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Abstract— Pulse-compression infrared thermography is an emerging nondestructive testing and evaluation 

technique. An analysis of the main issues hampering the full exploitation of this technique is presented from 

both theoretical and experimental point of view and various strategies are introduced to overcome these 

problems and optimize the defect detection performance. A comparison between conventional pulse-

compression thermography procedures and the proposed one is reported, using an LED modulated with a 

Barker sequence as coded excitation, and a carbon fibre composite benchmark sample containing artificial 

defects at different depths. The experimental results show that the suggested signal processing procedure 

assures a higher SNR and hence an improved defect detection capability. In addition, a time-analysis of such 

signals allows the correlation between the depth of defects and heat diffusion time to be more clearly identified. 

Keywords—Nondestructive evaluation, Thermography, Coded Excitation, Pulse-compression, Barker 

Codes 

I. INTRODUCTION 

Active Thermography (AT) is a Non Destructive Testing (NDT) technique with application in various fields 

of research and analysis, ranging from diagnostic, material characterization to on-line and in-service inspection 

[1–6]. In particular, AT is applied extensively to the inspection of composite structures, and various 

measurement strategies have been developed to improve the technique [7–11].  Two main approaches have 

been pursued: time-domain analysis, with Pulsed Thermography (PT) as the most common method [12–15], 

and frequency-domain signals, with the single-frequency Lock-In Thermography (LIT) technique being the 

most popular [16–19]. The former approach provides more information than the latter. This is because a 

continuous frequency bandwidth is excited. On the other hand, by concentrating the signal energy within a 

limited set of excitation frequencies, use of a Lock-In produces improved levels of Signal-to-Noise Ratio (SNR) 

at the cost of less information. In recent years, many techniques have been developed in order to combine the 

advantages of both the above mentioned approaches, such as Pulsed-Phase Thermography (PPT) [4] and Multi-

Frequency Lock-in Thermography (MF-LIT) [20]. 

 

Pulse-Compression Thermography (PuCT) is a recent technique developed by Mandelis et al. [21,22] and 

Mulaveesala et al. [23–25] in which the heating stimulus is in the form of a coded signal that has a unique 

characteristic: the bandwidth and the duration of the signal can be made mutually independent by proper code 



design [26]. As a consequence, the frequency content of the signal can be tailored to the type of 

materials/defects under investigation, while the duration of the signal can be determined by considering the 

required SNR value. Moreover, with the use of coded excitation, both time and frequency domain processing 

can be implemented; the former can be retrieved after the application of the PuC step that outputs an estimate 

of the impulse response, while the latter can be directly performed on the acquired data. As a matter of fact, 

PuCT tries to retrieve the time and spatial resolution of PT with the SNR of LIT. In recent years, various PuC 

schemes have been proposed, which mainly differ in the type of coded waveforms used (binary sequences or 

frequency modulated “chirp” signal) or the type of heating source [21,27–30]. Note that coded excitation can 

also be used without PuC. For example, the performance of frequency modulated thermography has been 

compared with those of PT and LIT [31]. Nonetheless, some issues remain in PuCT since most of the 

implementations focus on the SNR gain and do not analyze the quality of the reconstruction of the impulse 

responses.  

 

Our aim is thus to propose a measurement protocol that optimizes both the SNR gain and the quality of the 

impulse response reconstruction. To accomplish this aim, we firstly analyze the theoretical and practical 

limitations facing the full exploitation of PuCT in thermography. We then introduce measurement and 

processing strategies that reduce the effect of these limitations. A comparison between the current state-of-the-

art and the proposed approach is made by using a benchmark sample made of carbon-fibre-reinforced-

composite with various artificial defects at different depths, using a 200W LED system as heating source.  The 

experimental validation uses a Barker Code excitation [32,33], although it should be noted that the analysis can 

be easily extended to other types of excitation, such as frequency modulated chirps. 

 

The paper is organized as follows: Section II introduces the theoretical background of the thermography NDT 

and of the Pulse-Compression technique; Section III highlights the pros and cons of the PuC Thermography 

and introduces some measurement and processing procedures aimed at optimizing the achievable SNR, and 

Section IV introduces the hardware and software used experimentally and illustrates the results of the 

inspection focusing on the use of Barker codes. Conclusions are then presented in Section V.    

