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Persistent current and zero-energy Majorana modes in a p-wave disordered superconducting ring
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We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p-wave one-
dimensional superconducting ring, pierced by a magnetic flux � tuned at an appropriate value � = �∗. In
the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the
discontinuities in the persistent current I [�] at � = �∗. By monitoring the discontinuities in I [�], we map out
the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.
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I. INTRODUCTION

Majorana fermions, particles coinciding with their own
antiparticles, were proposed by Majorana in 1937 [1]. While,
so far, they have never been detected in a particle physics
experiment in the last years, after Kitaev’s proposal that
Majorana fermions may appear as zero-energy real fermionic
modes [“Majorana modes” (MMs)] localized at the interface
between a p-wave one-dimensional superconductor and a
normal metal [2], the search for Majorana fermions in such
systems has become one of the most relevant and promising
areas in condensed-matter physics [3].

Besides Kitaev’s proposal, the emergence of MMs in
condensed-matter systems has been predicted in a num-
ber of systems such as superconductor-topological insula-
tor interfaces [4–7], in proximity-induced superconducting
quantum wires with strong spin-orbit interaction [8–11], in
helical magnets [12], in ferromagnetic atoms in proxim-
ity to superconductors [13,14]. In this context, interesting
phases with unconventional properties have been predicted
at junctions between topological superconductors, hosting
MMs at their end points, and interacting one-dimensional
electronic systems (Luttinger liquids) [15–17]. In addition,
MMs emerging at junctions of one-dimensional interacting
quantum wires [18–21], or of systems formally described as
interacting electronic systems, such as quantum Ising spin
chains [22–25], one-dimensional XX [26], or XY [27] models,
or pertinently designed Josephson-junction networks [28],
have been predicted to give rise to the so-called “topological
Kondo effect,” a remarkable realization of Kondo effect in
which the impurity spin, determined by the MMs, is nonlocal in
the wire indices and, thus, cannot be expressed as a functional
of local operators [18,19]. Finally, it is worth mentioning that,
besides being of remarkable interest for fundamental physics,
MMs are also of great interest for quantum computation
since, due to their non-Abelian statistics [29], they appear
to be among the most natural candidates to work as robust
qubits [30].

The proliferation of theoretical literature about Majorana
fermions in condensed-matter systems has triggered a number
of experimental attempts to probe MMs in pertinently designed
devices. The main route followed in the experiments consists

in measuring the effects in the transport across junctions be-
tween topological superconductors and normal metals possibly
due to the presence of localized MMs at the interfaces [31–33].
Unfortunately, despite the excitement following early exper-
imental results, the question of whether what is seen in a
transport experiment is actually due to the presence of a
MM or to other possible mechanisms is still debated, with
no ultimate answer so far given, mainly because of the high
uncertainty about the possible physical processes taking place
in the systems when it is connected to the metallic contacts
required for a transport experiment [34,35]. It becomes
therefore crucial to engineer systems in which the MMs can be
detected in noninvasive experiments, different from a transport
measurement. In this direction, an interesting proposal has
been put forward in Ref. [36], where it was proposed to realize
MMs in a frustrated, finite-size topological superconducting
quantum interference device (SQUID) at pertinent values of
the applied magnetic flux piercing the superconducting ring,
as well as in Refs. [37,38], where the Majorana zero mode
and the persistent spin current are investigated in mesoscopic
d-wave-superconducting loops in the presence of spin-orbit
interaction and in mesoscopic s-wave superconducting loops.
The advantage of such proposals is twofold: on one hand, it
implies the possibility of recovering MMs in a finite system,
once the applied flux is properly tuned (differently from what
happens, for instance, in the Kitaev model, where, rigorously
speaking, “true” zero-energy MMs are in general recovered
either in the infinite chain limit, or as a result of a challenging
fine-tuning of the system parameters [2]); on the other hand,
it provides an example of MMs realized in a controlled
way in a system with tunable control parameters, such as a
quasi-one-dimensional SQUID ring.

In fact, on the theoretical side, in the last years the study of
quasi-one-dimensional superconducting rings has been taken
advantage of the systematic application of effective field theory
approaches [39,40], which allowed to study nontrivial effects
arising in pertinently designed one-dimensional supercon-
ducting devices, such as frustration of decoherence [41,42],
correlated hopping of pairs of Cooper pairs [43,44], etc. On
the experimental side, the recent progresses made in the fabri-
cation of nanostructures and, in particular, of superconducting
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and/or hybrid rings, where superconductivity is induced by
proximity effect only in part of the ring [45], provides an
excellent level of control on the design and fabrication of
systems which are likely to host MMs, at pertinent values of
their parameters.

Yet, notwithstanding the good control one may achieve
on the fabrication parameters of the system, the unavoidable
presence of disorder can still affect the final behavior of
the device. In fact, disorder is in general known to have
drastic consequences for the properties of one-dimensional
normal electronic [46] and superconducting systems [47].
Therefore, it is important to clearly spell out the stability of
MMs against disorder. For instance, an open, finite-length
Kitaev chain Hamiltonian breaks both spin-rotational and
time-reversal invariance. Therefore, it fall into class D of the
Altland-Zirnbauer “tenfold way” classification of disordered
systems in relation to the symmetries of the corresponding
Hamiltonian [47,48]. When the chain is within its topological
phase, characterized by the presence of MMs, a weak disorder
gives rise to rare small-size nontopological regions, embedded
within the topological background. At any interface between
topological and nontopological regions, additional MMs arise
which, for small disorder, hybridize across the nontopological
region into Dirac quasiparticle states that start to fill in the gap.
On increasing the disorder strength, the nontopological regions
start to proliferate. The corresponding proliferation of MMs
and, correspondingly, of subgap states, strongly renormalizes
the density of states (DOS) inside the gap, eventually leading to
low-energy singularities because of the Griffiths effect in the
finite wire [47,49,50]. At strong disorder, the hybridization
between MMs at the end points of the chain and zero
modes located at the interfaces between topological and
nontopological regions eventually washes out the former ones,
thus driving the system across a disorder-induced topological
phase transition [47,49–56].

In this paper, we discuss the emergence of MMs at a disor-
dered finite-length p-wave one-dimensional superconducting
ring (PSR), pierced by a magnetic flux � [which, throughout
the whole paper, we measure in units of the quantum of flux
�∗

0 = hc/(2e)]. In the absence of disorder, due to the finite size
of the system, in general one expects not to find “true” MMs at
zero energy, but rather two finite-energy subgap Dirac modes,
due to the hybridizations between the MMs through the finite
length of the system, into two “putative Majorana fermions”
(PMFs), whose energies ±ε0[�] are disposed symmetrically
with respect to the Fermi level [2]. Nevertheless, we show
that, under quite generic conditions on the PSR parameters,
in the absence of disorder it is always possible to tune � at a
value �∗ (that is a function of the parameters of the ring) at
which the subgap modes appear exactly at zero energy, due to
the level crossing (LC) between the PMF energy levels, thus
giving back two true zero-energy MMs.

To probe the PMF LC, we look at the dependence of the
persistent current induced in the ring by the applied flux,
I [�], with respect to �. In the absence of fermion parity
(FP) conservation (which is quite a natural assumption in
a quasistatic process), at any PMF LC the PSR relaxes to
the minimum-energy states, thus triggering a discontinuity in
I [�] at � = �∗. Therefore, in a clean PSR, discontinuities in
I [�] are uniquely associated to the emergence of zero-energy

MMs. The key point of our paper is that this correspondence
is preserved in the presence of (a limited amount of) disorder.
Specifically, on introducing disorder in the ring and looking at
the discontinuities in I [�] at � = �∗ we identify a region in
the parameter space (strength of disorder–chemical potential
plane), in which I [�] is discontinuous at any realization of
disorder. We therefore interpret this result as an evidence for
the emergence of MMs at the ring even in the presence of disor-
der. According to this criterion, we map out the corresponding
region in the strength of disorder–chemical potential phase
plane, which we refer to as “putative topological phase” (PTP).
We find that, while, on one hand, the PTP derived within out
method strongly resembles the one found for an infinite Kitaev
chain by using transfer matrix (TM) approach [55,56], in our
case the actual phase boundary appears broadened, as it must
be as a consequence of Griffiths effect for the finite chain near
by the phase transition [49,50]. Nevertheless, differently from
the TM technique, our approach can be readily implemented
as an actual experimental procedure: it is enough to map out
the persistent current and to look at possible discontinuities as
a function of the applied flux.

