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The existence of several characteristic times during the collisional relaxation of fine velocity structures is
investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly
collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities,
such as temperature and entropy, is discussed, suggesting that plasma collisionality can locally increase due
to velocity space deformations of the particle velocity distribution function. These results support the idea
that high-resolution measurements of the particle velocity distribution function are crucial for an accurate
description of weakly collisional systems, such as the solar wind, in order to answer relevant scientific
questions, related, for example, to particle heating and energization.
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The description of collisional effects in plasmas repre-
sents historically a huge scientific topic in which a
significant numerical and theoretical effort has been made
even in recent years [1–8]. In a weakly collisional plasma,
such as the solar wind, collisions are usually considered far
too weak to produce any significant effect on the plasma
dynamics [9]. However, the estimation of collisionality is
often based on the restrictive assumption that the shape of
the particle velocity distribution function (VDF) is close to
Maxwellian [10–12]. On the other hand, kinetic simula-
tions [13–20], as well as in situ spacecraft measurements in
the solar wind (SW) [12,21–24], indicate that marked non-
Maxwellian features develop in the three-dimensional
VDFs (temperature anisotropies, particle beams, ringlike
modulations, etc.). Fine velocity structures naturally form
in a kinetic plasma when an initial inhomogeneity is let free
to evolve (ballistic effect) [25,26]. Nonlinear wave-particle
interactions can lead in addition to larger scale velocity
structures possibly taking part in a kinetic turbulent cascade
and/or to instabilities. Since collisional effects increase with
the velocity gradients of the VDF [27–33], the collisionless
hypothesis may locally fail.
Velocity space structures can store the VDF free energy

[34], which is then available for wave production through
microinstabilities or for heating production due to colli-
sional thermalization, which generates a degradation of
information, i.e., an entropy production. Hence, investigat-
ing the role of collisions on small scale velocity space
structures is relevant for understanding how collisionless
wave-particle interactions compete with collisional proc-
esses and how efficiently collisions can be enhanced by the
presence of fine velocity space gradients and play a
significant role in converting ordered energy into heat.
To highlight this effect, it is mandatory to adopt nonlinear
collisional operators where the strength of the collisional
terms depends on the VDFs shape. Up to now, collisional
effects have been almost always modeled through

simplified operators [35–40], which are linear or assume
a reduced dimensionality in velocity space.
On the contrary, we modeled collisions through the full

Landau operator, which is a nonlinear integro-differential
operator of the Fokker-Planck type, has good conservation
properties, and satisfies an H-theorem for the Gibbs-
Boltzmann entropy [27,28]. The Landau operator introdu-
ces an upper cutoff of the integrals at the Debye length to
mimic the effects of the time correlations due to the
eigenmodes and so avoid divergence at large scale. A
more general treatment of collisions (Balescu-Lenard
operator [29,30]), which introduces the eigenmodes in a
more consistent way through the dispersion equation, is
much more difficult to manage numerically.
In this Letter, we discuss the collisional dissipation of

non-Maxwellian features in the particle VDFs in a weakly
collisional plasma, by means of Eulerian numerical sim-
ulations. Because of the nonlinear nature of the Landau
operator, the analytical treatment as well as the self-
consistent numerical simulations of the Landau operator
in 6D phase space are difficult goals to achieve yet. Thus,
we decided to address the collisional relaxation of a
spatially homogeneous force-free plasma and to model
collisions between particles of the same species through the
following (dimensionless) collisional evolution equation
for the particle distribution function fðvÞ:
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where u ¼ v − v0, u ¼ juj and the Einstein notation is
introduced. In Eq. (1), and from now on, time is scaled to
the inverse Spitzer-Harm frequency ν−1SH [10] and velocity
to the particle thermal speed vth. Details about the
numerical solution of Eq. (1) can be found in Ref. [3].
In the first part of the present Letter, we consider the

mutual effect of a local deformation of the particle VDF (a
plateau) and the global temperature anisotropy, by compar-
ing the evolution of two initial VDFs:

f1ðvÞ ¼ C1fM;T⊥ðvxÞfM;T⊥ðvyÞfp;T∥
ðvzÞ; ð3Þ

f2ðvÞ ¼ C2fM;T⊥ðvxÞfM;T⊥ðvyÞfM;T∥
ðvzÞ; ð4Þ

where C1 and C2 are normalization constants. The total
temperatureT, whereT¼v2th in dimensionless units, is given
by T¼ðT∥þ2T⊥Þ=3 and A ¼ T⊥=T∥ ¼ 2. Finally fM;Ti

is a generic Maxwellian with temperature Ti and [2,4]:

