	(j, j′).
Consider a spanning tree T of the graph G

i,	 rooted at agent j′ . Define a matching M̄ as follows: M̄(j′) = g′ , M̄(j′′) = g′′;
and for any other agent jc 	= j′′ whose parent in T is jp , let M̄(jc) be an arbitrary good in �	(jc, jp). The matching M̄ is
well-defined because of the binary-clashes property, which states that |{i ∈ N | g ∈ �(i)}| ≤ 2, for each g ∈ G. Indeed, just
note that the good g′ assigned to the root j′ cannot be useful for any other children of j′ in T (but the single node j′′ ,
which already have assigned the good g′′). Thus, every child j′′′ 	= j′′ of j′ can be assigned any good g′′′ in �	(j′, j′′′) that
is of interest only for j′ and j′′′ (and having value at least w). In particular, g′′′ must be different from g′ and g′′ , as well
as from any other good that j′ has in common with other agents connected with this node in G

i,	 . The same reasoning can
then be applied to see that M̄ correctly assigns one good to any node jc with parent jp , along T .

Now, by considering Definition 5.2, note that coni(G) ⊇ depi(G, C, M̄) for each possible set C ⊆ N \{i}. Hence, M̄ satisfies
condition (2) in Theorem 5.6, and we conclude va

G (C ∪ {i}) − va
G(C) ≥ w	 independently of the coalition C ⊆ N \ {i}. So,

#coal	i (G, h) is the number of coalitions C , with |C | = h, that we can build from a set of |N \ {i}| = n − 1 agents.

(b) Let j be the agent for which exists a good g ∈ �(j) with val(g) ≥ w	 and such that g /∈ �(j′), for each j′ 	= j.
Consider a spanning tree T of the graph G

i,	 rooted at node j, and define a matching M̄ as follows: M̄(j) = g; for any other
agent jc whose parent in T is jp , let M̄(jc) be an arbitrary good in �	(jc, jp). Again M̄ is well-defined and, by applying
the same line of reasoning as above, we get the desired characterization of #coal	i (G, h).

(c) Let T be a spanning tree of G

i,	 . Because we are considering the case G

i,	 is cyclic, at least one edge { j, j′} of this
graph does not belong to the spanning tree T . Let us root T at node j, and define the matching M̄ such that: M̄(j) = g
with g ∈ �	(j, j′); for any other agent jc whose parent in T is jp , let M̄(jc) be an arbitrary good in �	(jc, jp). To conclude
as in the previous cases, just note that M̄ is well-defined. �

We next address the cases that are not covered by the previous lemma.

Lemma 6.4. Assume that none of the conditions (a), (b) and (c) of Lemma 6.3 holds. Let i ∈ N be an agent and let C ⊆ N \ {i}. Then,
va

G(C ∪ {i}) − va
G(C) < w	 if and only if coni(G) ⊆ C ∪ {i}.

Proof. Assume that coni(G) ⊆ C ∪ {i}. By definition of coni(G), since |{i ∈ N | g ∈ �(i)}| ≤ 2 for each g ∈ G, and none
of the conditions (a), (b) and (c) of Lemma 6.3 holds, G

i,	 is a tree and the goods in
⋃

j∈coni(G)
�(j) having value at

least w	 have a one-to-one correspondence with the edges of G

i,	 . Hence, the number of these goods is |coni(G)| − 1.

Therefore, there is no matching M such that val(M(j)) ≥ w	 , for each j ∈ coni(G). By Theorem 5.6, we conclude that
va

G(C ∪ {i}) − va
G(C) < w	 .

For the opposite direction, let C ′ be the connected component of G

i,	[C ∪ {i}] that contains the agent i. Observe that

coni(G) � C ∪{i} entails that there exists an agent j ∈ coni(G) \ (C ∪{i}) that is connected in G

i,	 to some agent j′ ∈ C ′ . Let

us root the tree G

i,	[C ′] at node j′ , and define a matching M̄ as follows: M̄(j′) = g with g ∈ �	(j, j′); for any other agent

jc whose parent in G

i,	[C ′] is jp , let M̄(jc) = gc with gc ∈ �	(jc, jp). Note that M̄ is well-defined and all goods assigned

by this matching have value at least w	 . Moreover, note that C ′ = depi(G, C, M̄), so that we can apply Theorem 5.6 in order
to conclude that va

G (C ∪ {i}) − va
G(C) ≥ w	 . �

Corollary 6.5. Assume that none of the conditions (a), (b) and (c) of Lemma 6.3 holds. Let i be an agent in N, and let h ∈ {0, ..., n − 1}.
If h + 1 < |coni(G)|, then #coali

	(GA, h) = (n−1)!
(n−1−h)!h! . Otherwise, #coali

	(GA, h) = (n−1)!
(n−1−h)!h! − (n−|coni(G)|)!

(n−h−1)!(h+1−|coni(G)|)! .