We regard our result in the clean limit as a generalization of
the derivation of Ref. [36] to a generic p-wave superconducting
ring with a weak link. The crucial requirements for our
approach to work are the absence of FP conservation and the
existence of a LC at � = �∗, which leads to a 2π periodicity of
I [�], with a discontinuity at � = �∗. In this respect, despite
the apparent similarity in the discussed device, our approach is
fully complementary to the one discussed in Ref. [54]. Indeed,
to probe the emergence of subgap PMF levels, in Ref. [54] a
nonzero hybridization between the localized MMs is required
to take place via the p-wave superconducting region. This
assures the persistence of a 4π -periodic component of I [�]
even in the absence of FP conservation, which avoids the LC
at �∗ just because of the opening of the hybridization gap.
Accordingly, the main challenge in probing the PMFs in the
presence of disorder just relies on detecting the corresponding
survival of the 4π harmonics in the current. Instead, we do
assume that there is no hybridization between the MMs via
the finite length of the p-wave superconductor. This yields a
2π periodicity of I [�], with a discontinuity at � = �∗ that, in
our approach, becomes the main fingerprint of the emergence
of PMFs, in the clean as well as in the disordered ring. The
paper is organized as follows:

In Sec. II we present the system Hamiltonian for the PSR in
the absence of disorder, review the calculation of the persistent
current, and discuss the conditions under which subgap PMFs
undergo a LC at some value �∗ of the flux �. Eventually, we
discuss the relation between PMF LCs and discontinuities in
I [�].

In Sec. III, we perform a detailed analysis of the DOS in the
presence of disorder, with particular emphasis on the subgap
PMFs and on their dependence on �. We show that, provided
the system parameters in the “clean” limit are chosen so that
there is a PMF LC, the LC survives the presence of disorder
so that either there are still PMF states and they cross at a
pertinent value of �, or PMF states are washed out by strong
disorder and, accordingly, the zero-energy LC disappears.

In Sec. IV, we show how the relation between PMF LCs
and discontinuities in I [�] extends to the disordered PSR.
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FIG. 1. Sketch of the one-dimensional p-wave superconducting
ring pierced by a magnetic flux � described by HK in Eq. (1) plus
Hτ [�] in Eq. (2).

Eventually, we use this result to map out the whole PTP in the
disorder strength-chemical potential plane.

In Sec. V, we summarize and comment our results and
provide possible further developments of our work.

In Appendix A, we review the derivation of the eigenvalues
and of the eigenfunctions of the open Kitaev chain, with
particular emphasis onto subgap states.

In Appendix B, we review the derivation of the eigenvalues
and of the eigenfunctions of the PSR. In particular, we find
under which conditions on the system parameters there is a
PMF LC at � = �∗ and find an exact formula for �∗ in terms
of the system parameters.

II. MODEL HAMILTONIAN AND SUBGAP STATES

In this section we discuss our system in the absence of
disorder. In Fig. 1 we provide a sketch of the PSR; it is
realized as a p-wave superconducting ring interrupted by a
weak normal link and pierced by a magnetic flux �, which
induces a persistent current I [�] through the system. To
formally describe the p-wave superconductor we use Kitaev’s
one-dimensional lattice model Hamiltonian (KMH) [2]. KMH
can be regarded as an effective low-energy description of a
quantum wire with a strong spin-orbit coupling and a large
enough Zeeman effect, which turns into a one-dimensional
p-wave superconductor by proximity to a “standard” s-wave
bulk superconductor [8,9].

The Kitaev lattice Hamiltonian for a one-dimensional p-
wave superconductor is given by [2]

HK = −w

�−1∑
j=1

{c†j cj+1 + c
†
j+1cj } − μ

�∑
j=1

c
†
j cj

+�

�−1∑
j=1

{cj cj+1 + c
†
j+1c

†
j }. (1)

Following the notation of Ref. [2], in Eq. (1) we denote
with cj (c†j ) (j = 1, . . . ,�) the single-fermion annihilation
(creation) operators defined on site j of the one-dimensional
chain, which satisfy the canonical anticommutation relations
{cj ,c

†
j ′ } = δj,j ′ , all the other anticommutators being equal to 0.

We then denote with w and � respectively the normal single-
electron hopping amplitude and the p-wave superconducting
pairing, and with μ the chemical potential. For the sake of

simplicity, without any loss of generality, we further simplify
HK by choosing w = � (which does not qualitatively affect
the spectrum and the eigenfunctions with respect to the general
case) and μ � 0 (the complementary situation μ < 0 can
be easily recovered by symmetry). Besides its mathematical
simplicity, it is also worth noticing that the Hamiltonian in
Eq. (1) with w = � takes a precise physical meaning, as it can
be obtained from the Hamiltonian for an open quantum Ising
chain via Jordan-Wigner transformation [57].

As we review in Appendix A, in its topological phase, a long
open Kitaev chain hosts zero-energy MMs localized at the end
points of the chain [2]. The MMs can then be combined into
a zero-energy Dirac mode, which implies a twofold spectral
degeneracy of HK , with degenerate eigenstates differing from
each other by the total FP corresponding to the zero-energy
mode being populated, or empty. For a finite-length chain
(that is, with � of the same order as the superconducting
coherence length of the p-wave superconductor, ξ0), the MMs
are hybridized by means of an overlap matrix element that is
∼e−�/ξ0 . In this case, strictly speaking, MMs are not anymore
true eigenstates of HK . Instead, one may rather speak of two
PMFs that hybridize into a finite-energy Dirac mode, with
corresponding disappearance of the fermion-parity related
degeneracy. As we review in Appendix A, MMs as well as
PMFs only emerge provided 2w

μ
> 1. Strictly speaking, one

may dub such a phase “topological” only when MMs lie
exactly at zero energy. In general, we rather speak of a PTP,
with corresponding PMFs hybridized into nonzero energy
Dirac modes. Instead, neither MMs or PMFs appear in the
spectrum for 2w

μ
< 1. To trade the open Kitaev chain for a PSR,

we add to HK a normal weak link hopping term Hτ . Defining
τ to be the normal hopping amplitude and taking into account
that the applied flux � can be moved onto the weak link
hopping term by means of a simple canonical transformation
of the fermionic operators, Hτ can be presented as [58]

Hτ [�] = −τ {e(i/2)�c
†
1c� + e−(i/2)�c

†
�c1}. (2)

In the following, we will use the full Hamiltonian H [�] =
HK + Hτ [�] to compute the DOS and the persistent current
I [�]. In general, at temperature T , the persistent current
I [�; T ] is obtained from the free energy F[�; T ] as (see,
for instance, Ref. [59] for a review on this approach)

I [�; T ] = e∂�F[�; T ]. (3)

Throughout all our paper we will be focusing onto the T = 0
limit, in which Eq. (3) becomes

I [�] = e∂�EGS[�], (4)

with EGS[�] being the total ground-state energy of the
system. Therefore, in terms of the energies of the quasiparticle
excitations of H [�], {εn[�]}, one obtains

I [�] = e∂�EGS[�] = e∂�

∑
εn<0

εn[�], (5)

with the sum taken, as specified, over negative-energy single-
quasiparticle states. In a ring made with a conventional s-wave
superconductor, as well as in a ring made with a p-wave
superconductor in the nontopological phase, I [�] is typically
a periodic function of � with period 2π . Instead, when the
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p-wave superconductor is within its topological phase, if
FP is conserved, the presence of MMs at the end points of
the superconductor (and, therefore, at the two sides of the
weak link) typically makes I [�] periodic with period equal to
4π [60] (note that, for a finite-size ring one should carefully
spell out whether the 4π periodicity is really due to FP
conservation in the presence of MMs, or is a simple effect of
the crossover from a superconducting to a mesoscopic ring as
� � ξ0 [61]). The 4π periodicity simply derives from the fact
that FP conservation forbids relaxations between the two levels
±ε0[�] [54]. This leads to the so-called “fractional Josephson
effect” (FJE), which has been proposed as an effective way for
evidencing the existence of MMs [60]. In fact, in reality it is
quite difficult to avoid FP nonconserving relaxation processes
in quasistatic (dc) measurements [54,62] and, to overcome
such a limitation, proposals of detecting FJE in nonstatic
settings have been put forward in measurements of, e.g., ac
Josephson effect [63,64], finite-frequency current noise [65],
and Shapiro steps [66].