fp;T∥
ðvzÞ ¼ fM;T0

ðvzÞ −
fM;T0

ðvzÞ − fM;T0
ðV0Þ

1þ ½ðvz − V0Þ=ΔVp�np
ð5Þ

where T0 ¼ 1, V0 ¼ 1.44, ΔVp ¼ 0.5, and np ¼ 8. The
function fp;T∥

ðvzÞ is constructed in such a way to have a
plateau of width ΔVp around v ¼ V0, that is f0p;T∥ðvzÞ is
about null in the intervalV0 − ΔVp=2≲ vz ≲ V0 þ ΔVp=2,
being exactly zero at vz ¼ V0.
It is worth to note that f2ðvÞ is a bi-Maxwellian function,

while f1ðvÞ is Maxwellian in the perpendicular directions
with a plateau centered in vz ¼ V0 in the parallel direction.
We also point out that f1ðvÞ and f2ðvÞ have the same
temperature (second order moment) in each direction.
Moreover, for the function f1ðvÞ, we reset the small mean
velocity (≃10−2) produced by the presence of the plateau.
The three-dimensional velocity domain is discretized with
Nvx ¼ Nvy ¼ 51 and Nvz ¼ 1601 grid points. We point out
that the resolution along vz has been increased significantly
in order to resolve the short velocity scales associated with
the presence of the plateau. Finally, the distribution
function is set equal to zero for jvjj > vmax ¼ 6vth, being
j ¼ x, y, z.
As shown in Fig. 1(a), the time evolution of parallel and

perpendicular temperatures of f1ðvÞ (black solid line) and
f2ðvÞ (red dashed line) is clearly the same. On the

other hand, the evolution of the entropy variation
ΔS¼SðtÞ−Sð0Þ (S ¼ −

R
f ln fd3v), reported in Fig. 1(b),

displays significant differences. In particular, for f1ðvÞ
(black solid curve), the case in which a plateau is present,
ΔS saturates at a larger level than that recovered for f2ðvÞ
(red dashed curve). In order to investigate the reasons of
such different behavior of the entropy for f1ðvÞ and f2ðvÞ,
we performed a multiexponential fit [41] of ΔS for the two
cases, with the following curve:

ΔSðtÞ ¼
XK
i¼1

ΔSið1 − e−t=τiÞ; ð6Þ

τi being the ith characteristic time and K is evaluated
through a recursive procedure.
From this analysis, we found that, while for the case of

f2ðvÞ [red dashed curve of Fig. 1(b)] ΔS shows an
exponential growth with a single characteristic time
(τ ≃ 2ν−1SH), for f1ðvÞ [black solid curve of Fig. 1(b)],
i.e., in the presence of a plateau, two different characteristic
times are recovered: a fast characteristic time τ1 ¼ 0.14ν−1SH
[indicated in Figs. 1(a) and 1(b) by a vertical blue dashed
line] in which 25% of the total entropy growth is achieved,
and a slow characteristic time τ2 ¼ 2.03ν−1SH during which
the remaining 75% of the total entropy growth is observed.
We argue that the existence of the characteristic time τ1 is
due to the presence of the plateau, and in particular it is
associated with the sharp velocity gradients in f1ðvÞ, while
τ2 is related to the initial temperature anisotropy. In fact, as
it can be seen in Fig. 1(c) where f1ðvx ¼ vy ¼ 0; vzÞ is
plotted as a function of vz at t ¼ 0 (black solid line) and at
t ¼ τ1 (red dashed line), the initial plateau is completely
smoothed out by collisional effects in a time close to τ1,
while from Fig. 1(a) one realizes that at t≃ τ1 the temper-
ature anisotropy is still present.
To further support the idea that the presence of sharp

velocity gradients in the particle VDF causes the entropy to
grow over different time scales, we made an additional
numerical experiment of collisional relaxation, considering
a different initial condition for Eq. (1). This new initial
condition has been designed as follows. First, we per-
formed a 1D-1V Vlasov-Poisson simulation (kinetic
electrons and motionless protons) with high numerical