Proof. By Lemma 6.4, the coefficient #coali
	(GA, h) can be written as the number of coalitions of cardinality h that we

can build from a set of |N \ {i}| = n − 1 agents minus the number of coalitions C for which C ∪ {i} ⊇ coni(G) holds. For
h + 1 < |coni(G)|, no coalition C with |C | = h can enjoy this latter property. Whenever h + 1 ≥ |coni(G)|, the number
of coalitions C with |C | = h for which coni(G) ⊆ C ∪ {i} can be obtained by counting all possible coalitions that can be
obtained by extending coni(G) with further h − |coni(G)| agents. �

With the above technical ingredients in place, we can now prove Theorem 6.1. Let i be an agent and consider each value
level w	 . By Corollary 6.5 and Lemma 6.3, we compute in polynomial time the numbers #coali

	(GA, h), for every cardinality
h ∈ {0, ..., n − 1}. Then, the result immediately follows by using Theorem 5.7 for the computation of the coefficients needed
to get the Shapley and the Banzhaf value.

20 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
Fig. 6. Using node labels for encoding second-order quantification on edge-sets: (a) undirected edges in weighted-allocation games; and (b) directed edges
in matching games.

7. Experimental activity

The (MSO-based) algorithms described in the previous sections have been implemented in a Java system prototype built
on top of the MSO solver Sequoia [52].

We consider two experimental settings. The first one, described in Section 7.1, aims at evaluating the performance of the
approach we have proposed to deal with weighted-allocation games. Instead, the second setting, discussed in Section 7.2,
is meant to assess the effectiveness of our approach on matching games. In both cases, we consider a benchmark of syn-
thetic instances and of instances taken from real-world graphs. Experiments have been performed on a dedicated machine
equipped with an Intel Core i7-3770k 3.5 GHz processor, 12 GB (DDR 1600 MHz) of RAM, and running Linux Debian Jessie.
Our Java algorithms were executed on the JDK 1.8.0 05-b13, and the GNU g++-4.9 compiler was used to compile Sequoia.

Note that Sequoia is a complete MSO solver that however uses some randomized heuristics, so that different runs (while
producing the same result) might actually require different computation times. Accordingly, unless stated otherwise, com-
putation times discussed in the rest of the section (and depicted in the charts) are the average values over 5 runs—this
number has been chosen by noticing that, in our application, average values does not change significantly when more than
3 runs are performed.

7.1. Weighted-allocation games

Implementation issues On allocation games, our system prototype first builds the bipartite graph relating agents with
goods.8 Then, for every value 	, the prototype computes the graph Simplify(G)—see, again, Lemma 5.9—and prepares it for
its subsequent use in Sequoia. Indeed, the solver Sequoia does not support natively second order quantification on sets of
edges. However, it supports the evaluation of MSO formulas over undirected graphs that may have labels on their vertices.
In fact, this feature has been used, in a rather standard way, in order to encode the edges as new vertices of the graph with
the distinguished label “E”, as shown in Fig. 6(a).

Note that this encoding affects the number of the nodes, but it does not increase the treewidth of the original graph.
Eventually, the MSO formula described in Section 5.2 is evaluated on the resulting graph, by running Sequoia with the
“CardCount” option that allows us to calculate, with a single execution, a vector that contains, for each cardinality value,
the number of those distinct instantiations of the (free variable) set C for which the formula is satisfiable. Once the count-
ing problems on the different levels are solved, the prototype calculates the desired Shapley value, by a straightforward
implementation of the arguments in the proof of Theorem 5.10.

Datasets For our experimentation, we consider two benchmarks.
The first one refers to a setting described by [35,39] concerning the feasibility of computing the Shapley value of a

weighted-allocation game arising in the most recent Italian research assessment program (namely, VQR 2011-2014). In
this application, the agents are the researchers (and the professors) of the Italian Universities, and the goods are their
research products, whose values are determined according to criteria published by ANVUR (the Italian agency in charge
of the VQR program). A product can be assigned at most to one researcher, so that the setting naturally gives rise to
a weighted-allocation game. Actually, in the research assessment program VQR 2011-2014, at most two products can be
assigned to each researcher, therefore this program does not fit precisely our setting. We are planning to deal with such a
generalization in a future work. Nevertheless, the real-world agents-goods graphs coming from VQR instances are a natural
benchmark for our algorithms, where of course we have to consider weighted-allocation games with one good for each
agent. In particular, we consider the case of a very large University (“La Sapienza” of Rome) for which we used the actual
VQR graph, comprising thousands of researchers and publications. Fig. 7 provides a graphical representation of the agents

8 The system is also able to perform the problem simplification described in [83]. This phase is not relevant to our aims and details are omitted; we refer
the interested reader to [83].

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 21
Fig. 7. Co-authorship graph for the University “La Sapienza” of Rome.

Fig. 8. Statistics on the level graphs: An agent is independent if either (i) is connected to one good that is furthermore not shared with other agents, or (ii)
has no available goods at all for the given level.

involved in this game, where two researchers are connected if they are coauthors of some research product, that is, if they
are jointly interested in some good in the associated allocation game.

The second benchmark is made instead of synthetic ladder graphs, whose treewidth is 2.

Results on the VQR graph The VQR graph of “La Sapienza” consists of 3562 researchers and 5909 publications. Fig. 7
shows that there are many isolated authors as well as some small groups isolated from the rest of the researchers. Indeed,
we identified 156 connected components, with the largest one having 685 researchers and 1352 publications, while all the
others being rather small (155 components with an average size of 3). We get rid of the small components that can be
solved easily, and we focus on the largest one, whose treewidth is 47.