In general, in a PSR, one expects a coexistence of a 2π

and of a 4π harmonics, due to the existence of two possible
“channels” for the MMs to hybridize into a Dirac mode:
through the finite-length p-wave superconducting chain, as
well as via the weak link. The presence of the two harmonics
and the value of their relative weight can be readily understood
from our equation for the energy eigenvalues of the PMFs,
Eq. (B20) of Appendix B, and from the exact condition for
recovering a PMF zero-energy level crossing at pertinent
values of �, Eq. (B25) of Appendix B. Indeed, from Eq. (B20)
one expects that EGS[�] and, correspondingly, I [�] are
4π -periodic functions of �, as they only depend on periodic
functions of �/2. As this picture strongly relies upon assuming
FP conservation, which is hard to recover in a quasistatic dc
current measurement, in Ref. [54] it was noted that, since FP
changing processes are expected to take place via relaxation
processes that happen just at the PMF LCs, one may just get rid
of LCs by pertinently tuning the system parameters. Formally,
we rigorously state it in Eq. (B25) of Appendix B, where we
prove that PMF LC takes place at � = �∗, with �∗ satisfying
the equation

2wτ

μ2 − τ 2
cos

(
�∗
2

)
= e−(�−2)δ0

⇒ cos

(
�∗
2

)
= μ2 − τ 2

2wτ
e−(�−2)δ0 , (6)

with δ0 defined as

δ0 = 2 sinh−1

⎧⎨
⎩

√
�2

w

8wμ

⎫⎬
⎭. (7)

From Eq. (6) we see that a PMF LC happens whenever
the contribution to the splitting energy associated to the MM
hybridization through the finite superconducting chain (that
is, the term ∝ e−�δ0 ) becomes equal, though opposite in sign,
to the contribution associated to MM hybridization through
the weak link (which is ∝τ ). Clearly, as the latter contribution
is modulated by cos (�

2 ), the level crossing can only happen

2π−2π
Φ

/2wε [Φ]/2wε [Φ]

−2π 2π
Φ

(a) (b)

00

−0.5

0.5

 0.0

 0

 0.2

 0.4

−0.4

−0.2

 0.0

 0

FIG. 2. Subgap energy levels ±ε0[�] as a function of the applied
magnetic flux � for (a): The p-wave superconducting ring with a
weak link described by HK in Eq. (1) with � = w plus Hτ in Eq. (2)
with μ

2w
= 0, τ

2w
= 0.15, and � = 40. At this value of the parameters,

one recovers a PMF LC at �∗ = π . (b) The s-wave superconducting
ring with a weak link described by Hs-wave in Eq. (9) with � = w plus
Hs-τ in Eq. (10) with μ

2w
= 0, τ

2w
= 0.15, and � = 40. We again see

a level modulation with �, but now the levels emerge nearby the gap
edge and keep far from the Fermi level at any value of �.

provided one recovers the condition∣∣∣∣μ2 − τ 2

2wτ
e−(�−2)δ0

∣∣∣∣ � 1, (8)

that is, provided that either the chain is long enough (as
δ0 ∼ ξ−1

0 ), or the coupling τ is strong enough, or both. Thus
to avoid PMF LC one has to make it impossible to satisfy
Eq. (6) at any value of �. This strategy was actually pursued
in Ref. [54], where the regime complementary to ours was
recovered by assuming τ/w � 1 and, at the same time, by
considering the PSR close to the topological phase transition, at
which ξ0 → ∞, so to make |μ2−τ 2

2wτ
e−(�−2)δ0 | 
 1. In this case,

the hybridization between the MMs through the finite p-wave
superconducting region yields a consistent spectral weight for
the 4π harmonics, which appears as a modulation of the 2π

periodicity in I [�], as a result of the competition between
the “Kondo-like” hybridization between the PMFs mediated
by the weak link [17], and the “RKKY-like” interaction
mediated by the finite chain length. When going across the
phase transition, the PMFs disappear, thus determining a full
disappearance of the 4π harmonics and a purely 2π periodic
persistent current.

Throughout our paper we assume that Eq. (8) is satisfied
(differently from what is done in Ref. [54]), and that FP is
not conserved. As a consequence of Eq. (8), PMF energies
±ε0[�] vs � show a sequence of LCs as displayed in Fig. 2(a),
where we plot the PMF energies ±ε0[�] vs � for a PSR with
parameters chosen as outlined in the caption [by comparison, in
Fig. 2(b) we draw a similar diagram constructed for an s-wave
superconducting ring described by the (spinful) Hamiltonian
Hs = Hs-wave + Hs-τ , with

Hs-wave = −w
∑

σ

�−1∑
j=1

{c†j,σ cj+1,σ + c
†
j+1,σ cj,σ }

−μ
∑

σ

�∑
j=1

c
†
j,σ cj,σ + �

�∑
j=1

{cj,↑cj,↓ + c
†
j,↓c

†
j,↑} ,

(9)
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I[   ]ΦI[   ]Φ

−2π 0 2π −2π 2π0
ΦΦ

(a) (b)

 0.0  0.0

FIG. 3. Persistent current I [�] (arbitrary units) vs � in a p-wave
superconducting ring with � = 40, � = w, a weak link of strength
τ

2w
= 0.15, and with (a) chemical potential μ = 0; (b) chemical

potential μ

2w
= 0.75.

and the weak link Hamiltonian given by

Hs−τ = −τ
∑

σ

{e(i/2)�c
†
1,σ c�,σ + e−(i/2)�c

†
�,σ c1,σ }.] (10)

To illustrate the consequences of the absence of FP
conservation, in Fig. 3, we plot I [�] vs � in two PSRs in the
PTP, with parameters set as in the caption. In both cases, we
see the discontinuity in I [�] at � = �∗, with �∗ depending
on the system parameters as from Eq. (B25).

For comparison, in Fig. 4, we plot I [�] vs �, for a s-
wave superconducting ring and for a PSR not in the PTP:
in both cases I [�] is a continuous function of �, with no
discontinuities within the whole interval [−2π,2π ].

As a comment about the discontinuity in I [�], it is worth
stressing that, while in the plots in Fig. 3, we show the
exact result obtained from Eq. (5) by summing over all the
quasiparticle levels with εn < 0; the discontinuity is clearly
determined only by the change in the slope of the PMF energy
at the LC. In fact, this is a consequence of the fact that the
levels with energy |εn| > �w, together with their derivatives,
are continuous functions of �, so that they contribute I [�] by
a component that is a smooth function of �. To highlight this
point, in Figs. 5(a) and 5(b), we plot the energy levels vs �

respectively in a PSR in the PTP, and in a PSR not in the PTP.
We see that, in the former plot, LCs at the Fermi level only
concern the PMF. Instead, in the latter plot, there are no LCs
at all, as expected.

The discontinuity of I [�] at � = �∗ is a readily detectable
feature that, under minimal requirements on the system
parameters, can be effectively used to mark the existence of

I[   ]ΦI[   ]Φ

−2π 0 2π −2π 2π0
ΦΦ

(a) (b)

 0.0  0.0

FIG. 4. (a) Persistent current I [�] (arbitrary units) vs � in an
s-wave superconducting ring with � = 40, � = w, a weak link of
strength τ

2w
= 0.15, and μ = 0; (b) persistent current I [�] (arbitrary

units) vs � in a p-wave superconducting ring with � = 40, � = w,
a weak link of strength τ

2w
= 0.15, and μ

2w
= 1.25.

Δ /(2w)

−Δ /(2w)

Δ /(2w)

−Δ /(2w)

2π−2π 0 2π−2π 0Φ Φ

(a) (b)

E/(2w)E/(2w)

00

FIG. 5. (a) Single-quasiparticle energy levels εn[�] (arbitrary
units) vs � in a p-wave superconducting ring with � = 8, � = w,
a weak link of strength τ

2w
= 0.25, and μ

2w
= 0.75. The subgap

PMFs appearing close to zero energy are highlighted in red color;
(b) single-quasiparticle energy levels εn[�] (arbitrary units) vs � in
a p-wave superconducting ring with � = 8, � = w, a weak link of
strength τ

2w
= 0.25, and μ

2w
= 1.25. Consistently with the discussion

in the main text, no PMF levels appear, in this case.

a PMF LC by just measuring I [�] in a static experiment and
looking at the specific dependence of the current on the applied
flux. As we are going to discuss in the following, this method
can be straightforwardly extended to study to which extent a
PMF LC survives in the presence of disorder and, ultimately,
to map out the whole PTP.

III. LOW-ENERGY SUBGAP STATES IN
THE PRESENCE OF DISORDER

In the previous section we show that, in the absence of
disorder, in a pertinently engineered PSR there always exists a
flux � = �∗ at which, due to PMF LC, one recovers the zero-
energy MMs γ1,γ2 in Eq. (B29) of Appendix B. In this section,
we discuss the robustness of the PMF LC against disorder in
the PSR. It is by now established not only that the topological
phase survives a moderate amount of disorder in a disordered
quantum wire in the presence of a strong spin-orbit coupling
and at a large enough Zeeman effect [51–53], but also that a
limited amount of disorder stabilizes the topological phase of
an open, infinite Kitaev chain [55,56]. Moreover, it was also
stated that moderate disorder does not substantially affect the
4π -periodic component of I [�] in a FP-conserving p-wave
superconducting ring with a weak link [54]. Here, instead, we
study to what extent the PMF LC in a FP non-conserving PSR
is robust against disorder. Specifically, we perform a detailed
analysis of the DOS and of the dependence of the energy
levels on �, with particular emphasis on the PMFs in the
presence of disorder. As outlined in the following, we provide
numerical evidence that, at a given disorder strength, either
subgap PMF energy levels are still present, and they exhibit a
LC at a pertinent value of �, or they are fully washed out by
disorder. This leads us to the remarkable conclusion that, as
long as PMFs are not washed out by disorder, looking at the
discontinuities in I [�] is still an effective way to probe a PMF
LC, exactly as in the absence of disorder.