II. THEORETICAL BACKGROUND  

Heat transmission is a very complex phenomenon for which an easy mathematical description is possible only 

for ideal cases or when various approximations are made, depending also on the type of thermal source used 

and the related physical principle of heating [34]. Here we consider an external excitation through LED lamps 

that delivers energy to the sample’s surface. In this case, heat propagation is usually approximated as a 1-D 

phenomenon with the thermal front propagating by diffusion from the sample surface to the inside of the sample 

and assuming a negligible contribution of lateral diffusion [35]. The presence of a subsurface defect such as a 

delamination, a void, etc., changes the heat diffusion rate locally and then causes local variations of the surface 

temperature. Hence, by analyzing the radiation emitted by the inspection surface, the presence of a defect can 

be inferred. Moreover, since the heat diffusion from the sample surface to its inner part is not instantaneous, 

defects located at different depths produce observable changes in the emitted radiation at different times, so 

that information about the defect depth can be in principle extracted by a time-analysis of the emitted radiation. 

 

II.A Heat Theory and Pulse Thermography 

To gain insight on this, it is useful considering a simplified 1D model and considering some special solutions 

of the corresponding heat equation [34], which can be described by 

 

𝜕2Θ(𝑧, 𝑡)

𝜕𝑧2
−
𝑐𝜌

𝑘

𝜕Θ(𝑧, 𝑡)

𝜕t
= −

𝑞(𝑧, 𝑡)

𝑘
. (1) 



Here, z is the direction perpendicular to the inspection surface, Θ(𝑧, 𝑡) [K] and  𝑞(𝑧, 𝑡) [
𝑊

𝑚3
]  are the 

temperature of the sample and the heat source amplitude at position z and time t, c [ 𝐽

𝑘𝑔∙𝐾
] is the specific heat, 

 [𝑘𝑔
𝑚3

] is the density, and 𝑘 [ 𝑊

𝑚∙𝐾
] is the thermal conductivity. In the case of a sinusoidal external heat source 

with frequency 𝑓 and acting only on the inspection surface (i.e.  𝑞(𝑧) = 0 for z≠0) of a semi-infinite body, 

Eq. 2 can be rearranged in the frequency domain in the form of a Helmholtz equation for z>0 as: 

 

∂2Θ(z, 𝑓)

∂z2
− σ2Θ(z, 𝑓) = 0 (2) 

 

where i is the imaginary unit, 𝜎 = √𝑖2𝜋𝑓

α
 = (1 + 𝑖)√𝜋𝑓

α
=
(1+𝑖)

𝜇
 [
𝑟𝑎𝑑

𝑚
] is the complex wavenumber, 𝛼 = 𝑘

𝑐𝜌
 [𝑚

2

𝑠
] 

is the thermal diffusivity and 𝜇 = √
α

𝜋𝑓
 [𝑚] is thermal diffusion length. Using a boundary condition that the 

heat flux is continuous at the sample surface, the solution of Eq.2 is an evanescent wave of the form [36]: 

 

Θ(z, 𝑡) = Θ0𝑒
−
𝑧
𝜇cos (

𝑧

𝜇
− 2𝜋𝑓𝑡 +

𝜋

4
) (3) 

 

Eq. 3 implies that the mean energy transport is zero [36]: the heat flux decreases exponentially with depth on 

a characteristic scale 𝜇, and as a rule of thumb, it is assumed that the excitation frequency 𝑓𝑜𝑝𝑡(𝑑) that has the 

highest sensitivity with respect to defects at depth d from the inspection surface is approximately 𝑓𝑜𝑝𝑡(𝑑) =
𝛼

𝜋𝑑2
 , for which 𝜇 = 𝑑. Eq.3 also indicates that in the most general case of an arbitrary heating source, the 

thermal front suffers from dispersion since different frequencies exhibit different diffusion phase, 𝑣𝑝(𝑓), and 

group, 𝑣𝑔(𝑓), velocities:  

𝑣𝑝(𝑓) = 2𝜋𝑓𝜇 = 2√𝜋𝑓α ;  𝑣𝑔(𝑓) =
𝑑𝜔(𝜉)

𝑑𝜉
= 4√𝜋𝑓α = 2𝑣𝑝(𝑓); (4) 

where 𝜉 is the real part of the complex wavenumber. 