The values associated with the research products according to the VQR guidelines and occurring in the instance are
0, 0.1, 0.4, 0.7, and 1. For these values, we build the corresponding level graphs, comprising 5235, 4665, 4197, 3541, and
2363 edges, respectively. For these graphs, the numbers of agents are 685, 685, 650, 593, and 457, while the treewidths
are 47, 47, 30, 18, and 6, respectively. The level graphs associated with values in {0.4, 0.7, 1} consist of different connected
components, some of which have large sizes (up to 3941 edges and 600 agents). A few statistics on these graphs are
reported in Fig. 8. The level graphs have been then pre-processed by means of the procedure Simplify (cf. Lemma 5.9), in
order to reduce their size and their treewidth. The characteristics of the graphs resulting from this phase are reported in
Fig. 9.

Finally, by exploiting these simplified graphs and the approach we discussed in Section 5, we computed the Shapley
values for all the agents in the VQR graph. Interestingly, our algorithm founds the exact solution in about 19 minutes,
which is surprisingly fast when compared with the performances of the approximation algorithm discussed by [83] (that
does not exploit the treewidth) and that requires about 160 hours to get an approximation that is expected to be good
enough. To point out the scalability of our approach, we extracted a set of samples of connected subgraphs from the largest
component of the VQR graph, with varying sizes and with treewidths ranging from 1 to 3. The time required to compute

22 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
Fig. 9. Characteristics of the graphs resulting from the simplification, for each level of value. Maximum values are taken over all possible connected
components.

Fig. 10. Time required to compute the Shapley value on weighted-allocation games.

Fig. 11. Syntectic graphs in Section 7: (a) ladder graphs, (b) complete binary trees, and (c) Halin graphs.

the Shapley values on each of these samples is reported in Fig. 10(a), which evidences the nice scaling w.r.t. the size of the
graph (and a higher impact of the treewidth).

Results on ladder graphs The second setting we have considered for our experimentation refers to a number of synthetic
ladder graphs, with up to 50 agents. More formally, each graph Gn = (N ∪ G, E, w) consists of N = {1, ..., n} agents and
G = {g1, ..., gn} goods such that:

• for each i ∈ N and j ∈ {i − 1, i, i + 1} ∩ {1, ..., n}, {i, g j} is in E; and,
• values to the goods are randomly assigned, by taking them from the set {0, 0.40, 0.70, 1}.

Note that the treewidth of these graphs is 2 (see Fig. 11(a), for an illustration—in each of two vertical chains, agents
and goods are alternated with one chain starting from an agent and the other from a good). Indeed, Gn consists of set
of n − 1 (pairwise adjacent) cycles, each one consisting of the edges {x, gx}, {gx, x + 1}, {x + 1, gx+1}, and {gx+1, x} for
x ∈ {1, ..., n − 1}. The time required to compute the Shapley values in this setting is reported in Fig. 10(b). Again, it clearly
emerges that the scaling is basically linear w.r.t. the number of agents.

7.2. Matching games

Implementation issues Similarly to the case of weighted-allocation games, some encoding tricks have been required to use
Sequoia for evaluating the MSO formulas we associated in Section 4 with matching games. In particular, in that formulas we

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 23
Fig. 12. Statistics on instances for matching games.

need the ability to quantify over directed edges (to deal with the set B of ordered pairs in Lemma 4.8) which is a feature
not available in the solver. The feature has been simulated as follows: First, for every undirected edge {x, y} in the input
graph, we add two auxiliary nodes with the label “fresh”, as depicted in Fig. 6(b). Then, in the formula implementing the
conditions reported in Lemma 4.8, a node set B N can be used to simulate the set of directed edges B , with the intended
meaning that (x, y) ∈ B if a fresh node e(x,y) , adjacent to x, belongs to B N ; conversely, (y, x) ∈ B if a fresh node e(y,x) ,
adjacent to y, belongs to B N .

Datasets Experiments over matching games have been conducted over synthetic random graphs belonging to the classes of
(a) ladder graphs, (b) complete binary trees, and (c) Halin graphs (see Fig. 11), whose treewidth is 2, 1, and 3, respectively.
Experiments over the VQR scenario described above have been performed, too. A summary of some statistics for the graphs
considered in the analysis is reported in Fig. 12. There, we also reported the number of “blocked coalitions” that Sequoia
has discovered, that is, the number of coalitions for which vm

G (C ∪ {i}) − vm
G (C) = 0 holds in Lemma 4.7 (which is used in

the algorithm discussed in the proof of Theorem 4.10). The reader can notice that these numbers are quite huge and might
also want to observe that we have considered graphs with up to 100 nodes, for which a naïve computation method would
explore 2100 possible coalitions. Contrasted with these numbers, the results on the computation times we shall discuss
below are quite impressive.

Results on syntectic graphs For the first set of experiments, we computed the Shapley value by varying the number of
agents, for each of the three classes of graphs we have considered. Results are reported in Fig. 13. Note that, rather than just
reporting the average computation time over five runs, the figure also reports the maximum and the minimum computation
times we actually registered. It can be checked that, in all cases, the prototype scales nicely with respect to the size of the
given graphs.