To model the disorder, we modify the clean system
Hamiltonian of Sec. II by adding a random component to
the on-site potential, so that, at a fixed disorder realization, the
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total Hamiltonian H = HK + Hτ [�] is modified as

HK + Hτ [�] −→ H{V }[�]≡HK + Hτ [�] −
�∑

j=1

Vjc
†
j cj .

(11)

The {Vj } are independent random variables described
by a probability distribution P [{Vj }] = ∏�

j=1 p(Vj ), with
p(V ) being a probability distribution for V with average
V̄ = ∫

dV Vp(V ) = 0, and with variance σ 2
V = ∫

dV V 2p(V ),
which implies

Vj =
∫ �∏

r=1

dVr P [{Vr}]Vj = 0,

(12)

ViVj =
∫ �∏

r=1

dVr P [{Vr}]ViVj = σ 2
V δi,j ,

with O[{Vj }] denoting the ensemble average of a generic
functional of {Vj } with respect to the probability distribution
P [{Vj }]. We use the uniform probability distribution given by

p(V ) =
{

1
2
√

3W
, for − √

3W � V �
√

3W

0, otherwise
, (13)

which corresponds to setting σ 2
V = W 2. We now consider

how disorder modifies the single-particle DOS of the ring.
In general, for a finite-size system, one expects that the
effects of disorder strongly depend on the ratio between the
system size � and the disorder-associated mean free path
l0. In fact, a “weak” disorder, with l0 > �, is expected to
merely quantitatively affect the DOS. In view of the analytical
results obtained for an open chain in Ref. [67] within self-
consistent Born approximation, later on numerically confirmed
in Ref. [50], we expect that a moderate disorder just slightly
broadens the subgap peaks corresponding to the PMF energy
levels and provides a possible slight renormalization of �∗,
without spoiling the LC. To spell out the effects of increasing
disorder strength, we numerically computed the exact single
quasiparticle DOS ρ(E) at increasing σV for a PSR in the PTP
by using the Hamiltonian in Eq. (11) at fixed {Vj }. Therefore,
we ensemble-averaged the result over 300 realization of the
disorder. We show the results in Fig. 6, where one clearly sees
the expected broadening of the subgap peaks, as σV increases.

At strong disorder (l0 � �), the energy levels of the system
become distributed according symmetry class-D random ma-
trix distribution [46,48,68]. The corresponding level statistics
is given by

P[{εj }]
∏
j

dεj ∝
∏
i<j

∣∣ε2
i − ε2

j

∣∣β ∏
k

[|εk|α e−ε2
k /σ 2

V dεk

]
,

(14)

with β = 2 and α = 0 and the product taken over positive-
energy levels only. From Eq. (14) it is possible to extract
the single-particle DOS as ε → 0, given by [48] ρ(ε)∝|ε|α .
Thus, for symmetry class D one expects a low-energy uniform
DOS, with no evidence of low-lying PMFs. An enlightening
discussion of how the disorder washes out PMFs is provided
in Ref. [49]: assuming that at zero disorder the system

ρ(  )Eρ(  )E

ρ(  )E ρ(  )E

E/w E/w

E/w E/w

(a) (b)

(c) (d)

 3.0 2.0 1.0 0.0−1.0−2.0−3.0 −3.0 −2.0 −1.0  0.0  1.0  2.0  3.0

−3.0 −2.0 −1.0  0.0  1.0  2.0  3.0 −3.0 −2.0 −1.0  0.0  1.0  2.0  3.0

FIG. 6. Single-quasiparticle DOS ρ(E) vs E for a ring with � =
w, μ

2w
= 0.15, and τ

2w
= 0.25, at a given value of the flux � and of

σV . The remaining parameters used to generate the plots in the various
panels have been set as outlined below: (a) � = 0, σV

w
= 0.05 [a tiny

amount of disorder is added to the clean system for the only purpose
of regularizing the divergences at the poles of ρ(E) corresponding to
the single-particle energy eigenvalues]. (b) � = 0, σV

w
= 0.3. At this

value of σV , one estimates l0 ∼ (2w/σV )2 > � [54]: as expected from
the discussion given in Refs. [50,67], the main effect of increased
disorder is the emergence of a finite width for the PMFs and a slight
renormalization of the effective superconducting gap. (c) � = π ,
σV

w
= 0.05. Same as in panel (a), but now the two peaks corresponding

to the PMF levels have piled up into a taller peak, evidencing the PMF
LC at the Fermi levels. (d) � = π , σV

w
= 0.3. Same as in panel (b),

but now the two peaks corresponding to the PMF levels have piled
up into a taller peak, evidencing the PMF LC at the Fermi levels.

lies within its topological phase, one finds that, for weak
disorder, fluctuations in the random potential may open
“nontopological islands” within the topological background,
of typical size �NT � �. At each interface between topological
and nontopological regions, MMs emerge, which suddenly
hybridize into “high-energy Dirac modes,” at typical energy
scales εNT ∼ e−l0/ξ0 , lying below the gap but still higher than
the typical energy associated to the “true” PMFs. On one
hand, this implies the proliferation of subgap, disorder-induced
states. On the other hand, low-energy PMFs are still protected
by the very fact that their energies are quite lower than the
energies associated to disorder-induced states, and such is the
corresponding LC at �∗. Summarizing, as σV increases, one
legitimately expects that disorder-induced energy levels fill in
the subgap region but also that level repulsion between states
with different energy, encoded in P[{εj }] in Eq. (14), acts to
“protect” the low-lying PMFs. This is clearly evidenced by
the DOS plots we provide in Fig. 7, where we show ρ(E)
for a PSR with the same parameters we used to generate
Fig. 6, but at σV such that l0/� ∼ 0.1. We see that, while
disorder-induced levels largely fill in the energy gap up
to the PMF levels, the regions between the two peaks in
Fig. 7(a) are still empty, a signal that the PSR is still within
the PTP. Similarly, the persistence of this central peak in
Fig. 7(b) due to PMF pile up evidences that the PMF LC
at � = �∗ is not spoiled by disorder, even at σV as large as
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ρ(  )E ρ(  )E

E/w E/w

(a) (b)

 5.0 2.5 0.0−2.5−5.0  5.0 2.5 0.0−2.5−5.0

FIG. 7. Single-quasiparticle DOS ρ(E) vs E for a ring with � =
w, μ

2w
= 0.15, and τ

2w
= 0.25, at a given value of the flux � and

of σV . The remaining parameters used to generate the plots in the
various panels have been set as outlined below: (a) � = 0, σV

w
= 1.5

(the small black arrows highlight the peaks corresponding to the PMF
energy levels); (b) � = π , σV

w
= 1.5.

1.5w, consistently with the general expectation about class-D
symmetry models [47,69,70].

In Fig. 8 we plot ρ(E) for a PSR with the same parameters
as the ones considered above, but with σV /w = 4.0. On com-
paring Fig. 8(a) to Fig. 8(b), we see no appreciable differences,
that is, we find no detectable differences between the plots at
� = 0 and at � = π . In fact, the insensitivity of the DOS to
the applied flux can be regarded as a specific manifestation
of the insensitivity to the boundary conditions (such as the
one imposed by the applied flux � on the single-quasiparticle
wave function) of the energy levels corresponding to localized
states [71,72]. This observation leads us to conclude that all the
states filling in the gap at strong disorder are disorder-induced
states, while strongly �-sensitive PMFs have been completely
washed out. To further ground our conclusion, in Fig. 9(a),
we plot the first quasiparticle energy levels of the PSR εn[�]
vs � at σV /w = 2.2 for a fixed disorder configuration. We
clearly see a set of disorder-induced states (drawn in red in
the figure) which exhibit a weak dependence on � and are
situated symmetrically with respect to 0 energy, consistently
with the survival of particle-hole symmetry against disorder.
The states closest to the Fermi level (depicted in blue in the
figure) are, instead, to be clearly identified with PMFs. They
take a strong dependence on � and cross with each other at
pertinent values of �. In Fig. 9(b), we draw a similar plot,
but realized for σV /w = 4.2. The much larger amount of
disorder has determined the full disappearance of PMFs [55]:
there are no blue states, but only red impurity states, basically

ρ(  )E ρ(  )E

E/wE/w

(a) (b)

 2.5 0.0  5.0−2.5−5.0 −5.0 −2.5  0.0  2.5  5.0

FIG. 8. Single-quasiparticle DOS ρ(E) vs E for a ring with � =
w, μ

2w
= 0.15, and τ

2w
= 0.25, at a given value of the flux � and

of σV . The remaining parameters used to generate the plots in the
various panels have been set as outlined below: (a) � = 0, σV

w
= 4.0;

(b) � = π , σV

w
= 4.0.

