
Author’s Accepted Manuscript

Chaotic target representation for robust object
tracking

Marjan Abdechiri, Karim Faez, Hamidreza
Amindavar, Eleonora Bilotta

PII: S0923-5965(17)30020-6
DOI: http://dx.doi.org/10.1016/j.image.2017.02.004
Reference: IMAGE15175

To appear in: Signal Processing : Image Communication

Received date: 10 August 2016
Revised date: 11 February 2017
Accepted date: 12 February 2017

Cite this article as: Marjan Abdechiri, Karim Faez, Hamidreza Amindavar and
Eleonora Bilotta, Chaotic target representation for robust object tracking, Signal
Processing : Image Communication,
http://dx.doi.org/10.1016/j.image.2017.02.004

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/image

http://www.elsevier.com/locate/image
http://dx.doi.org/10.1016/j.image.2017.02.004
http://dx.doi.org/10.1016/j.image.2017.02.004


1 

 

Chaotic target representation for robust object tracking 

 

Marjan Abdechiri
1
, Karim Faez

1*
, Hamidreza Amindavar

1
, Eleonora Bilotta

2 

1 Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran 
2 Physics Department, University of Calabria, Via Pietro Bucci, 87036 Rende, Italy 
*Corresponding authors: kfaez@aut.ac.ir  

 

Abstract 

In this paper, a new object representation method is introduced as an appearance model based on chaos theory. For 

robust object tracking, the theory is used to extract a deterministic model from irregular patterns of pixel amplitudes 

in a target region. The object tracking algorithm that accompanies the proposed method involves two steps. First, 

fractal theory is applied to a compressive sensing method intended to embed an image into a two-dimensional state 

space during tracking by detection. After an object representation is extracted from an instance, the fractal 

dimension of the state space is assigned to the importance weight of the instance for efficient online multiple-

instance learning. Second, a chaotic map approach is adopted to update the appearance model. Such updating is a 

crucial step in selecting discriminative and robust features. To highlight the advantages of the algorithm put forward 

in this work, its accuracy is validated on a large dataset. Results show that the proposed algorithm is more efficient 

than state-of-the-art tracking algorithms, with the former outperforming the latter under rotation, illumination, and 

scale changes.  

 

Keywords: Chaos theory, fractal theory, online multiple-instance learning, object tracking. 

 

1. Introduction 

 

Object tracking, which is a highly practical approach to motion analysis, traffic monitoring, and video analysis, is a 

topic of considerable interest in computer vision research. The field of visual object tracking has recently attained 

substantial achievements, such as the development of the context-aware exclusive sparse tracker [1], adaptive multi-

task feature learning [2], and sparse appearance model [3]. Nevertheless, designing a robust tracking system remains 

a challenging task because of appearance-related variations, including fast motion, occlusion, illumination, scale, 

and rotation [4]. Under these challenging conditions, a key component in object tracking is visual representation, 

which is categorized into two schemes: local and global representation [5]. Global representation reflects an object’s 

global statistical characteristics, including raw pixels, optical flows, histograms, covariances, wavelets, and active 

contours [6]. This scheme is a simple and efficient method for real-time object tracking, but it is sensitive to global 

appearance changes, such as variations in illumination, deformation shape, rotation, and partial occlusion [7]. Local 

representation, on the other hand, extracts local structural appearance characteristics as interest points that are used 

to encode appearance information. These local characteristics are classified on the basis of local templates, 

segmentation, scale-invariant feature transformation, maximally stable external regions, speeded up robust features, 

corners, and feature pool-based [8]. Despite the robustness of local representation against global appearance 

changes, however, representations suffer from noise disturbance and background distraction. The use of local feature 

extraction methods also increases computational costs [9]. To reduce complexity and noise disturbance, compressive 

sensing methods [10] are used to obtain a low-dimensional representation on the basis of correlation reduction in 

object tracking. The drawback of these methods is that they do not consider the dynamic information contained in 

data for compression, thereby causing the loss of important samples for signal recovery. 
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A target region is a complex interaction of pixel amplitudes and variations—an interaction that presents difficulties 

in detecting and recognizing a target with irregular patterns under different situations. Extracting a deterministic 

model of irregular patterns on the basis of chaos theory aids efficient compressive sensing for object tracking. Chaos 

theory, which is aimed at an understanding of nonlinear dynamics, has been successfully used to model variations in 

time series [11]. It has also been actively adopted in research on signal and image processing [12] and mathematics 

[13]. Chaotic characteristics may facilitate the high-quality extraction of dynamic time series information, which can 

be applied to image processing and object tracking. In this study, compressive sensing and chaos theory are used to 

develop a feature extraction method that extracts a low-dimensional feature space on the basis of dynamic 

information. To address the weaknesses of local and global representation in object tracking, fractal theory is used to 

extract the global dynamics of irregular patterns in state space on the basis of local information regarding pixel 

correlation. 

The resultant representation balances local and global features for object tracking. A new online weighted multiple-

instance learning (MIL) method is also established to maximize bag likelihood function on the basis of a chaotic 

approximation model. 

To evaluate the performance of the chaotic representation, the proposed method is applied to 10 video sequences, for 

which objects are detected using an MIL methods, and 20 video sequences (characterized by different challenging 

conditions), for which objects are detected using the latest tracking methods. The performance of the 

aforementioned methods on a large dataset is then compared. Experimental results demonstrate that the 

representation derived with the proposed approach is robust to partial occlusion, illumination changes, scale 

changes, and rotation variations. The rest of the paper is organized as follows. Section 2 introduces the chaos theory 

in nonlinear dynamics. Section 3 represents the basic concept of online MIL algorithms. In section 4, the 

architecture of chaotic representation and details of MCIL method are given. Experimental results are presented in 

section 5 with various examples and quantification analyses. Finally, section 6 concludes this paper. 

2. Chaos theory in nonlinear dynamics 

Chaos theory is used to process nonlinear dynamic systems, thereby improving our understanding of such systems. 