Results on VQR graphs Finally, we run our prototype on subgraphs of the largest connected component of the VQR graph
of the University “La Sapienza” of Rome (as discussed above for the weighted-allocation games), with varying sizes and with
treewidths 2 or 3. Results are reported in Fig. 14. As expected, it clearly emerges that the treewidth impacts significantly on
the running time, but the algorithm nicely scales with respect to the size of the graph.

8. Discussion and conclusion

We have studied the problem of computing the Shapley value (and the Banzhaf value) of coalitional games implicitly (and
succinctly) specified in terms of matching problems. It turns out that the problem is #P-complete, even in stringent settings.
Motivated by this result and by further negative results in the literature, we have then identified islands of tractability by
focusing on games defined over classes of graphs having bounded treewidth and on binary-clashes allocation games. Our

24 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
Fig. 13. Computation times for matching games w.r.t. the number of agents, on randomly weighted (a) ladder graphs, (b) complete binary trees, and (c)
Halin graphs.

polynomial-time algorithms exploit novel and useful properties for matchings, which are then encoded in terms of Monadic
Second Order logic (MSO). These algorithms have been implemented on top of a state-of-the-art MSO solver.

By looking at our findings, a number of avenues of further research clearly emerge. First, our work might stimulate
further research to analyze, on classes of graphs having bounded treewidth, the complexity of other solution concepts
for weighted-matching and weighted-allocation games, such as the least core and the nucleolus. With this respect, we can
already notice that since our algorithms found on the fact that the computation of the Shapley value (and the Banzhaf value)
can be reduced to counting the number of coalitions of a given size enjoying some MSO-definable property, then they can
be smoothly applied to derive tractability results for different solution concepts that can be recast as semivalues [84].9

Second, we observe that weighted-matching (and weighted-allocation) games Gm
G , with G = (V , E, w), can be also

thought as Myerson’s graph-restricted games [85]. Indeed, in the model proposed by Myerson, (V , E) defines the under-
lining communication structure enabling the cooperation of the agents, and it is required that the worth of any coalition
C is the sum of the worth of the maximal coalitions C ′ ⊆ C for which the subgraph induced over C ′ is connected. This
property clearly holds on weighted-matching (and weighted-allocation) games, as noticed in the context of a study focusing
on the core as a solution concept [86]—and, of course, the specific solution concept being considered does not play any role
here. In fact, the Shapley and the Banzhaf values on Myerson’s graph-restricted games have been studied too, in particular
over graphs having bounded treewidth and by focusing on weighted voting games [87]. An interesting avenue of research is
to assess whether effective MSO encodings can be defined for this class, as well as for other classes of games that can be
naturally defined over graphs.

9 A semivalue χ of a game G is such that χi(G) = ∑
C⊆N\{i} γ (|C |)

(
v(C ∪ {i}) − v(C)

)
, for some properly chosen function γ depending only on the size

of the given coalition—see [84], for a formal treatment.

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 25
Fig. 14. Computation times for matching games w.r.t. the number of agents on VQR graphs. For each given number of agents, times are reported for
components having treewidth 2 (on the left) and having treewidth 3 (on the right).

From an algorithmic viewpoint, it would be interesting to study the entry that is still marked as “open” in Table 1, that
is, to study whether our tractability results in Section 4 can be extended to weighted matchings. It is also interesting to
investigate whether our tractability result in Section 6 is tight or whether, instead, it holds even for classes of graphs where
each good/node has degree three at most.10 Moreover, it remains to look for islands of tractability for those allocation
problems where agents have subjective values on the goods, which are modeled by bipartite graphs with arbitrary weights.
Eventually, another interesting research question is whether, on games defined by bounded-treewidth graphs, the Shapley
value is not only tractable, but even fixed-parameter tractable, that is, solvable in time f (k) · ||G||O (1) , for each graph G with
t w(G) ≤ k, where f is a function depending only on the parameter k.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgements

We are grateful to the anonymous referees for their useful suggestions that helped us to improve the quality of the
paper. Moreover, we are indebted to Angelo Mendicelli for his support in setting-up the framework for the experimental
analysis, in particular for dealing with Sequoia.

Gianluigi Greco and Francesco Scarcello were partially supported by Regione Calabria under POR projects “Explora Pro-
cess” and “OSME: The Open Source Monetization Ecosystem”, respectively.

References

[1] G. Chalkiadakis, E. Elkind, M. Wooldridge, Computational Aspects of Cooperative Game Theory (Synthesis Lectures on Artificial Intelligence and Machine
Learning), 1st edition, Morgan & Claypool Publishers, 2011.

[2] G. Chalkiadakis, G. Greco, E. Markakis, Characteristic function games with restricted agent interactions: core-stability and coalition structures, Artif.
Intell. 232 (2016) 76–113.

[3] A. Iwasaki, S. Ueda, N. Hashimoto, M. Yokoo, Finding core for coalition structure utilizing dual solution, Artif. Intell. 222 (C) (2015) 49–66.
[4] T. Ågotnes, W. van der Hoek, M. Wooldridge, Reasoning about coalitional games, Artif. Intell. 173 (1) (2009) 45–79.