/(2w)−Δ

/(2w)Δ/(2w)Δ

/(2w)−Δ
−2π 2π0Φ −2π 0 2πΦ

E/(2w)E/(2w)

(a) (b)

0 0

FIG. 9. (a) Subgap energy levels εn[�] computed for one re-
alization of the disorder potential in a p-wave superconducting
ring with � = 40, � = w, a weak link of strength τ

2w
= 0.25,

μ

2w
= 0.75, and σV

w
= 2.2. The subgap PMFs appearing close to zero

energy are highlighted in blue color. (b) Subgap energy levels εn[�]
computed for one realization of the disorder potential in a p-wave
superconducting ring with � = 40, � = w, a weak link of strength
τ

2w
= 0.25, μ

2w
= 0.75, and σV

w
= 4.2. No subgap PMFs appear in this

case.

independent of � (a clear signal of strong localization of these
states).

The peak centered at E = 0 in the plots of Fig. 8
corresponds to Griffith’s singular behavior in the DOS cutoff at
the finite level spacing δ0 ∼ 2πw/� [47]. In fact, on increasing
σV , the disorder washes out the PMFs via the Griffiths effect
taking place in the finite wire [49,50]. When the nontopological
regions start to proliferate, the increasing probability of
hybridization between PMFs and zero modes located at the
interfaces between topological and nontopological regions
eventually washes out the PMFs themselves, together with
the degenerate point at � = �∗, driving the system outside of
the PTP [49,50].

IV. PUTATIVE TOPOLOGICAL PHASE BOUNDARIES AND
DISCONTINUITIES IN THE PERSISTENT CURRENT

To discuss the correspondence between PMF LCs and
discontinuities in I [�] in a disordered PSR, we look at the
ensemble averaged DOS at fixed σV as a function of �, ρ(E).
To numerically construct ρ(E), we collect the eigenvalues
generated via an exact Hamiltonian diagonalization procedure
into bins defined in the E-� plane and eventually average over
the disorder with p(V ) given in Eq. (13). We thus generate
three-dimensional plots of ρ(E) as a function of both E and of
� for E ranging throughout the interval [−EC,EC], with the
half bandwidth EC = 2w + μ and � ∈ [−2π,2π ]. These are
reported in Fig. 10 for a PSR in the PTP at limited disordered.
In Fig. 10, despite the presence of disorder, we clearly see
the subgap PMFs, which are characterized by their strong
dependence on � (to be contrasted with the observations
that all the other levels displayed in the figure are basically
independent of �) and, more importantly, that there are evident
LCs, evidenced by the sharp peaks—a consequence of the two
PMFs density pile up at those points. The LCs are not washed
out by disorder, which implies that, in a sense that we are going
to clarify in the following, there is still a sort of discontinuous
behavior of I [�] at � = �∗.

By contrast, in Fig. 11, we plot ρ(E) with the same
parameters as we chose in Fig. 10, but with σV /w = 6.0. We
see that the spectral weight is largely broadened throughout the
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ρ(  )Eρ(  )E

2π

−2π

0

−2π

2π

0

Φ Φ

E/2EE/2E

−1.0
0.0

1.01.0
0.0−1.0

(a) (b)

C C

FIG. 10. (a) DOS ρ(E) for a disordered ring described by the
Hamiltonian in Eq. (11) with � = w, μ

2w
= 1.2, τ

2w
= 0.25, � = 40,

obtained by ensemble-averaging over 100 realization of the disorder
with σV

w
= 0.2. The subgap PMFs close to the Fermi level are clearly

displayed. (b) DOS ρ(E) for a disordered ring described by the
Hamiltonian in Eq. (11) with � = w, μ

2w
= 1.2, τ

2w
= 0.25, � = 40,

obtained by ensemble-averaging over 100 realizations of the disorder
with σV

w
= 0.8. The subgap PMFs are less resolved, but there are clear

peaks at the level crossings, due to the pile up of the DOS of the two
PMFs. These peaks survive the transfer of spectral weight from the
PMFs to disorder-induced Griffiths states, which evidences that the
PSR still lies within the PTP.

interval [−EC,EC], there is no dependence of the energies on
�, and, at the same time, the subgap PMFs have disappeared.
This confirms the conclusion we reached in Sec. III, that a
strong enough disorder is actually effective in washing out the
subgap PMFs.

To map out the PTP, we generalize to a disordered PSR
the correspondence between PMF LCs and discontinuities in
I [�]. We first divide the region of interest in the σV -μ planes
into square bins and define at the center of each bin a function
F [σV ,μ] which, at the start, is everywhere equal to 0. Then, at
each bin (σV,i,μj ), we extract a realization {Vj } of the disorder
with probability having σV = σV,i and exactly diagonalize the

ρ(  )E

E/2E
1.0

0.0−1.0

C

0

2π

−2π

Φ

FIG. 11. DOS ρ(E) for a disordered ring described by the
Hamiltonian in Eq. (11) with � = w, μ

2w
= 1.2, τ

2w
= 0.25, � = 40,

obtained by ensemble-averaging over 100 realization of the disorder
with σV

w
= 6.0. The spectral density is broadened throughout the

interval [−EC,EC], there is a negligible dependence on �, and the
subgap PMFs have disappeared.

Hamiltonian H{V };μj
[�] obtained from Eq. (11) by setting

μ = μj . Then, we use the result to compute the corresponding
persistent current, I{V }[�]. Therefore, we check whether
I{V }[�] exhibits a discontinuity at some value � = �∗, or
not. If yes, we increment F [σV,i,μj ] by 1, otherwise, we leave
it unchanged. Specifically, to identity �∗ we discretize the
interval of values of � and, starting from � = 0, at each
step we increment � by δ�, with 0 < δ� � 2π . Setting
�r = rδ�, we look at the sign of the product I [�r ]I [�r+1].
As soon as I [�r ]I [�r+1] < 0, we identify �∗ with the
middle point of the interval [�r,�r+1]. We then numerically
estimate the slope of I [�] at �∗ as (I [�r+1] − I [�r ])/δ�
and at the left-hand side of �∗ as (I [�r ] − I [�r−1])/δ�,
concluding that �∗ corresponds to a discontinuity point if the
two slopes differ from each other by a factor �1.5. After
summing, at each bin, over N = 300 random realizations
of the disorder, we define f [σV,i,μj ] = F [σV,i,μj ]/N , so
that 0 � f [σV,i,μj ] � 1, ∀i,j . As a final result, we draw
the diagram in Fig. 12, where we show a color-scale plot
of f [σV ,μ] computed for a ring with � = 60, w = �, and
τ/(2w) = 0.25. In detail, we constructed the plot by increasing
both σV /w and μ/w by step of 0.05 and by accordingly
defining the bins in the σV -μ plane. The region marked in
full red corresponds to f = 1, that is, to a current which
is singular at some �∗ for any realization of the disorder.
Conversely, the white portion of the graph corresponds to
f = 0, that is, to a current that is a continuous function of
� for any realization of the disorder (see Fig. 12 for a graphic
summary of the color code). Clearly, points in the red region
are characterized by PMFs that undergo a LC at � = �∗,
that is, we may identify the red region with the PTP in the
presence of disorder. By converse, points in the white region
are characterized by the absence of PMFs. The shaded area,
where the color varies from red to white, defines the transition