Although a chaotic time series is random-like with complex dynamics, it has a deterministic attractor in state space 

[14]. The evolution of a dynamic system can be described by using a trajectory in state space; this trajectory is 

determined on the basis of chaos theory [15]. State space reconstruction can be used for prediction, recognition, and 

modeling in nonlinear systems, and state space features are used to learn dynamic time series models, such as speech 

recognition [16] and disease detection models [17]. In this work, Takens’ embedding theorem is used to generate a 

map from a one-dimensional space to an m-dimensional space [18]. The state space reconstruction expands a vector 

(��, ��, … , ����) into multi-dimensional space ��(!, ") = [�� , ��#$, … ��#(%��)$] ∈ ℝ%, where " represents the 

time delay, and ! denotes the embedding dimension [19]. The dynamics of the multi-dimensional space can be 

represented by m-dimensional map ��#� = *(�� , +) in state space [20]. Constructing a state space model of time 

series data necessitates the selection of an appropriate dimension ! and time lag ". The mutual information is used 

to compute the minimum lag " between �- and �-#$ and thereby guarantee topological equivalence with original and 

reconstructed attractors [21]. Mutual information is computed to measure the linear dependence between values 

[22]. Embedding dimension ! is estimated using the false nearest neighbor algorithm because of dimension 

reduction [23]. The embedding dimension of a time series is computed on the basis of the average number of false 

nearest neighbors [24].  

Chaotic sparse representation is implemented to extract the chaotic dynamics of a nonlinear time series. 

Compressive sensing is applied to reduce the number of coherent samples, and fractal theory is used to directly 

extract the chaotic dynamics of streaming signals [25]. This study proposes a new compressive sensing method that 

extracts the state space of an image without the need to compute mutual information and use the false nearest 

neighbor algorithm. Given these features, the method may reduce complexity. The fractal function is described by 
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using power exponent distribution as .(/) = 0/�1 where .(/) is observation data in the time / [26]. The fractal 

dimension 2 is  

2 = 3�456578
3�497968                                                                           (1) 

0 = .:/:1 = .;1                                                                     (2) 

where 0 is constant value.  

 

3. Online MIL trackers 

 

Object tracking algorithms can generally be categorized into generative [27] and discriminative algorithms [28], 

which estimate object location by using classifiers as trackers that are based on a detection method. Generative 

algorithms perform well under slight changes because of the rich features of objects, whereas discriminative 

algorithms are robust under complicated situations because they use negative instances to avoid the drifting 

problem. Online MIL is a discriminative model that is based on positive and negative instances [28]. MIL can be 

extended in object tracking task, multi-label learning [29], and object detection. The tracker uses a bag of instances 

instead of an instance for visual tracking. As shown in Fig. 1, a bag is positive when one or more of the instances in 

it are positive [30]. For each new frame, we crop out a set of patches <> = {�|‖@(�) − @B��∗ ‖ < E} with the radius E 

of the current tracker location to compute F(G|�) for � ∈ <>. The location of image patch � is  @(�). At each time H, 

the tracker maintains object location @B∗. 

Similarly, we use greedy search to update tracker location @B∗ = @IJ/K!J� F(G|�)L. The motion model determines 

the location of the target in frame t on the basis of the tracker location at time (t-1) and radius s [30]: 

 

F(@B∗|@B��∗ ) ∝  N1          PQ ‖@B∗ − @B��∗ ‖ < E0                       SHℎU/VPEU                                                  (3) 

To update our appearance model, a set of image patches is randomly selected using <W = {�|‖@(�) − @B∗‖ < /} and 

<W,X = {�| / < ‖@(�) − @B∗‖ < Y} for positive and negative instances, respectively. In these equations, @(�) denotes 

the location of image patches �, and / and Y represent integer radii. We consider all instances positive with / > 1 

(Fig. 1). In the training phase, the inputs are N instances as the training set {(��, G�), … , (�� , G�)}, and the label 

assigned to instance �- ∈ \ is G- = {−1,1}. 

The MIL developed in this research uses N training bags 2 = {<- , -̂}-_�`  and bag label G- , where 

<- = {�-�, �-a, … , �-b} [28]. The bag labels are defined as G- = maxb(G-b). Consequently, the classifier is updated by 

positive and negative samples d(�) = ∑ fgℎg(�)h-_� , where ℎg(�) is a weak classifier [28]. 

 

For predictive purposes, a binary function  i(d(�)) is used, where i(�) is a sigmoid function i(�) = 1/(1 + U�l). 

At every time step t, all M candidate classifiers are updated by using 

 

ℎg(�) = log qrsIt_�uvw(l)L
rsIt_�uvw(l)Ly                                                          (4) 

 

where FB(Qg(�)|G = 1) ~.(z�, i�) with a Haar-like feature vector Qg. The maximum log likelihood of bags 

ℎg = argmax�∈{��,…,��} ℒ(dg�� + fℎ) is then computed to select k weak classifiers, where M>>k, and ℒ(. ) is the 

log likelihood of bags. 

ℒ(d) = ∑ G- log(F-) + (1 − G-) log(1 − F-)- .                                        (5) 
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Conditional distributions are computed using a Gaussian function F(Qg(�-b)|G- = 1)~.(z�, i�)  and  

F(Qg(�-b)|G- = 0)~.(z�, i�). The updating rules are z = �z + (1 − �) �
` ∑ QgI�-bL b|t�_�  and i = �i +

(1 − �)��
` ∑ (QgI�-bL − z)ab|t�_� , where � is the learning rate, and . represents the number of positive instances 

[28]. Bag probability is a noisy model F- = �(G- = 1|<-) = 1 − ∏ I1 − F-bLb , and instance probability is   F-b =
�IG-b = 1u�-bL = i(d(�)). The MIL method selects the discriminative weak classifier by maximizing the log 

likelihood of bags as follows: 

ℎg = J/K max�_{��,��,...,��} �(dg�� + ℎ).                                                        (6) 

The model above requires the computation of instance probability and bag probabilities during online classification. 