10 One may recall that computing the number of perfect matchings (cf. proof of Theorem 3.1) is #P-hard even on graph whose nodes have degree 3 [88].
Hence, a negative answer to the question would not be surprising.

http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4368616C6B696164616B69733A323031313A4341433A32313332373731s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4368616C6B696164616B69733A323031313A4341433A32313332373731s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F61692F4368616C6B696164616B6973474D3136s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F61692F4368616C6B696164616B6973474D3136s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib49776173616B693A323031353A4643433A323934303939392E32393431303934s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib41676F746E65733A526561736F6E696E67436F616C6974696F6E616C47616D6573s1

26 G. Greco et al. / Artificial Intelligence 278 (2020) 103180
[5] M. Wooldridge, P.E. Dunne, On the computational complexity of qualitative coalitional games, Artif. Intell. 158 (1) (2004) 27–73.
[6] O. Shehory, S. Kraus, Methods for task allocation via agent coalition formation, Artif. Intell. 101 (1–2) (1998) 165–200.
[7] F. Bistaffa, A. Farinelli, G. Chalkiadakis, S.D. Ramchurn, A cooperative game-theoretic approach to the social ridesharing problem, Artif. Intell. 246 (2017)

86–117.
[8] Y. Bachrach, D.C. Parkes, J.S. Rosenschein, Computing cooperative solution concepts in coalitional skill games, Artif. Intell. 204 (2013) 1–21.
[9] P.E. Dunne, S. Kraus, E. Manisterski, M. Wooldridge, Solving coalitional resource games, Artif. Intell. 174 (1) (2010) 20–50.

[10] M. Wooldridge, P.E. Dunne, On the computational complexity of coalitional resource games, Artif. Intell. 170 (10) (2006) 835–871.
[11] X. Deng, C.H. Papadimitriou, On the complexity of cooperative solution concepts, Math. Oper. Res. 19 (2) (1994) 257–266.
[12] G. Greco, E. Malizia, L. Palopoli, F. Scarcello, On the complexity of core, kernel, and bargaining set, Artif. Intell. 175 (12–13) (2011) 1877–1910.
[13] V. Conitzer, T. Sandholm, Complexity of constructing solutions in the core based on synergies among coalitions, Artif. Intell. 170 (6–7) (2006) 607–619.
[14] H. Aziz, F. Brandt, H.G. Seedig, Computing desirable partitions in additively separable hedonic games, Artif. Intell. 195 (2013) 316–334.
[15] X. Deng, T. Ibaraki, H. Nagamochi, Algorithmic aspects of the core of combinatorial optimization games, Math. Oper. Res. 24 (3) (1999) 751–766.
[16] J.M. Bilbao, Cooperative games on combinatorial structures, in: Theory and Decision Library C, vol. 26, Kluwer Academinc Publishers, Reading, MA,

USA, 2000.
[17] X. Deng, Ch. Combinatorial optimization games, in: C.A. Floudas, P.M. Pardalos (Eds.), Encyclopedia of Optimization, Springer US, 2009, pp. 387–391.
[18] G. Greco, E. Malizia, L. Palopoli, F. Scarcello, Non-transferable utility coalitional games via mixed-integer linear constraints, J. Artif. Intell. Res. 38 (2010)

633–685.
[19] G. Greco, E. Malizia, L. Palopoli, F. Scarcello, The complexity of the nucleolus in compact games, ACM Trans. Comput. Theory 7 (1) (2014) 3, 52 pp.
[20] U. Faigle, W. Kern, S.P. Fekete, W. Hochstättler, On the complexity of testing membership in the core of min-cost spanning tree games, Int. J. Game

Theory 26 (3) (1997) 361–366.
[21] Y. Bachrach, The least-core of threshold network flow games, in: Proc. of MFCS, 2011, pp. 36–47.
[22] Y. Bachrach, J.S. Rosenschein, Power in threshold network flow games, Auton. Agents Multi-Agent Syst. (2009) 106–132.
[23] X. Deng, Q. Fang, X. Sun, Finding nucleolus of flow game, J. Comb. Optim. 18 (1) (2009) 64–86.
[24] Y. Bachrach, E. Porat, J.S. Rosenschein, Sharing rewards in cooperative connectivity games, J. Artif. Intell. Res. 47 (2013) 281–311.
[25] Y. Bachrach, E. Porat, Path disruption games, in: Proc. of AAMAS, 2010, pp. 1123–1130.
[26] M.X. Goemans, M. Skutella, Cooperative facility location games, J. Algorithms 50 (2) (2004) 194–214.
[27] U. Faigle, S.P. Fekete, W. Hochstättler, W. Kern, On approximately fair cost allocation in Euclidean tsp games, OR Spektrum 20 (1) (1998) 29–37.
[28] Q. Fang, L. Kong, Core stability of vertex cover games, in: Proc. of WINE, 2007, pp. 482–490.
[29] L.S. Shapley, M. Shubik, The assignment game I: the core, Int. J. Game Theory 1 (1) (1971) 111–130.
[30] A.E. Roth, M. Sotomayor, Two-sided matching, in: Handbook of Game Theory with Economic Applications, vol. 1, Elsevier, 1992, pp. 485–541.
[31] M. Le Breton, S. Weber, Stability of coalition structures and the principle of optimal partitioning, in: Social Choice, Welfare and Ethics, Cambridge