/wμ

σ
V /w

3.01.0 2.0 4.00.0

2.0

1.0

0.0

3.0

2.5

1.5

0.5

0

1

FIG. 12. Color-scale plot of f [σV ,μ] in the σV -μ plane. The
color code is summarized at the right-hand side of the plot. The
shaded region, where the color varies from red to white, defines
the transition region at which the PTP disappears and the PMFs are
washed out of the spectrum. The red line is a sketch of the variation
of the center of mass of the transition region as a function of μ: in the
� → ∞ limit and after averaging over a large number of realizations
of disorder, it is expected to coincide with the solid black line of Fig.
1 of Ref. [55].
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region at which the PTP disappears and the PMFs are washed
out of the spectrum. By analogy, one would expect a sharp
transition line, such as the one separating the topological from
the nontopological phases of the infinite Kitaev chain, drawn
in Refs. [55,56] by using transfer matrix method. Nevertheless,
we obtain a broad transition region, rather than a sharp phase
boundary, because, for each disorder realization we exactly
diagonalize a well-defined Hamiltonian, which either presents
PMFs with a finite-� LC, or not. Near the phase transition,
when averaging over N different realization of the disorder,
there can be a nonzero probability that some realizations wash
out PMFs at values of the system parameters where PMFs
are present in the large majority of cases or, conversely, that
PMFs appear at points in parameter space where they are
absent in the large majority of cases. To be more precise,
when the system lies within the PTP, strong fluctuations in the
mean value of the impurity potential on a single realization
of disorder may drive it outside of the PTP, and vice versa.
As a result, close to the point of disappearance of the PTP,
we expect that, on ensemble averaging over disorder, the
percentage of single disorder realizations respectively leading
to a discontinuous, or to a continuous, current will be both
different from zero (incidentally, we note that this is quite a
common feature of finite system undergoing a Griffith phase
transition [50]). Instead, far from the transition there is no
ambiguity in that either I [�] is discontinuous, or continuous
for any realization of disorder, just as we can see from the
plot of f [σV ,μ] in Fig. 12. Eventually, to map out the (broad)
phase boundary of the PTP in the disorder strength-chemical
potential plane, we start from within the PTP at zero disorder
strength. Then, we move along the horizontal axis at fixed
μ by probing the existence of the discontinuity in I [�] at
increasing σV : for 0 � μ/w < 2 and for σV = 0, we typically
obtain f [0,μ] = 1. Consistently with the above discussion,
at some μ-dependent “lower critical” value of σV , σμ;l , we
start to obtain f [σV ;l ,μ] < 1. This signals the start of the
transition region when going across which the PTP disappears.
On further increasing σV , one typically reaches an “upper
critical” value, σμ;u, such that f [σV ; μ] = 0 for σV > σμ;u.
Therefore, σμ;l and σμ;r determine the transition region at a
given μ as the set of points (σV ,μ) such that σμ;l < σV < σμ;u.
Repeating the procedure along constant-μ lines, we mapped
out the full color scale plot of f [σV ,μ] in Fig. 12.

Besides the broadening related to the Griffith mechanism,
Fig. 12 shows a remarkable analogy with the phase diagram for
a long Kitaev chain with open boundary conditions reported
in Fig. 1 of Ref. [55]. In particular, the two diagrams share
the remarkable feature of a reentrant topological phase at
not-too-large values of σV , that is, a small amount of disorder
appears to favor, rather than suppress, the topological phase.
In our specific finite-size ring, we interpret the reentrant
phase as an effect of the disorder-induced renormalization
of the chemical potential which, at nonzero σV , pushes the
phase transition to values of μ higher than the zero-disorder
critical value μc = 2w, or lower than μc = −2w (a detailed
discussion of this effect, both using the reduced effective
low-energy Hamiltonian for the ring and in general, as a
consequence of turning on a weak disorder, is provided in
Refs. [53,54]). As discussed above, the finite width of the
transition region has to be regarded as a consequence of the

Griffiths mechanism in a finite system [50]: in the � → ∞
limit and after averaging over a large number of realizations
of disorder, the transition region is nevertheless expected to
shrink to a sharp phase boundary, coinciding with the solid
black line of Fig. 1 of Ref. [55].

Figure 12 summarizes the key results of this paper: on one
hand, it can be regarded as a theoretical derivation of the region,
in the σV -μ plane, in which it is possible to make two zero-
energy MMs emerge at the quantum ring by pertinently acting
on the applied flux. On the other hand, the way we derived it
suggests a practical tool to map it out in an actual experiment:
to check whether, at a given values of the system parameters,
zero-energy MMs are recovered at a disordered PSR, it is
enough to probe the dependence of I [�] on � and to check
whether, at some flux � = �∗ (with �∗ typically being ∼π for
a not-too-short chain), I [�] shows a discontinuous behavior,
with a finite jump when going across �∗. A key point of our
proposed technique is that I [�] can in principle be probed
by means of a noninvasive magnetometer, without need for
contacting the system as one has to do in a transport experiment
attempting to probe MMs [31]; this potentially should avoid
problems related to the introduction of sources of noise in the
system. Moreover, we recall that the techniques so far proposed
to map out the phase diagram of a disordered Kitaev-like chain
mostly rely on looking at the eigenvalues of the transfer matrix
of the whole chain [55,56], an approach rigorous and effective
from the mathematical point of view, but lacking the possibility
of a direct experimental implementation. At variance, as stated
above, in order for our approach to work in practice, one simply
needs to perform a noninvasive magnetic probe, thus providing
a direct means to measure the emergence of MMs in the ring
at an appropriate value of the applied flux.

From the physical point of view, our numerical findings
prove that zero energy MMs emerging in a quantum ring
at � = �∗ are quite robust against disorder. It would be
extremely interesting to perform a rigorous analytical investi-
gation of the features of the PMFs and of the stability of the
MMs at � = �∗: this topic lies nevertheless beyond the scope
of this work and we plan to investigate it in a forthcoming
publication.

V. CONCLUSIONS AND FURTHER PERSPECTIVES

In this paper, we discuss the emergence and a way for
probing MMs at a disordered finite-length p-wave one-
dimensional superconducting ring, pierced by a magnetic flux
�, in the absence of FP conservation. We prove that, at a
moderate amount of disorder, it is still possible to tune �

at a value �∗ at which the subgap modes appear exactly at
zero energy, due to the level crossing between the subgap
energy levels. At � = �∗, the MMs are recovered as pertinent
linear combinations of the subgap mode operators. To probe
the level crossing, we propose to look for discontinuities in
the persistent current I [�] at � = �∗ ∼ π . On pertinently
employing our technique, we map out the whole region, in
the disorder strength-chemical potential plane, characterized
by zero-energy subgap LCs. At this point, we expect it to
be possible to realize in a controlled and tunable way MMs
which, in principle, provide a crucial and effective resource
for designing efficient quantum computation protocols.
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In the presence of disorder, our results mostly rely on a
numerical analysis: while it would be extremely interesting to
perform a rigorous analytical investigation of the features of
the PMFs and of the stability of the MMs at � = �∗, this is
outside the scope of this work and we plan to investigate it in
a forthcoming publication.
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APPENDIX A: EXCITATION SPECTRUM OF THE OPEN
KITAEV CHAIN WITH w = �

In this Appendix we review the derivation of the excitation
spectrum of the Kitaev Hamiltonian in Eq. (1) defined on an
open chain with � sites. Technically, we diagonalize H [�]
at τ = 0, that is, HK , with open boundary conditions on the
single-mode wave function. A generic eigenmode, for � = w,
of HK with energy E takes the form

�E =
�∑

j=1

{[uj ]∗cj + [vj ]∗c†j }, (A1)

with the wave functions uj ,vj solving the appropriate
Bogoliubov–de Gennes (BdG) equations obtained from the
canonical commutation relation [�E,HK ] = E�E . These are
given by

Euj = −w{uj+1 + uj−1} − μuj + w{vj+1 − vj−1},
Evj = −w{uj+1 − uj−1} + w{vj+1 + vj−1} + μvj ,

(A2)

for 1 < j < �. At the end points (j = 1,�), the equations take
the form

Eu1 = −wu2 + wv2 − μu1,
(A3)

Ev1 = −wu2 + wv2 + μv1,

and

Eu� = −wu�−1 − wv�−1 − μu�,

Ev� = wu�−1 + wv�−1 + μv�. (A4)

Requiring that Eqs. (A2) are satisfied, the solution for 1 < j <

� takes the form [
uj

vj

]
= eikj

[
uk

vk

]
. (A5)

Imposing the wave functions in Eqs. (A5) to be a solution
of Eqs. (A2), one gets the system of equations in momentum
space, given by

Euk = −[2w cos(k) + μ]uk + 2iw sin(k)vk,
(A6)

Evk = −2iw sin(k)uk + [2w cos(k) + μ]vk,

supplemented with the boundary conditions

u0 + v0 = u�+1 − v�+1 = 0. (A7)

From Eqs. (A6), we obtain the dispersion relation (assuming
μ > 0)

E = ±
√

(2w − μ)2 + 8wμ cos2

(
k

2

)
. (A8)

Having defined the actual gap �w as �w = |2w − μ|,
Eq. (A8) can be inverted, yielding the momentum of an
excitation with energy E as

cos

(
k

2

)
= ±

√
E2 − �2

w

8wμ
. (A9)

Solutions with energy |E| > �w correspond to real value of
k. These can be readily written in a compact form, once one
defines � so that

cos(�) = −2w cos(k) + μ

E
,

sin(�) = 2w sin(k)

E
. (A10)

Imposing the boundary conditions in Eq. (A7), one eventually
obtains the positive-energy solutions[

uj

vj

]
+

=
√

2

�

[
cos

(
�
2

)
sin

(
kj + �

2

)
− sin

(
�
2

)
cos

(
kj + �

2

)
]
, (A11)

while the corresponding negative-energy solutions are recov-
ered by acting with τ x on the solution in Eq. (A11), that is,[

uj

vj

]
−

= τ x

[
uj

vj

]
+

=
√

2

�

[
− sin

(
�
2

)
cos

(
kj + �

2

)
cos

(
�
2

)
sin

(
kj + �

2

)
]
.