Although online MIL is preferable for real-time tracking, it presents two intractable problems: appearance 

representation and the online updating model. In appearance representation, Haar-like features are sensitive to 

highly complex illumination changes during online updating. To obtain effective representation, the histogram of 

oriented gradients (HOG) [31] and Distribution Fields (DFs) [32] are introduced to describe a robust target 

representation for object tracking. DF layers represent the spatial information of an image through the probability 

distribution of each pixel; the use of this distribution, in turn, generates a smaller pool of features. Although HOG 

features can overcome the influence of illumination, however, the features are sensitive to the spatial location of an 

object, thus causing drifting in long video sequences [33]. HOG- and DF-based methods are also sensitive to partial 

occlusions and illumination changes. 

Local representations cannot describe a target with robust features under complex appearance changes in video 

sequences. A robust tracking system requires a high-dimensional space of local features to select important target 

features from a pool of features for tracking. In the online updating model, the online MIL tracker may select less 

important positive instances and thus cause tracking failure. Bag likelihood function is computed directly with 

instance and bag probabilities, but this computation increases the complexity of online MIL. To address this 

problem, the online weighted MIL tracker takes advantages of instance weights in selecting fewer features in a 

learning procedure [34]. On the basis of the weights, the optimized bag likelihood function is computed using first-

order Taylor approximation, which then reduces the complexity of online MIL. Some drawbacks of online MIL and 

other MIL algorithms are listed in Table 1. The visual representation and likelihood function of the proposed method 

are introduced using a chaotic system (Table 1). 

 

4. Proposed object representation method 

 

The object representation method introduced in this research capitalizes on chaos theory to enhance our 

understanding of nonlinear systems for object tracking. A new chaotic extraction scheme is applied to reduce the 

dimension of feature space for tracking with invariant features. The irregularities and patterns of a target are 

represented by using chaotic representation in state space. To separate the target from its background, online 

weighted MIL is used to update the appearance model on the basis of the fractal dimension of instance 

representation and the instance distance from the position predicted in the previous frame. The framework of the 

proposed object representation method is illustrated in Fig. 2. 

 

4.1. Chaotic representation  

State space reconstruction can be used for feature extraction in image processing. This study puts forward a new 

method for reducing the complexity of reconstruction. The method can embed noisy data in a low-dimensional 

trajectory, which is a deterministic model of variations that can be applied to feature extraction. To represent the 

variations and patterns in a leaf image, the image can be considered a time series (Fig. 3). In the state space 

reconstruction for the image, its embedding dimension is ! = 5, which is estimated using the false nearest neighbor 

algorithm. The embedding dimension of the bounding box in the first frame can be regarded as the optimal 
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dimension over frames, but this consideration diminishes the performance of the trackers. Considering an image as a 

time series requires computing the optimal embedding dimension for each instance in the MIL process to reduce the 

speed of object tracking. To solve these deficiencies, we present a method for directly extracting the low-

dimensional feature space of image variations. This extraction method does not require the computation of optimal 

delay and dimension.  

An image or instance can be converted to one-dimension time series as ��, �a, … , ��. A compressive sensing method 

that considers fractal dimensions is then used to directly find an embedding space in the image. In the algorithm, the 

columns of an image are considered time-varying signals. Subsequently, fractal dimensions are computed for 

successive samples by using Eq. (1). The fractal dimensions aid the selection of important samples with chaotic 

characteristics and a low-dimensional state space.  

In the theory of compressive sensing, an unknown sparse signal � ∈ �` is k-sparse, given that it has k nonzero 

components (. ≫ �). The linear measurement G = �� is applied to obtain a limited number of observations, where 

G ∈ �� and � ∈ ��×` and � ≪ . [35]. A convex optimization algorithm using @�-norm is applied in order to 

minimize the function  

 

!P+‖�‖�   E�0ℎ HℎJH G = ��.                                                           (7) 

In streaming signal, the active interval Π is shifted by removing few oldest GB  and adding a few new ones [36]. In 

the active interval, �̅ is a small number of �B. The compact form is G� = ���̅ + U̅, where G� denotes the measurements 

GB . The signal is transformed by using �̅ = ��f�. In the system model, the system is separated �̅ into two matrices as 

follows: 

�̅ = ��f� = ��  �¡¢ £f¤f¥¦ = � f¤ + �¡f¥,                                                (8) 

where �   is the first columns in ��. The system equation modifies with removing f3�� as G¥ = ���¡f¥ + Ũ. In recovery 

process of streaming signal, the @�-norm minimization problem estimates coefficients α¥  as 

!P+P!P¨U©  ‖ªf‖� + �
a «���¡f − G¥«a

a.                                         (9) 

 

Fractal theory is applied to the algorithm to extract a low-dimensional trajectory in the state space of the image. In 

the proposed extraction method, the minimization problem (i.e., Eq. (9)) is modified as follows: 

 

!P+P!P¨U ©_{©�,©�,…,©¬} ∑ ‖ªgfg‖�%g_� + �
a ‖�g�gfg − Gg‖aa + w

a ‖¨̂ − �gfg‖aa             (10) 

 

where ¯g > 0 are regularization parameters. The third term in the equation is used to recover a signal on the basis of 

the minimum error of fractal prediction. To predict succeeding samples within compressive sensing, grey theory is 

applied to sparse samples. The theory is also used to determine optimal samples with a two-dimensional state space 

at a minimum prediction error. The fractal dimensions of samples 2 = {°�, °a, … , °%��} are computed using Eq. 

(1). Grey theory is computed for D by using cumulative-sum series 21- = ∑ 2b-b_�  and 22- = ∑ 21b-b_� . The best 

sparse samples are found within the data transformed with grey theory, after which the inverse accumulating 

generation operator is used to predict state as  �′² -(!) = �′² -#�(!) − � ′² -#�(! − 1) at a minimum prediction error 

U. @�-homotopy optimization is used [36] to dynamically and iteratively update the solutions of Eq. (10) for the 

purpose of estimating the f¥ of the optimization problem.  