University Press, 1995, pp. 301–319.
[32] K. Eriksson, J. Karlander, Stable outcomes of the roommate game with transferable utility, Int. J. Game Theory 29 (4) (2001) 555–569.
[33] Q. Fang, B. Li, X. Sun, J. Zhang, J. Zhang, Computing the least-core and nucleolus for threshold cardinality matching games, Theor. Comput. Sci. 609 (P2)

(2016) 500–510.
[34] H. Moulin, An application of the Shapley value to fair division with money, Econometrica 60 (6) (1992) 1331–1349.
[35] C. Demetrescu, F. Lupia, A. Mendicelli, A. Ribichini, F. Scarcello, M. Schaerf, On the Shapley value and its application to the Italian VQR research

assessment exercise, J. Informetr. 13 (1) (2019) 87–104.
[36] D. Mishra, B. Rangarajan, Cost sharing in a job scheduling problem, Soc. Choice Welf. 29 (3) (2007) 369–382.
[37] F. Maniquet, A characterization of the Shapley value in queueing problems, J. Econ. Theory 109 (1) (2003) 90–103.
[38] G. Greco, F. Scarcello, Mechanisms for fair allocation problems: no-punishment payment rules in verifiable settings, J. Artif. Intell. Res. 49 (2014)

403–449.
[39] G. Greco, F. Scarcello, Fair division rules for funds distribution: the case of the Italian research assessment program (VQR 2004-2010), Intell. Artif. 7 (1)

(2013) 45–56.
[40] D.B. Gillies, Solutions to general non-zero-sum games, in: A.W. Tucker, R.D. Luce (Eds.), Contributions to the Theory of Games, in: Annals of Mathe-

matics Studies, vol. 40, Princeton University Press, 1959, pp. 47–85.
[41] F.Y. Edgeworth, Mathematical Psychics: an Essay on the Mathematics to the Moral Sciences, C. Kegan Paul & Co., London, 1881.
[42] A. Alkan, D. Gale, The core of the matching game, Games Econ. Behav. 2 (3) (1990) 203–212.
[43] P. Biró, W. Kern, D. Paulusma, Computing solutions for matching games, Int. J. Game Theory 41 (1) (2012) 75–90.
[44] D. Schmeidler, The nucleolus of a characteristic function game, SIAM J. Appl. Math. 17 (6) (1969) 1163–1170.
[45] W. Kern, D. Paulusma, Matching games: the least core and the nucleolus, Math. Oper. Res. 28 (2) (2003) 294–308.
[46] L.S. Shapley, A value for n-person games, in: H.W. Kuhn, A.W. Tucker (Eds.), Contributions to the Theory of Games II, Princeton University Press, 1953,

pp. 307–317.
[47] H. Aziz, B. de Keijzer, Shapley meets Shapley, in: Proc. of STACS, 2014, pp. 99–111.
[48] N. Bousquet, The Shapley value of matching games on trees, in: http://www.math .mcgill .ca /nbousquet /shapley.pdf, 2015.
[49] N. Robertson, P. Seymour, Graph minors. III. Planar tree-width, J. Comb. Theory, Ser. B 36 (1) (1984) 49–64.
[50] J.F. Banzhaf, Weighted voting doesn’t work: a mathematical analysis, Rutgers Law Rev. 19 (1965) 317–343.
[51] B. Courcelle, Graph rewriting: an algebraic and logic approach, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal

Models and Semantics, The MIT Press, 1990, pp. 193–242.
[52] A. Langer, Fast Algorithms for Decomposable Graphs, Ph.D. thesis, RWTH Aachen University, 2013.
[53] G. Greco, F. Lupia, F. Scarcello, The tractability of the Shapley value over bounded treewidth matching games, in: Proc. of IJCAI, 2017, pp. 1046–1052.
[54] G. Greco, F. Lupia, F. Scarcello, Structural tractability of Shapley and Banzhaf values in allocation games, in: Proc. of IJCAI, 2015, pp. 547–553.
[55] M.J. Osborne, A. Rubinstein, A Course in Game Theory, The MIT Press, Cambridge, MA, USA, 1994.
[56] G. Gottlob, G. Greco, F. Scarcello, Treewidth and hypertree width, in: Tractability: Practical Approaches to Hard Problems, Cambridge University Press,

2014, pp. 3–38.
[57] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and tractable queries, J. Comput. Syst. Sci. 64 (3) (2002) 579–627.
[58] M. Grohe, D. Marx, Constraint solving via fractional edge covers, ACM Trans. Algorithms 11 (1) (2014) 4, 20 pp.
[59] G. Gottlob, Z. Miklós, T. Schwentick, Generalized hypertree decompositions: NP-hardness and tractable variants, J. ACM 56 (6) (2009) 30, 32 pp.
[60] G. Greco, F. Scarcello, Greedy strategies and larger islands of tractability for conjunctive queries and constraint satisfaction problems, Inf. Comput. 252

(2017) 201–220.
[61] G. Greco, F. Scarcello, The power of local consistency in conjunctive queries and constraint satisfaction problems, SIAM J. Comput. 46 (3) (2017)

1111–1145.
[62] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.
[63] M. Elberfeld, A. Jakoby, T. Tantau, Logspace versions of the theorems of bodlaender and courcelle, in: Proc. of FOCS, 2010, pp. 143–152.