(A12)

The secular equation for the allowed values of k is
determined by the boundary condition at j = � + 1. It is given
by

sin[k(� + 1) + �] = 0. (A13)

Subgap PFs are instead recovered for complex values of k,
which are fixed by the condition

cos

(
k

2

)
= ±i

√
�2

w − E2

8wμ
. (A14)

To solve Eq. (A14), we now define the momentum for
particlelike excitations as kp = π − iδ and for holelike exci-
tations as kh = π + iδ, with

δ = 2 sinh−1

⎧⎨
⎩

√
�2

w − E2

8wμ

⎫⎬
⎭. (A15)

As a result, the most general subgap eigenfunction with
energy E > 0 is given by[

uj

vj

]
= c (−1)j

[
cosh

(
ξ

2

){αejδ + βe−jδ}
sinh

(
ξ

2

){αejδ − βe−jδ}

]
, (A16)
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with ξ defined through the equations

cosh(ξ ) = 2w cosh(δ) − μ

E
,

(A17)

sinh(ξ ) = 2w sinh(δ)

E
,

and the coefficients α and β determined by the boundary
conditions in Eqs. (A7). Clearly, a state with energy E > 0
comes together with the particle-hole conjugated one, with
energy −E [2]. In imposing the boundary conditions in
Eqs. (A7), one finds that αeξ/2 + βe−ξ/2 = 0 and, more
importantly, that the allowed value of E must satisfy the
condition

sinh[ξ − (� + 1)δ] = 0 ⇒ ξ (E) = (� + 1)δ(E). (A18)

Equation (A18) is a transcendent equation, whose solution
can in general only be derived numerically. Yet, a simple
approximate formula for the energy can be derived in the long
chain limit, where one may assume that the energy is small
enough to enable one to neglect the dependence of δ on E and,
therefore, to make the approximation

δ(E) ≈ δ0 = 2 sinh−1

⎧⎨
⎩

√
�2

w

8wμ

⎫⎬
⎭. (A19)

Thanks to Eq. (A19), one therefore obtains

E ∼ {2weδ − μ}e−ξ ≈ {2weδ0 − μ}e−(�+1)δ0 . (A20)

In general, even without knowing the explicit solution, one
can identify the boundary of the phase characterized by the
low-lying modes by noting that, in order for Eq. (A18) to be
satisfied, ξ (E) must be real, which implies that e−ξ (E) > 0.
Therefore, one notes that

e−ξ (E) = 2we−δ(E) − μ

E
, (A21)

which implies that ξ (E) is real if, and only if,

2w

μ
> eδ(E) =

√
(2w + μ)2 − E2 +

√
(2w − μ)2 − E2√

(2w + μ)2 − E2 −
√

(2w − μ)2 − E2
� 1.

(A22)

Therefore, the phase characterized by the presence of low-
lying PMFs is defined by the condition 2w

μ
> 1 [2], even in the

case of a finite-length chain.

APPENDIX B: EXCITATION SPECTRUM OF
THE CLOSED RING

In this Appendix, we derive the energy eigenvalues and
the corresponding eigenmodes of H [�]. Proceeding as for the
open chain, for 1 < j < �, the BdG equation takes the same
form as in Eq. (A2). At j = 1, one gets

Eu1 = −wu2 − τe−(i/2)�u� − μu1 + wv2,
(B1)

Ev1 = −wu2 + wv2 + τe(i/2)�v� + μv1,

while at j = �, one obtains

Eu� = −wu�−1 − τe(i/2)�u1 − μu� − wv�−1,

Ev� = wu�−1 + wv�−1 + τe−(i/2)�v1 + μv�. (B2)

In order for the conditions in Eqs. (B1) and (B2) to be
satisfied, one has to modify the ansatz in Eq. (A5). For the
sake of clarity, in the following we shall use ū1,v̄1 and ū�,v̄� to
respectively denote the wave functions at j = 1 and at j = �.
Therefore, using Eqs. (B1) and (B2), one obtains[

(E + μ) τe−(i/2)�

τe(i/2)� (E + μ)

][
ū1

ū�

]
= −w

[
(u2 − v2)

(u�−1 + v�−1)

]
, (B3)

and[
(E − μ) −τe(i/2)�

−τe−(i/2)� (E − μ)

][
v̄1

v̄�

]
= −w

[
(u2 − v2)

−(u�−1 + v�−1)

]
.

(B4)

On inverting Eqs. (B3), one obtains[
ū1

ū�

]
= −

{
w

(E + μ)2 − τ 2

}

×
[

{(E + μ)(u2 − v2) − τe−(i/2)�(u�−1 + v�−1)}
{−τe(i/2)�(u2 − v2) + (E + μ)(u�−1 + v�−1)}

]
,

(B5)

while on inverting Eqs. (B4) one rather gets[
v̄1

v̄�

]
= −

{
w

(E − μ)2 − τ 2

}

×
[

{(E − μ)(u2 − v2) − τe(i/2)�(u�−1 + v�−1)}
{τe−(i/2)�(u2 − v2) − (E − μ)(u�−1 + v�−1)}

]
.

(B6)

Now, setting j = 2,� − 1, one obtains the BdG equations

Eu2 = −w{u3 + ū1} − μu2 + w{v3 − v̄1},
(B7)

Ev2 = −w{u3 − ū1} + w{v3 + v̄1} + μv2,

and

Eu�−1 = −w{u�−2 + ū�} − μu�−1 + w{v̄� − v�−2},
Ev�−1 = −w{ū� − u�−2} + w{v̄� + v�−2} + μv�−1.

(B8)

From Eqs. (B7) and (B8) we see that, in order for the
solution in Eq. (B17) to hold for 1 < j < �, one must have

ū1 + v̄1 = u1 + v1,
(B9)

ū� − v̄� = u� − v�,

where, now, u1,v1 (u�,v�) denote the wave function uj ,vj

evaluated at j = 1 (j = �). Making a combined use of
the above equations, one eventually gets to the consistency
conditions given by

ū1 + v̄1 = −w

{
E + μ

(E + μ)2 − τ 2
+ E − μ

(E − μ)2 − τ 2

}
(u2 − v2)

+ τw

{
e−(i/2)�

(E + μ)2 − τ 2
+ e(i/2)�

(E − μ)2 − τ 2

}
× (u�−1 + v�−1),

ū� − v̄� = −w

{
E + μ

(E + μ)2 − τ 2
+ E − μ

(E − μ)2 − τ 2

}
× (u�−1 + v�−1)
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+ τw

{
e(i/2)�

(E + μ)2 − τ 2
+ e−(i/2)�

(E − μ)2 − τ 2

}
× (u2 − v2). (B10)

We now make the ansatz that a generic solution of energy
E takes the form[

uj

vj

]
+

= c

[
cos

(
�
2

){aeikj + be−ikj }
−i sin

(
�
2

){aeikj − be−ikj }

]
, (B11)

with c being an appropriate normalization constant. Moreover,
to simplify the notation, we set

A(E) = w

{
E + μ

(E + μ)2 − τ 2
+ E − μ

(E − μ)2 − τ 2

}
,

B(E; �) = τw

{
e−(i/2)�

(E + μ)2 − τ 2
+ e(i/2)�

(E − μ)2 − τ 2

}
.

(B12)

Therefore, we obtain the system of algebraic equations for a and b given by

{eik−i(�/2) + A(E)e2ik+i(�/2) − B[E; �]eik(�−1)−i(�/2)}a + {e−ik+i(�/2) + A(E)e−2ik−i(�/2) − B[E; �]e−ik(�−1)+i(�/2)}b=0,

{eik�+i(�/2) + A(E)eik(�−1)−i(�/2) − B∗[E; �]e2ik+i(�/2)}a + {e−ik�−i(�/2) + A(E)e−ik(�−1)+i(�/2) − B∗[E; �]e−2ik−i(�/2)}b=0.

(B13)

On requiring Eqs. (B13) to provide nontrivial solutions for a and b, one readily obtains the secular equation for the allowed
values of the energy |E| > �w in the form

− sin[k(� − 1) + �] − {A2(E) − |B[E; �]|2} sin[k(� − 3) − �] − 2A(E) sin[k(� − 2)] + 2ReB[E; �] sin[k + �] = 0.