FIG. 1. (a) Time evolution of T⊥ and T∥ for the case of f1ðvÞ (black solid line) and f2ðvÞ (red dashed line). (b) Time evolution of ΔS
for the case of f1ðvÞ (black solid line) and f2ðvÞ (red dashed line). The vertical blue dashed line in panels (a)–(b) indicates the time
instant t ¼ τ1. (c) Distribution function f1ðvx ¼ vy ¼ 0; vzÞ as a function of vz at t ¼ 0 (black solid line) and at t ¼ τ1 (red dashed line).
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resolution in the z − vz phase space domain (Nz ¼ 256,
Nvz ¼ 1601). In this simulation, we externally forced the
system, initially at equilibrium, through a sinusoidal driver
electric field, in order to excite a large amplitude electron
acousticwave (EAW) [42], as it has been done numerically in
Refs. [43–45] and in laboratory experiments with non-
neutral plasmas in Refs. [46,47]. As discussed in these
papers, the propagation of large amplitude EAWs is char-
acterized by the generation of phase space structures of the
Bernstein-Green-Kruskal (BGK) type [48] in the electron
distribution function feðz; vzÞ, associated with trapped
particle populations. Then, we selected the spatial point z0
in the numerical domain, where this BGK-like phase space
structure displays its maximum velocity width, and consid-
ered the velocity profile f̂eðvzÞ ¼ feðz0; vzÞ. In Fig. 2(a), we
report the dependence of f̂e on vz; here, it can be appreciated
that f̂e is highly distorted due to nonlinear wave-particle
interaction processes and displays the presence of sharp
velocity gradients (bumps, holes, spikes, etc.). At this point,
we evaluated the second-order velocity moment of f̂e, that is

the temperature Te, and built up the three-dimensional VDF
fðvx; vy; vzÞ ¼ fM;Te

ðvxÞfM;Te
ðvyÞf̂eðvzÞ. We emphasize

that this VDF has the same temperature in each velocity
direction but presents strong non-Maxwellian deformations
along vz, as shown in Fig. 2(a), which make the system far
from equilibrium. The time history of ΔS, obtained when
using f as initial condition for Eq. (1), is presented in
Fig. 2(b). As in the previous simulations, the three-dimen-
sional velocity domain in this case is discretized by Nvx ¼
Nvy ¼ 51 and Nvz ¼ 1601 grid points.
By analyzing the entropy growth through the same

method of multiexponential fit discussed previously, three
characteristic times are recovered in this case, whose values
are reported below, together with the corresponding per-
centage of entropy variation: (i) τ1 ¼ 3.5 × 10−3ν−1SH →
ΔS1=ΔStot ¼ 13%, (ii) τ2¼1.3×10−1ν−1SH→ΔS2=ΔStot¼
42%, (iii) τ3 ¼ 4.9 × 10−1ν−1SH → ΔS3=ΔStot ¼ 40%.
Characteristic times τ1, τ2, and τ3 are indicated as red

diamonds in Fig. 2(b). In Fig. 3, we plot f as a function of
vz for vx ¼ vy ¼ 0, at three different times t ¼ τ1 (a), t ¼
τ1 þ τ2 (b), and t ¼ τ1 þ τ2 þ τ3 (c): during the time τ1,
steep spikes visible in Fig. 2(a) are almost completely
smoothed out; at time τ1 þ τ2 the remaining plateau region
is significantly rounded off, only a gentle shoulder being
left; finally, after a time τ1 þ τ2 þ τ3, the collisional return
to equilibrium is completed for the most part (a small
percentage ≃5% of the total entropy growth is finally
recovered for larger times and corresponds to the final
approach to the equilibrium Maxwellian, indicated by red
dashed lines in the three panels of Fig. 3).
Compared to the case shown in Fig. 1, here we

recovered an additional extremely fast characteristic time
(≃10−3ν−1SH), associated with the sharp velocity gradients of
f along vz, while we did not detect the large characteristic
time (≃2ν−1SH) associated with the temperature anisotropy in
the previous case.
Numerical experiments discussed so far give a clear

message: collisional dissipation of small velocity scales in
the particle VDF occurs over different characteristic times,
inversely proportional to the sharpness of the velocity
gradients associated with those velocity scales. As we
discussed above, these characteristic times can be signifi-
cantly smaller than the Spitzer-Harm collisional time [10],

FIG. 2. (a) Dependence of f on vz. (b) Time history of ΔS. Red
diamonds in panel (b) indicate the time instants t ¼ τ1,
t ¼ τ1 þ τ2, t ¼ τ1 þ τ2 þ τ3.

FIG. 3. Distribution function fðvx ¼ 0; vy ¼ 0; vzÞ as a function of vz at t ¼ τ1 (a), t ¼ τ1 þ τ2 (b), and t ¼ τ1 þ τ2 þ τ3 (c). Red
dashed lines in panels (a)–(c) indicate the equilibrium Maxwellian finally reached in the simulation.
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this meaning that the presence of velocity gradients in fact
speeds up the growth of the entropy of the system. This
evidence suggests that when the particle VDFs exhibit
small velocity scale deformations, the quasi-Maxwellian
approximation, on which the Spitzer-Harm collisional
evolution is based, is no longer appropriate.
In order to explore the implications of our results to the