http://refhub.elsevier.com/S0004-3702(19)30183-3/bib576F6F6C6472696467653A323030343A4343513A313032393237362E31303239323738s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib536865686F72793A313939383A4D54413A313634333237352E31363433333034s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4249535441464641323031373836s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4249535441464641323031373836s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib42616368726163683A323031333A4343533A323533373138392E32353337373034s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44756E6E653A323031303A5343523A313635353431352E31363535353636s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib576F6F6C6472696467653A323030363A4343433A313134383334392E31363434363434s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44656E50617031393934s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F61692F477265636F4D50533131s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib436F6E69747A65725F53616E64686F6C6D3A436F7265436F6D706C6578697479s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib417A697A3A323031333A4344503A323433353437362E32343335393633s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44656E6731393939s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib42696C62616F3A436F6F7047616D6573436F6D62537472756374757265s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib42696C62616F3A436F6F7047616D6573436F6D62537472756374757265s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44656E673230303962s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F6A6169722F477265636F4D50533130s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F6A6169722F477265636F4D50533130s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F746F63742F477265636F4D50533134s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib466169676C6531393937s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib466169676C6531393937s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A636F6E662F6D6663732F42616368726163683131s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4261636872616368523039s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44656E6732303039s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F6A6169722F426163687261636850523133s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib42616368726163685F506F7261743A5061746844697372757074696F6E47616D6573s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib476F65536B7532303034s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib466169676C653139393861s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib31302E313030372F3937382D332D3534302D37373130352D305F3532s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib536861706C657931393731s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib524F544831393932343835s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib6C653139393573746162696C697479s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib6C653139393573746162696C697479s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4572696B73736F6E32303031s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib46616E673A323031363A434C4E3A323835333233332E32383533343530s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib46616E673A323031363A434C4E3A323835333233332E32383533343530s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4D6F756C696E31393932s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44454D45545245534355323031393837s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44454D45545245534355323031393837s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4D697368726132303037s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4672616E636F697332303033s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib477265636F533134s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib477265636F533134s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib477265636F533133s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib477265636F533133s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib47696C6C6965733A536F6C7574696F6E73s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib47696C6C6965733A536F6C7574696F6E73s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib45646765776F7274683A436F7265s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib414C4B414E31393930323033s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4269726F32303132s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib646F693A31302E313133372F30313137313037s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib646F693A31302E313238372F6D6F6F722E32382E322E3239342E3134343737s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib736861706C65793A626F6F6B31393532s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib736861706C65793A626F6F6B31393532s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A636F6E662F73746163732F417A697A4B3134s1
http://www.math.mcgill.ca/nbousquet/shapley.pdf
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib52533834s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib42616E7A6861663635s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib436F757263656C6C653930s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib436F757263656C6C653930s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A7068642F646E622F4C616E6765723133s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A636F6E662F696A6361692F477265636F4C533137s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A636F6E662F696A6361692F477265636F4C533135s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4F73626F726E6531393934s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A626F6F6B732F63752F702F476F74746C6F6247533134s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A626F6F6B732F63752F702F476F74746C6F6247533134s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib476F74746C6F623230303261s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib47726F686532303134s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib476F74746C6F623230303963s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F69616E64632F477265636F533137s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F69616E64632F477265636F533137s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F7369616D636F6D702F477265636F533137s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A6A6F75726E616C732F7369616D636F6D702F477265636F533137s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib476172657931393739s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib456C62657266656C643A323031303A4C56543A313931373832372E31393138333739s1

G. Greco et al. / Artificial Intelligence 278 (2020) 103180 27
[64] A. Langer, F. Reidl, P. Rossmanith, S. Sikdar, Practical algorithms for MSO model-checking on tree-decomposable graphs, Comput. Sci. Rev. 13–14 (2014)
39–74.

[65] S. Ieong, Y. Shoham, Marginal contribution nets: a compact representation scheme for coalitional games, in: Proc. of EC, 2005, pp. 193–202.
[66] E. Elkind, L.A. Goldberg, P.W. Goldberg, M. Wooldridge, A tractable and expressive class of marginal contribution nets and its applications, Math. Log.

Q. 55 (4) (2009) 362–376.
[67] S. Ieong, Y. Shoham, Multi-attribute coalitional games, in: Proc. of EC, 2006, pp. 170–179.
[68] V. Conitzer, T. Sandholm, Computing Shapley values, manipulating value division schemes, and checking core membership in multi-issue domains, in:

Proc. of AAAI, 2004, pp. 219–225.
[69] T.P. Michalak, K.V. Aadithya, P.L. Szczepanski, B. Ravindran, N.R. Jennings, Efficient computation of the Shapley value for game-theoretic network

centrality, J. Artif. Intell. Res. 46 (1) (2013) 607–650.
[70] P.L. Szczepanski, Fast algorithms for game-theoretic centrality measures, CoRR abs/1512.01764, 2015.
[71] S. Bhagat, A. Kim, S. Muthukrishnan, U. Weinsberg, The Shapley value in knapsack budgeted games, in: Proc. of WINE, 2014, pp. 106–119.
[72] H. Nagamochi, D.-Z. Zeng, N. Kabutoya, T. Ibaraki, Complexity of the minimum base game on matroids, Math. Oper. Res. 22 (1997) 146–164.
[73] K. Prasad, J.S. Kelly, Np-completeness of some problems concerning voting games, Int. J. Game Theory 19 (1) (1990) 1–9.
[74] M. Zuckerman, P. Faliszewski, Y. Bachrach, E. Elkind, Manipulating the quota in weighted voting games, Artif. Intell. 180–181 (2012) 1–19.
[75] S.S. Fatima, M. Wooldridge, N.R. Jennings, A linear approximation method for the Shapley value, Artif. Intell. 172 (14) (2008) 1673–1699.
[76] D. Liben-Nowell, A. Sharp, T. Wexler, K. Woods, Computing Shapley value in supermodular coalitional games, in: Proc. of COCOON, Springer, Berlin,