 

!P+P!P¨U ©    ‖ªf‖� + �
a «���¡f − G¥«a

a + 
a «¨̂ − �¡f«a

a.                            (11) 
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The third term aides to select chaotic samples within the compressive sensing. The pseudo code of the proposed 

method is explained in Algorithm 1. 

 

4.2. Online weighted multiple-chaotic instance learning 

In the training phase, the feature vector of each sample is extracted using the proposed object representation method, 

in which two bags {<#, <�} are considered for training. The positive bag comprises . positive instances ��b and � 

negative instances ��b. Classifier dg(. ) is described as 

dg(�) = log r(v(l)|t_�) r(t_�)
r(v(l)|t_�) r(t_�) = ∑ ℎg(�)g                                (12) 

where G = 1 is the label of a positive instance, and G = 0 is the label of a negative instance. In online updating, a 

fractal dimension is computed for each instance as a weight. The weight of instances is applied as 

V = �
a³ U�´µ(¶)·µ(¶∗)¸�

� U�‖¹(¶)·¹(¶∗)‖
�                                               (13) 

where the optimal tracked position is @(�∗) in the current frame, @(. ) ∈ �a denotes the location function, and 2 

represents the fractal dimension. The weights ease the selection of fewer features for updating the appearance 

model. The instances near the tracking location with the same fractal dimension contribute to bag probability. 

Hence, the instances are contingent on the weights in a bag’s label. The bag probability is the weighted model, as 

indicated below: 

F(G = 1|<#) = ∑ Vb  F(G� = 1|��b)`��b_�                                         (14) 

 

The bag’s log-likelihood function is computed by deploying the new weighted model.  

 

@(d) = ∑ G>�>_� log (F(G- = 1|<#) + (1 − G>) logIF(G- = 0|<�)L.                     (15) 

We use a dynamic system that creates a chaotic map [37, 38] by using the steepest descent method to optimize 

objective function Eq. (6). We use the steepest descent method to convert Eq. (6) into a chaotic map thus: 

 

ºGg#�(H + 1) = Gg(H) − » (−∇lw@(dg + ℎ))
�g(H + 1) = ½IGg(H + 1)L                               .                                  (16) 

The generated chaotic sequence of the map converges to a local minimum. The solution is based on the initial 

condition. » is sufficiently small and can generate a sequence that is chaotic in the sense of Li-Yorke chaos [37]. 

The search model can determine solutions in the descending direction. An appropriate transformation function 

½: ℜ� ⟶ < is ½(Gg) = �g or Gg = ½��(�g). The gradient of loss function is 

Á@(d)I�-bL = Â3´Ã#Ä�¶�Å¸
ÂÄ |Ä_�.                                           (17) 

= ´G- log ´∑ V%�i ´d(��%) + Æ1l�Å¸`��%_� ¸ + (1 − G-) log ´∑ 41 − i ´d(��%) + Æ1l�Å¸8`#Ç��%_` ¸¸    (18) 

= G-
ÈÅÉÊ(ÃIl�ÅL)(��Ê´ÃIl�ÅL¸)

∑ È¬É5·�¬ËÉ Ê(Ã(l�¬)) − (1 − G-) Ê(ÃIl�ÅL)(��Ê´ÃIl�ÅL¸)
∑ ´��ÊIÃ(l�¬)L¸5ÌÍ·�¬Ë5

                            (19) 

The discriminative classifiers are computed using the chaotic map: 

ºGg#�(H + 1) = Gg(H) + » ∇@(dg)
�g(H + 1) = ½IGg(H + 1)L            .                                         (20) 
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The model above is the chaotic gradient descent and comes with the advantage of chaotic transformation in 

identifying optimal points. Our optimization method (i.e., Eq. (20)) is not indispensable to directly computing bag 

probabilities and enables fast optimization that maximizes log-likelihood function. The feature selection in Eq. (20) 

is more efficient than that in Eq. (6) in the MIL tracker. 

 

4.3. Chaotic representation under certain challenges 

The robustness of the proposed object representation method under three main challenges is illustrated in Figs. 4 to 

6. The target patch of the frame is cropped to represent the chaotic model of the target. In Fig. 4, the representations 

of the target are shown under translation in the instances for the David video sequences. The proposed method 

generates a sparse representation of the true target location. On the basis of these observations, we note that the 

precision localization of the tracked target can be determined by penalizing the chaotic characteristic of the model. 

A penalty is used as the weight of the instances in our tracking algorithm. The histograms of instances demonstrate 

the probability distribution of three different instances in state space. The key contribution of this study is its use of a 

low-dimensional dynamic model of instances in describing a target in video sequences. Fig. 5 indicates that our 

appearance model is of a scale-invariant nature given that the state space generates a scale-free model for targets in a 

histogram. Fig. 6 shows that the chaotic representation is rotation invariant. Eliminating the noise components and 

the reduction in dimensionality are the main advantages of the object representation method put forward in this 

work. It uses fractal theory to concentrate selected pixels into a low-dimensional attractor in state space. The 

obtained chaotic attractor of a target region maintains the ergodicity of chaotic attractors on the basis of self-

similarity [39]. Consequently, the proposed method is invariant under rotation and translation variations [40]. 

5. Experiments and numerical results 

To verify the performance of the proposed method, we conduct three experiments that involve online MIL trackers, 

several state-of-the-art algorithms, and a large tracking benchmark (TB) [41-42]. The parameter settings of the 

methods are presented in this section.  

 

5.1. Parameter settings and evaluation metrics 

The proposed object tracking algorithm is compared with MIL-based trackers, namely, MIL [28], weighted MIL 

(WMIL) [34], DFMIL [32], online MIL underlain by an improved appearance model (I-MIL) [48], and online 

informative feature selection (OIFS) [49]. It is also evaluated against some detection-based and stochastic 

algorithms. The algorithms are implemented on a computer with a dual-core CPU at 2.2 GHz frequency and 2 GB 

RAM running under Windows 7. The parameter settings are presented in Table 2. The results of some of the 

algorithms agree with those reported in previous research. 