general case of the SW plasma, we performed our analysis
on a three-dimensional proton VDF fswðvÞ, obtained from
the hybrid Vlasov-Maxwell [49] numerical simulations
of SW decaying turbulence described in detail in
Refs. [15–20]. As shown in Fig. 4(a), where the three-
dimensional iso-surface plot of fsw is reported, kinetic
effects along the cascade make the VDF depart from the
spherical shape of Maxwellian equilibrium and resemble a
deformed potato. Then, having in mind to mimic low
resolution VDF measurements by a real spacecraft, we
fitted fswðvÞ with a tri-Maxwellian function ~fswðvÞ
[Fig. 4(b)] and with a bi-Maxwellian function f̂swðvÞ
[Fig. 4(c)]. In order to point out the loss of physical
information caused by not adequately resolving the sharp
velocity gradients in the particle VDFs, the functions fsw,
~fsw, and f̂sw are used as initial conditions in three new
simulations of Eq. (1), in which the velocity domain is now
discretized by Nvx ¼ Nvy ¼ Nvz ¼ 51 grid points, as in the
simulations in Refs. [15–20]. The results for the entropy
growth of these new numerical experiments are reported in
Fig. 5, where we show the time evolution of ΔS for the
VDFs fswðvÞ (black solid line), ~fswðvÞ (red dashed line),
and f̂swðvÞ (blue dashed line), respectively.
As for the previous cases discussed above, also here the

time history of ΔS is evidently affected by the presence of
fine velocity scales and steep gradients in the particle VDF.
Any fitting procedure, which smooths out the fine velocity
structures, reduces the entropy growth: in fact, the simu-
lation with the function f̂swðvÞ as initial condition displays
a collisional entropy growth about 20 times smaller than
that recovered for the case of the function fswðvÞ.
Moreover, through the multiexponential fit analysis per-
formed on ΔS for the simulation initialized with fsw, we
found two characteristic times: a fast one τ1 ¼ 0.20ν−1SH, in
which 26% of the total entropy growth is achieved, and a

slow one τ2 ¼ 0.82ν−1SH, during which the remaining 74%
of the total entropy growth is observed. By analyzing VDF
iso-surface plots (not shown here) at different times in the
simulation, we realized that after a time t ¼ τ1 collisions
have dissipated most of the sharp velocity gradients which
were initially present in the VDF. We point out that, since
the numerical resolution for this simulation is about 30
times smaller than in the previous case, sharp velocity
gradients [as those shown in Fig. 2(a)] are not visible in the
particle VDF, even though it displays significant non-
Maxwellian features [see Fig. 4(a)]. Hence, the lack of
velocity resolution presumably does not allow us to recover
the extremely fast characteristic time (≃10−3ν−1SH) in the
evolution of ΔS, observed for the simulation initialized
with the velocity profile in Fig. 2(a).
In this Letter, we discussed the role of the VDF fine

velocity structures in enhancing the plasma collisionality.
In particular, by means of Eulerian simulations of colli-
sional relaxation of a spatially homogeneous force-free
plasma, we have shown that the system entropy growth
occurs over several time scales, which gets smaller as VDF
gradients become steeper. We reported clear evidences that
these gradients are dissipated by collisions in a time much
shorter than that associated with global non-Maxwellian
features, e.g., temperature anisotropies. This characteristic
time may be comparable or even smaller than the instability
growth rates invoked to explain the SW anisotropic VDFs
[50,51] or than the nonlinear dynamics times, as recently
discussed through a classical treatment of collisions [8].
We finally pointed out how the lack of resolution in the

VDFs measurements mask a relevant part of physical

FIG. 4. Iso-surface plot of the initial VDFs fswðvÞ (a), ~fswðvÞ (b), and f̂swðvÞ (c), respectively.

FIG. 5. Entropy growth for the initial VDFs fswðvÞ (black line),
~fswðvÞ (red dashed line), and f̂swðvÞ (bluedashed line), respectively.

PRL 116, 145001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
8 APRIL 2016

145001-4



information hidden in the sharp velocity gradients of the
non-Maxwellian VDFs, observed ubiquitous, for example,
in the SW [21,24]. Future space missions, planned to
increase both energy and angular resolutions of the VDFs
measurements, will provide crucial insights for the long-
standing problems of plasma heating and particle energiza-
tion in the interplanetary medium.

Numerical simulations here discussed have been run on
the Fermi parallel machine at Cineca (Italy), within the
project COLTURBO—HP10CVRU0Q. This work has
been supported by the Agenzia Spaziale Italiana under
the Contract No. ASI-INAF 2015-039-R.O “Missione M4
di ESA: Partecipazione Italiana alla fase di assessment della
missione THOR.”
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