 

Since pulsed thermography is the most common thermographic NDT technique, it is worth considering what 

Eqs. 1-4 imply when the heat source is a short excitation modeled with a Dirac’s Delta function 𝛿(𝑡), i.e. 

modeled as a finite amount of heat that is instantaneously transferred to the sample. Assuming a semi-infinite 

body and an external heat source, the solution of Eq.2 in this case is described by the expression [34]: 

Θ(z, 𝑡) = Θ(𝑧, 0)+ 
𝑄

𝑐𝜌√𝜋𝛼𝑡
𝑒−

𝑧2

4𝛼𝑡 (5) 

The excitation heat pulse does not travel through the sample with a constant velocity and unaltered shape 

because of dispersion, so that the original short pulse spreads out in time. As a consequence, the impulse 

response ℎ(𝑗𝑥, 𝑗𝑦, 𝑧 = 0, 𝑡) of the generic (𝑗𝑥, 𝑗𝑦) pixel at the surface is not simply a delayed and attenuated 

replica of the original excitation pulse, but is a decay function in which defect signatures appear as “smooth” 

and “slow” variations of the decays themselves. Dispersion hampers also the identification of the depth of 

defects, since it is not possible to easily assign a Time-of-Flight value to dispersive phenomena. To overcome 

this problem, usually an average diffusion velocity is considered and the defect location can be assessed by 

identifying the time delay at which the defect signal is maximum. The following argument is commonly found 

in the literature: if 𝑓𝑜𝑝𝑡(𝑑)=
𝛼

𝜋𝑑2
 is the optimal frequency for the detection of a defect at depth d, for which 𝜇 =

𝑑, and if 𝜐𝑝(𝑓𝑜𝑝𝑡) = 2
𝛼

𝑑
 is the phase velocity at that frequency, then the maximum defect signal is expected 

approximately at a time [37]  

                                                                      𝑡𝑚𝑎𝑥(𝑑)~
𝑑

𝜐(𝑑)
=

𝑑2

2𝛼
             (6) 



 

Hence, from the experimental measurement of  𝑡𝑚𝑎𝑥 the depths of defects can be estimated. Note that 𝑡𝑚𝑎𝑥(𝑑) 
coincides with the instant at which Eq. (5) reaches its maximum when 𝑧 = 𝑑. Starting from these 

considerations, many advanced processing algorithms such as the Thermographic Signal Reconstruction 

(TSR) have been developed. These aim to further improve defect detection by extracting specific parameters 

for each pixel from an analysis of the whole time trend [12,15,38].  From the above, it is clear that an optimum 

measurement of the impulse-response is important not only for effective defect detection but also for defect 

classification purposes. For example, if the excitation pulse is too long, the signal of a single pixel cannot be 

considered as an impulse response, but instead it should be regarded as the signal coming from the convolution 

of the impulse response with the excitation waveform. This makes interpretation of the data more difficult, 

even if it increases the SNR for some defects [39]. With this background, it is now possible to thoroughly 

analyze how the Pulse Compression technique applies to AT.    

 

II.B. Pulse-Compression basic theory 

Pulse Compression is a well-known measurement technique used to experimentally estimate the impulse 

response of a Linear Time-Invariant (LTI) system in a noisy environment or in presence of very low SNR 

values. The basic principle at the heart of the technique can be expressed as follows: given a coded excitation 

𝑠(𝑡) and an another signal (𝑡), the so-called matched-filter, such that their convolution (denoted by ∗) 
approximates the Dirac’s Delta function 𝛿(𝑡), 𝑠(𝑡) ∗(𝑡) = 𝛿(𝑡)~𝛿(𝑡), the impulse response ℎ(𝑡) can be 

estimated by exciting the LTI system with the signal 𝑠(𝑡) and then by convolving the system output 𝑦(𝑡) with 

Ψ(t), see Fig.1. To demonstrate this, consider an output signal 𝑦(𝑡) resulting from a convolution between the 

input signal 𝑠(𝑡) and the impulse response ℎ(𝑡) on which is superimposed an Arbitrary-White-Gaussian-Noise 

(AWGN) e(t) : 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑠(𝑡) + 𝑒(𝑡).  By convolving 𝑦(𝑡) with the matched filter Ψ(𝑡) an estimate of 

the impulse response ℎ(𝑡) is attained: 

   ℎ𝑒𝑠(𝑡) = 𝑦(𝑡) ∗ Ψ(𝑡) = ℎ(𝑡) ∗ 𝑠(𝑡) ∗ Ψ(𝑡)⏟      
~𝛿(𝑡)