As shown in Table 2, the MIL algorithm sets the number of discriminative classifiers at K=50 and the number of 

candidate weak classifiers at M=250, whereas our algorithm establishes these values at K=10 and M=130, 

respectively. In our algorithm, the radius of search E is set to 30 pixels to identify object location. Radius E = 4 is 

used to crop positive instances, and inner and outer radii / = 8 and Y = 30 are used to randomly select 50 negative 

instances. The learning rate is set to ¯ = 0.85. Our algorithm independently runs five times on each dataset, and we 

then compute the average of the five runs.  

Two metrics are employed to quantitatively evaluate the performance of the algorithms. The center location error 

and the success rate are used as basis in determining the precision and tracking robustness of the trackers. The center 

location error (CLE) can be used to measure the Euclidean distance between the central tracked position and the 

position of an object in ground truth [50]. The center location error (CLE) is defined as 

 

U//S/ = °PEHI0U+HU/(H), KH(H)L,                                               (21) 
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where H is the number of frames, °PEH denotes the Euclidean distance, 0U+HU/(H) represents the center location of a 

tracked object, and KH(H) is the center location of the object in ground truth. The overlap score is defined as follows: 

 

½ = |;Ñ∩;Ó|
|;Ñ∪;Ó|                                                                   (22) 

 

where a tracked bounding box and the ground truth bounding box are denoted as ÕÖ  and ÕØ , respectively, and the 

intersection and union of two regions are depicted as ∩ and ∪, respectively. The number of pixels in the region is |. |. 
The success rate considers the threshold ½ > 0.5 as a correct result [50]. 

 

5.2. Comparison of MCIL with MIL trackers 

 

To illustrate the effectiveness and robustness of the MCIL algorithm, it is compared with other MIL algorithms via 

two metrics: average center error and success rate. Table 3 shows the average center errors and success rates of the 

compared algorithms on 10 video sequences. The average center error of the MCIL algorithm is 7.11 pixels as can 

be seen in Table 3. The results confirm that the proposed algorithm obtains the best success rates in nine out of 10 

video sequences and reaches the second best success rate in the Dollar sequences. The OIFS method requires high-

dimensional multi-scale image feature vectors to project these onto a low-dimensional space, whereas MCIL can 

directly explore low-dimensional state space for object representation. The proposed object representation method 

can effectively extract patterns of object regions.  

The error curves of the video sequences are shown in Fig. 7. The plots indicate that the MCIL algorithm achieves 

the best or second best performance in all the sequences. The MIL and weighted MIL algorithms perform good 

tracking only in the first frames, and they suffer from drifting. Our algorithm achieves good performance in the 

Coke11 sequences (Fig. 8). In the Tiger 1 sequence, our algorithm tracks a tiger with significant rotation and fast 

motion (sequences #41 to #80). It can also effectively handle occlusion and is robust against illumination changes 

and rotation (sequences #88 to #100). It achieves good performance in most of the David and Occluded Face 

sequences. Fig. 8 displays some tracking results for four video sequences. 

The proposed algorithm exhibits good performance under illumination changes (frame #375 of david and frames 

#730 and #1000 of Sylvester) and overcomes partial occlusions because of the robust representations in frame #442 

of the Girl sequences and frame #225 and #779 in occluded face (Fig. 9). Under rotation and fast motion, it performs 

very well, whereas MIL and WMIL drift within frames #121 and #242 of the Girl sequences and frame #730 of the 

Sylvester sequences (Fig. 9). Table 4 lists the average speed of the algorithms. The online MIL tracker involves 

more complexity in directly computing bag probabilities and object tracking instances. The speed of the online MIL 

tracker is lower than those of the other algorithms. 

WMIL and DFMIL compute the likelihood function using Taylor approximation, whereas MCIL computes this 

function using a chaotic map. The aforementioned trackers are more efficient than the online MIL tracker. The MIL 

and WMIL trackers quickly calculate Haar-like features by using an integral image, but they require a high-

dimensional pool of features in an online process. 

Although DFMIL and the proposed method entail a slightly longer time in feature extraction, they require only a few 

weak classifiers M and K. Generally, the speed of the proposed method is comparable to that of WMIL. A trade-off 

exists between the number of selectors Ù and the number of weak classifiers �. A large number of � and Ù reduces 

the speed of the MIL trackers but enables them to acquire more discriminative features. Figs. 9 and 10 illustrate the 

average center errors of the proposed algorithm under different numbers of � and Ù. It exhibits good performance 

at � = 100 and robustness at Ù = 10. Note that a large number of Ù can decrease the performance of MCIL 

because a strong classifier can be learned using some weak classifiers. 

 

5.3. Comparison of MCIL with state-of-the-art trackers 



9 

 

In this section, the performance of our algorithm is compared with that of detection-based and stochastic algorithms, 

namely, VTD [46], Struck [47], TLD [48], CT [49], fast compressive sensing (FCT) [50], transductive learning with 

sample matching costs (TL) [51], and sparse hashing (SH) [52]. Table 5 indicates that the performance of the 

proposed algorithm is superior to that of the other algorithms in most of the video sequences. Its center location 

error is comparable to the best results of SH in the Caviar1 and Face sequences. The success rates of the proposed 

algorithm are comparable to those of FCT in the Animal, Singer1, and Jumping sequences.  

The findings show that the compressive sensing method based on the chaotic dynamics of an image more effectively 

executes object tracking than does FCT. The TLD and VTD trackers frequently fail because of holistic 

representations in a complex background. By contrast, the MCIL tracker successfully selects features for the 

separation of the foreground from the background through chaotic updating. MCIL also performs well in fast motion 

situations, such as that in the OWL sequence, because it uses the dynamic model of the target to distinguish it from 

the background and adopts the local model to match target details. 