(B14)

Next, we consider the equation for subgap PMF energies. These correspond to complex values of k satisfying

cos

(
k

2

)
= ±i

√
�2

w − E2

8wμ
. (B15)

To solve Eq. (B15), we now define the momentum for particlelike excitations as kp = π − iδ and for holelike excitations as
kh = π + iδ, with

δ = 2 sinh−1

⎧⎨
⎩

√
�2

w − E2

8wμ

⎫⎬
⎭. (B16)

As a result, one finds that the positive-energy PMF wave function is given by[
uj

vj

]
= c (−1)j

[
cosh

(
ξ

2

){αejδ + βe−jδ}
sinh

(
ξ

2

){αejδ − βe−jδ}

]
, (B17)

with ξ defined through the equations

cosh(ξ ) = 2w cosh(δ) − μ

E
, sinh(ξ ) = 2w sinh(δ)

E
, (B18)

and the coefficients α and β determined by the appropriate boundary conditions for the allowed wave functions. We therefore
trade Eqs. (B10) for the following system in the unknowns α,β:

{eδ+ξ/2 − e2δ−ξ/2A(E) − e(�−1)δ+ξ/2B(E; �)}α + {e−δ−ξ/2 − e−2δ+ξ/2A(E) − e−(�−1)δ−ξ/2B(E; �)}β = 0,

{e�δ−ξ/2 − e(�−1)δ+ξ/2A(E) − e2δ−ξ/2B∗(E; �)}α + {e−�δ+ξ/2 − e−(�−1)δ−ξ/2A(E) − e−2δ+ξ/2B∗(E; �)}β = 0. (B19)

The system in Eq. (B19) admits a nontrivial solution for α and β only provided that the following secular equation for the
energy eigenvalue E is satisfied:

− sinh[(� − 1)δ − ξ ] + 2A(E) sinh[(� − 2)δ] + 2Re[B(E; �)] sinh[δ − ξ ] − {A2(E) − |B(E; �)|2} sinh[(� − 3)δ + ξ ] = 0.

(B20)

Clearly, Eqs. (B19) and (B20) are consistent with the solution for τ = 0. Indeed, as τ = 0 (open chain limit), one obtains that
(apart for a constant) α = e−ξ/2 and β = −eξ/2. Also, we obtain that B(E; �) = 0 and, as a result, Eqs. (B19) take the form

{eδ+ξ/2 − e2δ−ξ/2A(E)}α + {e−δ−ξ/2 − e−2δ+ξ/2A(E)}β = 0,

{e�δ−ξ/2 − e(�−1)δ+ξ/2A(E)}α + {e−�δ+ξ/2 − e−(�−1)δ−ξ/2A(E)}β = 0. (B21)
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Using the explicit expression for A(E), Eqs. (B21) yield

αeδ+ξ/2 + βe−δ−ξ/2 −
[

w

E + μ
+ w

E − μ

]
{αe2δ−ξ/2 + βe−2δ+ξ/2} = 0,

(B22)

αe�δ−ξ/2 + βe−�δ+ξ/2 −
[

w

E + μ
+ w

E − μ

]
{αe(�−1)δ+ξ/2 + βe−(�−1)δ−ξ/2} = 0,

that is

u1 + v1 +
[

w

E + μ
+ w

E − μ

]
{u2 − v2} = 0,

v� − v� +
[

w

E + μ
+ w

E − μ

]
{u�−1 + v�−1} = 0.

(B23)

We now see that Eqs. (B23) respectively imply u0 + v0 = 0,
and u�+1 − v�+1 = 0, which are the appropriate equations for
τ = 0. Of course, in general Eqs. (B14) and (B20) for the
PMF energy appear to be quite formidable and one has to
numerically solve them to recover the functional dependence
of the energy E on �, just as we do in the main text. Nev-
ertheless, one may effectively use Eq. (B20) to recover under
which conditions, and at which values of � = �∗, the PMFs
energy levels may cross each other, which is a key point in the
application of our technique. In order to recover this point, we
consider the zero-energy limit of Eq. (B20), thus obtaining

B2[0; �∗] − 2B[0; �∗]e−(�−2)δ0 + e−2(�−2)δ0 = 0, (B24)

where we have taken into account that B[0; �] is real.
Equation (B24) is then solved by setting

2wτ

μ2 − τ 2
cos

(
�∗
2

)
= e−(�−2)δ0

⇒ cos

(
�∗
2

)
= μ2 − τ 2

2wτ
e−(�−2)δ0 . (B25)

Equation (B25) admits real solutions for �∗ only provided
that |μ2−τ 2

2wτ
e−(�−2)δ0 | � 1, which is always obeyed for either a

long enough chain, or a large enough τ (or both). A detailed
discussion about this point is provided in the main text. Here,
we point out an important consequence of Eq. (B25), namely,
even for a finite-size ring, it is still possible to recover two
zero-energy MMs, provided � is properly tuned. To see this,
at a given �, we define the mode operators corresponding to
the PMFs, �0[�],�†

0[�], respectively given by

�0[�] =
�∑

j=1

{[uj ]∗cj + [vj ]∗c†j },
(B26)

�
†
0[�] =

�∑
j=1

{ujc
†
j + vj cj },

with uj ,vj being the wave functions in Eq. (B17). By
definition, we then obtain

[�0[�],H ] = ε0[�]�0[�],
(B27)

[�†
0[�],H ] = −ε0[�]�†

0[�],

with ε0[�] being the solution of Eq. (B20) at a given �. Thus,
for � = �∗, one obtains

[�0,∗,H ] = [�†
0,∗,H ] = 0 (B28)

with �0,∗ = �0[� = �∗]. As a result, for � = �∗ one may
define the zero-mode MMs γ1,γ2 by simply setting

γ1 = �0,∗ + �
†
0,∗, γ2 = −i{�0,∗ − �

†
0,∗}. (B29)

As we discuss in the paper, the existence of γ1,γ2 as
zero-energy MMs is quite robust against the effects of
disorder. For comparison, in the main text of the paper we
also consider the dependence on � of the subgap states in a
superconducting ring made with an s-wave one-dimensional
superconductor closed with a weak link of strength τ . This is
derived from the corresponding solution of the BdG equations
for the wave function of a spin-σ quasiparticle, uj ,vj , which,
for the s-wave ring of length � and for the superconducting
gap � = w (in analogy to the simplifying limit we take above
for the p-wave superconductor), are given by [58]

Euj = −w{uj+1 + uj−1} − μuj + σwvj ,
(B30)

Evj = σwvj + w{vj+1 + vj−1} + μvj ,

for 1 < j < �, and by

Eu1 = −wu2 − τe−(i/2)�u� − μu1 + σwv1,
(B31)

Ev1 = σwu1 + wv2 + τe(i/2)�v� + μv1,

for j = 1 and, finally, by

Eu� = −wu�−1 − τe(i/2)�u1 − μu� + σwv�,
(B32)

Ev� = σwu� + wv�−1 + τe−(i/2)�v1 + μv�,

for j = �. Equation (B30) is solved by a wave function of the
form [

uj

vj

]
=

[
u

v

]
eikj , (B33)

provided u,v satisfy the secular equation

Eu = −{2w cos(k) + μ}u + σwv,

Ev = σwu + {2w cos(k) + μ}v. (B34)

Imposing the wave function in Eq. (B34) to satisfy Eqs. (B31)
and (B32) as well implies the interface conditions across the
weak link given by

0 = wu0 − τe−(i/2)�u�, 0 = wv0 − τe(i/2)�v�,

0 = τe(i/2)�u1 − wu�+1, 0 = τe−(i/2)�v1 − wv�+1.

(B35)
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Let us, now, look for subgap solutions, with energy |E| < w. In this case, we obtain that k = ±[π
2 ± iq], and that, accordingly,

the generic subgap solution is given by[
uj

vj

]
= C

[
(ij e−qjαp,+ + i−j eqjαp,−)e(i/2)ξ + (i−j e−qjαh,+ + ij eqjαh,−)e−(i/2)ξ

(ij e−qjαp,+ + i−j eqjαp,−)e−(i/2)ξ + (i−j e−qjαh,+ + ij eqjαh,−)e(i/2)ξ

]
, (B36)

with

sinh[q(E)] =
√

w2 − E2

4w2
, tan[ξ (E)] =

√
w2 − E2

E2
, (B37)

and αp,+,αp,−,αh,+,αh,− coefficients. On requiring to recover a nontrivial solution for the above coefficients, one eventually
finds the secular equation for the allowed energy eigenvalues, which is given by

4wτe�q(e2q − 1) cos

(
�

2

)
= 4w2{e2q(�+1) − 1 + τ 2(e2q − e2q�)}. (B38)

Equation (B38) has been used to work out the subgap energy levels in the s-wave case, which have been discussed in the main
text in comparison with the ones in the p-wave case.
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