Heidelberg, 2012, pp. 568–579.
[77] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1993.
[78] C.J. Colbourn, J.S. Provan, D. Vertigan, The complexity of computing the tutte polynomial on transversal matroids, Combinatorica 15 (1) (1995) 1–10.
[79] H. Aziz, O. Lachish, M. Paterson, R. Savani, Power indices in spanning connectivity games, in: Proc. of AAIM, 2009, pp. 55–67.
[80] E.H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comput. 22 (1968) 565.
[81] C. Berge, Two theorems in graph theory, Proc. Natl. Acad. Sci. USA 43 (9) (1957) 842–844.
[82] B. Courcelle, J. Makowsky, U. Rotics, On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic,

Discrete Appl. Math. 108 (1–2) (2001) 23–52.
[83] F. Lupia, A. Mendicelli, A. Ribichini, F. Scarcello, M. Schaerf, Computing the Shapley value in allocation problems: approximations and bounds, with an

application to the Italian VQR research assessment program, J. Exp. Theor. Artif. Intell. 30 (4) (2018) 505–524.
[84] P. Dubey, A. Neyman, R.J. Weber, Value theory without efficiency, Math. Oper. Res. 6 (1) (1981) 122–128.
[85] R.B. Myerson, Graphs and cooperation in games, Math. Oper. Res. 2 (3) (1977) 225–229.
[86] R. Meir, Y. Zick, E. Elkind, J.S. Rosenschein, Bounding the cost of stability in games over interaction networks, in: Proc. of AAAI, 2013, pp. 690–696.
[87] O. Skibski, T.P. Michalak, Y. Sakurai, M. Yokoo, A pseudo-polynomial algorithm for computing power indices in graph-restricted weighted voting games,

in: Proc. of IJCAI, 2015, pp. 631–637.
[88] P. Dagum, M. Luby, Approximating the permanent of graphs with large factors, Theor. Comput. Sci. 102 (2) (1992) 283–305.

http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4C414E474552323031343339s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4C414E474552323031343339s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib49656F6E673A323030353A4D434E3A313036343030392E31303634303330s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib456C6B696E643A457870726573736976654D434E4554s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib456C6B696E643A457870726573736976654D434E4554s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib49656F53686F32303036s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A636F6E662F616161692F436F6E69747A6572533034s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A636F6E662F616161692F436F6E69747A6572533034s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4D696368616C616B3A323031333A4543533A323531323533382E32353132353533s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4D696368616C616B3A323031333A4543533A323531323533382E32353132353533s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib31302E313030372F3937382D332D3331392D31333132392D305F38s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4E6167616D6F63686931393937s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib50726173616431393930s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib5A75636B65726D616E3A323031323A4D51573A323134383233382E32313438323834s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib464154494D413230303831363733s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib31302E313030372F3937382D332D3634322D33323234312D395F3438s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib31302E313030372F3937382D332D3634322D33323234312D395F3438s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib5061706164696D697472696F7531393933s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib54503935s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib417A697A4C50533039s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib426172656973733638s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4265726765383432s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib436F757263656C6C65323030313233s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib436F757263656C6C65323030313233s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib6C757069613138s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib6C757069613138s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib31302E323330372F33363839323731s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib4D796572736F6Es1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib44424C503A636F6E662F616161692F4D6569725A45523133s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib536B6962736B693A323031353A5041433A323833323234392E32383332333337s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib536B6962736B693A323031353A5041433A323833323234392E32383332333337s1
http://refhub.elsevier.com/S0004-3702(19)30183-3/bib446167756D3932s1

	Coalitional games induced by matching problems: Complexity and islands of tractability for the Shapley value
	1 Introduction
	1.1 Coalitional games and matching problems
	1.2 Solutions concepts and the Shapley value
	1.3 Contribution
	1.4 Organization

	2 Preliminaries
	2.1 Weighted-matching and weighted-allocation games
	2.2 Solution concepts for coalitional games
	2.3 Structural properties and MSO formulas

	3 Intractability of computation
	4 Matching games over graphs of bounded treewidth
	4.1 Basic results on matchings
	4.2 Characterization of marginal contribution
	4.3 MSO encoding

	5 Weighted-allocation games over graphs of bounded treewidth
	5.1 Dependent agents and marginal contributions
	5.2 MSO encoding

	6 Degree-based tractability results
	7 Experimental activity
	7.1 Weighted-allocation games
	7.2 Matching games

	8 Discussion and conclusion
	Acknowledgements
	References