Nevertheless, although the proposed algorithm efficiently deals with partial occlusion and illumination changes, it 

cannot handle full occlusion and out-of-view attributes (Fig. 11). MCIL is based on a discriminative appearance 

model or MIL, which is unable to estimate the global motion of objects. The proposed object representation method 

is an effective feature extraction approach for object tracking, but it is unsuitable for small targets (Fig. 11). In this 

case, it cannot extract the dynamic information of a target. 

 

5.4. Comparisons of performance on the large dataset (TB) 

 

The proposed algorithm is applied to the TB dataset [41, 42], which comprises 50 video sequences and 29 tracking 

algorithms. The success rates are the robustness metrics for tracking methods. A metric represents the percentage of 

correctly predicted targets within location error thresholds. The success plots reveal success rates for thresholds 0 to 

1. The area under the curve (AUC) of a success plot is used to rank the algorithms. Three metrics are deployed for 

evaluation: one-pass evaluation (OPE), temporal robustness evaluation (TRE), and spatial robustness evaluation 

(SRE). Both temporal and spatial robustness levels are evaluated on the basis of overlap precision. TRE evaluates 

the temporal robustness of the algorithms at 20 runs with different starting frames, whereas SRE evaluates 

sensitivity to the spatial initialization errors of trackers. For the metrics, different shifts (four in the center and 

corner) and scales (four scale variations) are employed to the ground truth bonding box of an object. In OPE, more 

than 29,000 frames are used for comparison; in SRE, more than 350,000 bounding boxes are generated; and in TRE, 

more than 310,000 frames are tested, with each sequence consisting of 20 parts. We compare 30 trackers on the TB 

dataset, but we show only the AUCs of the top 10 algorithms in figures for clarity in each plot, wherein we use the 

same color to denote the same rank in all the plots. The plots in Fig. 12 depict the performance of the top 10 

algorithms on video sequences under attributes. As can be seen in Fig. 12, the success rate of MCIL is higher than 

those of ASLA [53] and SCM at a small threshold. The success rate of MIL is comparable to those of ASLA and 

SCM, but it is better than that of Struck. The results also show that MCIL can handle scale and shift variations. Our 

representation is ranked the highest under rotation, fast motion, and illumination variations. Under occlusion, Struck, 

MCIL, and SCM outperform the other algorithms because of the learning process and rich representations presented 

by the two aforementioned trackers.  

As can be observed in Fig. 13, the robustness of the chaotic representations in TRE and SRE is higher than that in 

OPE. The chaotic representation in the first two evaluations can extract sparse feature vectors and thus describe the 

global and local information of the target. As a result, our algorithm performs well when evaluated against TRE and 

SRE metrics. The chaotic model can represent appearance changes, and the results confirm that our algorithm is 

more effective than Struck and other sparse representations such as (SCM, ASLA [53], and LSK). The SRE of our 

algorithm indicates that it is robust against translation and scale variations. It can extract the invariant features of 

sparse state space, thereby preserving significant information on the deterministic dynamics of targets. 

The proposed algorithm is also compared with CNT [54], KCF [55], TGPR [56], and 29 algorithms on the TB 

dataset under 11 challenges, namely, low resolution (LR), in-plane rotation (IPR), out-of-plane rotation (OPR), scale 

variation (SV), occlusion (OCC), deformation (DEF), background clutter (BC), illumination variation (IV), motion 



10 

 

blur (MB), fast motion (FM), and out-of view (OV) attributes (Tables 6 and 7). Table 6 and Table 7 show that the 

proposed algorithm outperforms the others in most of the cases. Its superior performance indicates that chaotic 

object representation based on chaos theory can handle four challenges: OPR, SV, IV, and FM. The tables also show 

that the proposed algorithm and CNT perform well under low-resolution attributes with the help of the obtained 

dense feature space of the proposed algorithm. Under rotation and scale variations, our algorithm uses invariant 

features with local and global feature extraction. Under occlusions, it deals with partial occlusion by using a 

deterministic model of the sub-region of a target, whereas CNT, KCF, TGPR, and SCM extract local information 

without a global model of a target. The proposed algorithm also performs well under illumination variations. 

Furthermore, it can represent the pixel variations in a target region, which is insensitive to illumination changes. The 

chaotic representation extracts significant information on a target region for object tracking. 

 

6. Conclusion and future work 

This study proposes an efficient tracker with an appearance model based on chaotic representation and a chaotic 

map method for online updating. In the algorithm, the variations in intensity values are embedded in state space by 

using the chaotic characteristics of a target region. The fractal dimension of state space is then employed as an 

importance weight of an instance for efficient online learning. Moreover, chaotic approximation is applied in the 

online learning of a classifier through the use of chaotic approximation to maximize the bag likelihood function for 

online MIL. The chaotic representation is robust to any object appearance changes, including partial occlusion, 

illumination changes, scale changes, and rotation variations. The essential idea of chaotic representation is to 

simultaneously recover the deterministic and sparse dynamics of a target. To illustrate the effectiveness and 

robustness of MCIL, we compare it with online MIL trackers and the latest state-of-the-art algorithms. The 

experimental results reveal that the proposed algorithm is a more effective tracker than stochastic and online MIL 

algorithms. Nevertheless, it suffers from some limitations in object tracking. For instance, it cannot accurately 

localize a small target given that the proposed object representation method requires a sufficient number of target 

region pixels to extract the dynamic information of a target. It also fails to handle full occlusion given that it is an 

MIL-based method. Therefore, chaotic representation is applicable to a motion-based method in precisely localizing 

targets. 
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Figure 1. MIL tracker. The green bounding box is considered to select positive instances for training phase with 

radius /. The yellow bounding box is selected by radius Y for negative samples. In the frame H + 1, the radius E or 

red bounding box of current position to crop out a set of instances to compute F(G|�).  

 

Figure 2. The proposed method consists of the motion model and appearance model updating. 

 

Figure 3. The leaf image is converted to a time series. The time series shows the pixel amplitudes in time t. The time 

series is created with raw or column scanning of image.  
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Figure 4. The state space reconstruction of the target and the histogram of state space with different patches around 

the target for David video sequences. 

Figure 5. The state space reconstructions and the histograms in different scale (size target in First sample is 91*71 

and in second sample is 64*54.  

Figure 6. The state space reconstruction and the histograms for rotation out of view and resolution change. 

Figure 7. Error plots of MIL, WMIL, DFMIL, and proposed method for Coke11, Tiger1, David, Occluded face, 

Girl, and Surfer. 

 
Figure 8. The results of tracking for (a) David, (b) Girl, (c) Occluded Face, and (d) Sylvester sequences. The green 

bounding box is the obtained result of MIL. The obtained results of WMIL are blue bounding boxes. The red and 

white bounding are the results of DFMI and the proposed method respectively. 

 

Figure 9. The average center errors of MCIL tracker under different numbers of weak classifiers (M). 

 

Figure 10. The average center errors of MCIL tracker under different numbers of selectors (k). 

Figure 11. Qualitative results on sequences with small target and full occlusion. The results of the proposed method 

are shown on Walking and Coke_c.  

 

Figure 12. The success plots of top 10 algorithms in different challenges with AUC in the bracket. 

 

Figure 13. The OPE, SRE, and TRE plots. 

 

Algorithm 1. The proposed tracker for new frame (t) 

1. Crop out a set patches, <> = {�|‖@(�) − @B��∗ ‖ < E}. 

2. Compute chaotic representation for each patch. 

3. Estimating F(G = 1|�) for �Ú<> based on chaotic map. 

4. Updating motion model @B∗ = @IJ/K!J� F(G|�)L. 

5. Crop out two set of positive <W = {�|‖@(�) − @B∗‖ < /}  and negative 

<W,X = {�| / < ‖@(�) − @B∗‖ < Y} samples and compute chaotic 

representation of each sample. 

6. Updating appearance model using the bags. 

 

 

 

Table 1. More details of MIL algorithms and main differences in visual representations and likelihood function. 

 MIL [28] WMIL [34] DFMIL [32] HOGMIL [31] Our algorithm 

Feature Haar-like  Haar-like Distribution fields Gradient  Chaotic state space 

Size of pool 

Drawbacks  

Large 

Computational 
complexity 

Large 

Computational 
complexity 

Small 

Computational 
complexity 

Large 

Computational 
complexity 

Small 

- 

Sensitive to  Illumination  

Blur image 

Illumination  

Blur image 

Complex 

appearances 

Complex 

appearances 

- 

 

Weight  O Euclidean distance Euclidean distance O Euclidean and self-similarity 

Bag probability Noisy-OR  Arithmetic mean Geometric mean  Noisy-OR Arithmetic mean 
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Likelihood function Original Eq. (5) Gradient descent Gradient descent Original Eq. (5) Chaotic map 

Drawbacks  Computational 

complexity 

Local minimum  Local minimum Computational 

complexity 

 

Matlab code & data http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml 

http://code.google.com/p/online-weighted-miltracker 

http://www.youtube.com/user/zhkhua/videos 

 

Table 2. Parameter settings 
Algorithms  Parameters  

MIL � = 30,  = 4, ! = 8, " = 30, # = 0.8, K=50, M=250 
WMIL � = 30,  = 4, ! = 8, " = 30, # = 0.8, K=15, M=150 
DFMIL � = 30,  = 4, ! = 8, " = 30, # = 0.8, DF layer=16 
Our algorithm � = 30,  = 4, ! = 8, " = 30, # = 0.85, K=10, M=130 

 

 

Table 3. Average center location errors (in pixels) and the success rates of MIL-based methods and the proposed 

method 

Video MIL[28] WMIL[34] DFMIL[32] OIFS [49] I-MIL[43] 
The proposed 

method 

 CLE SR CLE SR CLE SR CLE SR CLE SR CLE SR 

David 26.34 56.87 22.71 88.18 14.90 91.77 8.32 98.92 11.23 98.92 5.13 95.50 

Dollar 15.15 90.76 21.32 86.06 11.24 98.46 8.18 97.00 13.74 100 6.55 98.39 

Sylvester 15.48 69.76 18.23 61.68 12.84 71.24 11.65 83.61 9.71 81.04 10.04 93.05 

Coke11 20.85 17.93 20.90 64.21 12.18 75.06 12.00 63.76 16.08 49.15 5.57 78.19 

Girl 35.77 53.20 40.67 69.40 24.51 84.11 34.76 76.32 26.79 76.24 11.41 89.92 

Tiger 1 20.63 41.11 13.01 64.76 9.22 90.46 9.30 81.55 8.33 76.06 5.08 90.76 

Tiger 2 21.70 44.89 15.17 68.58 7.40 92.39 10.81 83.21 10.63 72.60 5.17 92.80 

Surfer 15.51 54.09 21.29 70.37 7.63 95.64 11.97 87.84 11.23 59.21 6.11 96.78 

Occluded 

Face 
29.55 75.30 31.31 75.32 11.89 98.01 21.69 93.00 25.24 80.34 5.88 99.55 

Occluded 

Face 2 
23.80 76.51 18.20 90.16 11.90 97.10 11.48 98.10 13.58 100 10.19 98.30 

Average 22.47 58.04 22.28 73.87 12.37 89.52 14.01 86.33 14.65 79.35 7.11 93.32 

(*)  average on videos in original paper. 

 

Table 4. Average speed of algorithms. 

Algorithms MIL [28] WMIL [34] DFMIL [32] Our algorithm 

Speed (FPS) 2 27 16 25 

 

 

 

 

Table 5. Average center location errors (in pixels) and the overlap score of the proposed method and state-of-the 

arts. 

Video  VTD [46]  Struck [47] TLD [48] CT [49]  FCT [50] TL [51] SH [52] MCIL 

 CLE SR CLE SR CLE SR CLE SR CLE SR CLE SR CLE SR CLE SR 

Animal 10.4 58.32 11.7 60.00 160.4 49.07 10.7 N/A 15.4 81.54 N/A N/A N/A N/A 8.1 78.45 

Boy 7.6 63.91 3.8 77.64 4.5 67.92 9.0 60.93 7.5 81.32 5.7 70.29 6.7 70.86 2.2 82.70 

Car4 12.3 73.22 7.7 49.42 N/A 64.79 234 24.27 10.3 93.33 6.0 72.96 11.4 72.69 2.0 97.43 

Caviar1 3.9 7.75 2.5 54.71 5.5 78.58 42.1 47.35 14.7 54.23 N/A 60.00 1.2 60.05 5.6 91.85 

Couple 104 32.54 11.3 69.66 2.5 41.07 36.4 69.34 10.9 58.84 10.4 64.13 8.0 64.68 2.2 93.74 



15 

 

Crossing 26.1 41.00 2.8 29.00 24.3 10.98 3.6 31.42 4.21 81.11 4.4 61.59 4.2 61.11 2.1 76.07 

David3 66.7 60.11 107 71.30 N/A 59.27 88.7 54.05 13.2 78.32 10.7 82.44 13.1 82.29 8.0 90.67 

Dog1 11.0 87.79 5.7 83.39 4.2 65.00 7.0 60.54 6.3 86.35 6.3 90.11 3.5 90.68 2.2 91.33 

Face 11.1 12.66 6.9 19.17 15.4 60.02 30.7 10.69 12.4 84.93 N/A 77.65 4.2 77.35 5.4 88.57 

Owl 86.8 79.32 71.9 35.74 N/A 79.06 150 34.95 10.3 69.48 N/A 79.97 7.1 79.56 3.0 86.40 

Singer1 4.1 16.43 21.9 66.11 30 19.49 19.4 58.82 6.9 80.64 6.8 73.07 6.3 73.05 4.1 79.00 

Subway 141 62.98 4.5 59.50 N/A 46.05 11.1 1.58 11.9 73.43 3.8 72.98 3.5 72.48 2.9 86.65 

Walking 5.8 15.08 4.6 61.54 10.2 60.17 1.9 17.74 4.5 76.34 N/A 76.09 2.1 76.60 1.5 81.23 

Woman 137 36.75 4.3 34.01 N/A 29.86 113 15.98 21.0 60.86 17.7 58.77 4.3 58.00 3.1 81.77 

Freeman1 10.3 16.69 14.3 17.90 6.7 77.93 119 18.16 13.8 79.59 N/A 78.49 9.3 78.43 4.8 80.36 

Jogging 83.3 12.19 62.1 63.12 6.7 65.46 92.5 N/A 10.5 66.64 N/A N/A 6.1 N/A 5.9 70.86 

Jumping 43.6 58.31 6.0 60.00 47.9 49.49 7.7 N/A 8.6 80.00 N/A N/A N/A N/A 5.2 78.46 

 

Table 6. The AUC values of success plots with 11 challenges. The obtained results of 10 top trackers are listed.  
Attribute MCIL CNT TGPR KCF SCM Struck TLD ALSA CXT VTS 

LR 0.420 0.437 0.351 0.312 0.279 0.372 0.309 0.157 0.312 0.168 

IPR 0.503 0.495 0.487 0.497 0.458 0.444 0.416 0.425 0.452 0.416 

OPR 0.510 0.501 0.507 0.495 0.470 0.432 0.420 0.422 0.418 0.425 

SV 0.574 0.508 0.443 0.427 0.518 0.425 0.421 0.452 0.389 0.400 

OCC 0.512 0.503 0.494 0.514 0.487 0.413 0.402 0.376 0.372 0.398 

DEF 0.533 0.524 0.556 0.534 0.448 0.393 0.378 0.372 0.324 0.368 

BC 0.545 0.488 0.543 0.535 0.450 0.458 0.345 0.408 0.338 0.428 

IV 0.505 0.456 0.486 0.493 0.473 0.428 0.399 0.429 0.368 0.429 

MB 0.420 0.417 0.440 0.497 0.298 0.433 0.404 0.258 0.369 0.304 

FM 0.500 0.404 0.441 0.459 0.296 0.462 0.417 0.247 0.388 0.300 

OV 0.451 0.431 0.431 0.550 0.361 0.459 0.457 0.312 0.427 0.443 

 

Table 7. The AUC values of precision plots with 11 challenges and 10 top trackers. 
Attribute MCIL TGPR KCF CNT Struck SCM TLD VTD VTS CXT 

LR 0.550 0.539 0.381 0.557 0.545 0.305 0.349 0.168 0.187 0.371 

IPR 0.731 0.706 0.725 0.661 0.617 0.597 0.584 0.599 0.579 0.610 

OPR 0.745 0.741 0.729 0.672 0.597 0.618 0.596 0.620 0.604 0.574 

SV 0.711 0.703 0.679 0.662 0.639 0.672 0.606 0.597 0.582 0.550 

OCC 0.750 0.708 0.749 0.662 0.564 0.640 0.563 0.545 0.534 0.491 

DEF 0.656 0.768 0.740 0.687 0.521 0.586 0.512 0.501 0.487 0.422 

BC 0.647 0.761 0.753 0.646 0.585 0.578 0.428 0.571 0.578 0.443 

IV 0.749 0.687 0.728 0.566 0.558 0.594 0.537 0.557 0.573 0.501 

MB 0.662 0.578 0.650 0.507 0.551 0.339 0.518 0.375 0.375 0.509 

FM 0.635 0.575 0.602 0.500 0.604 0.333 0.551 0.352 0.353 0.515 

OV 0.581 0.431 0.550 0.439 0.459 0.361 0.457 0.462 0.443 0.427 

 

 

 



Highlights 

· In this paper, a chaotic sparse representation is introduced to balance the local and global features for object 

tracking based on a deterministic model of irregularity of intensities.  

 

· The fractal dimension and the position distance are simultaneously used to provide an efficient online 

learning procedure. 

 

· This method improves the effectiveness and efficiency of the online classifier in the online MIL tracker.  
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Figure 8
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