+ 𝑒(𝑡) ∗ Ψ(𝑡)~ℎ(𝑡) ∗ 𝛿(𝑡) + �̃�(𝑡) =  ℎ(𝑡) + �̃�(𝑡) 
(7) 

Here it is assumed that Ψ(𝑡) and e(𝑡) are uncorrelated so that �̃�(𝑡) is also AWGN but with a lower energy than 

𝑒(𝑡). A thorough analysis of PuC lies beyond the scope of this work, for a detailed discussion of PuC see for 

instance [26]. Here it is enough to highlight that the main advantages of PuC over pulsed excitation is that at 

end of the procedure a close estimate of the impulse response is achieved, while delivering power to the system 

over an extended time period. In this way, it is possible to provide more energy, and hence to increase the SNR. 

The main drawback of PuC is the mathematical noise introduced by the approximation 𝛿(𝑡), which modifies 

the impulse response ℎ(𝑗𝑥, 𝑗𝑦, 𝑡) of the (𝑗𝑥, 𝑗𝑦) pixel even in the case of no noise, i.e. lim
𝑒(𝑡)→0

   ℎ𝑒𝑠(𝑡) = ℎ(𝑡) ∗

𝛿(𝑡). The sidelobes of 𝛿(𝑡) can deteriorate the reconstruction of the impulse response.  An extensive literature 

can be found on how to design the optimal coded waveform, on how to optimize 𝛿(𝑡), and on how to achieve 

the highest SNR, etc.[26,40–43]. For instance, it has been found that in terms of SNR the best choice for the 

matched filter is simply Ψ(𝑡) = s(−𝑡),  while in order to optimize the quality of the reconstruction the matched 

filter should be replaced by the Wiener filter with a proper regularization. The following Section focuses on 

the application of the PuC approach to AT highlighting the specific disadvantages both from a theoretical and 

an experimental point of view, and analyzes some strategies to overcome or to mitigate them 



 

III. ISSUES AFFECTING THE USE OF PULSE COMPRESSION IN ACTIVE THERMOGRAPHY 

For the use of the PuC in active thermography, there are two main practical issues that affect the full 

exploitation of the technique: 

(A) The difficulty in realizing a bipolar heat source, as all heat sources used in thermography are unipolar, 

which will not normally generate PuC waveforms correctly; 

(B) The need to concentrate the excitation energy at very low frequencies for ensuring sensitivity to hidden 

defects. This generally implies longer excitation times. 

As a consequence of (A), the true excitation signal 𝑠𝑇𝑅(𝑡) = 𝑠(𝑡) + 𝑠𝑆𝑄(𝑡) is a superposition of a coded 

excitation 𝑠(𝑡) and a square pulse 𝑠𝑆𝑄(𝑡) = 𝐶{ϑ(t) − ϑ(𝑡 − 𝑇)}, where ϑ(t) is the Heaviside step function 

and 𝑇 is the duration of the excitation. The true output signal will be 𝑦𝑇𝑅(𝑡) = ℎ(𝑡) ∗ 𝑠(𝑡) + ℎ(𝑡) ∗ 𝑠𝑆𝑄(𝑡) +

𝑒(𝑡) = 𝑦(𝑡) + 𝑦𝑆𝑄(𝑡), see Fig. 2. Therefore, before completing the PuC operation through the application of 

the matched filter, the contribution 𝑦𝑆𝑄(𝑡) of the square pulse to the acquired thermograms must be removed. 

To tackle this issue, in Subsection III-A, we analyze two different fitting procedures which are designed to 

remove the unwanted 𝑦𝑏𝑖𝑎𝑠(𝑡) term. Moreover, the presence of the square pulse bias also determines the 

choice of the PuC measurement procedure. In [26] the main types of coded waveforms were analyzed in the 

light of the measurement scheme adopted, i.e. single-shot or continuous excitation.  In AT, only the single 

shot procedure is possible in practice since the DC bias needs a finite time to reach a stable response. Thus, 

the correct PuCT procedure consists of: 

 
 

Fig. 1 Comparison between (a) Pulsed Thermography (PT) and (b) Pulse-Compression Thermography (PuCT). 

In PT the excitation is considered instantaneous and the sample impulse thermal response is measured for a time Th, which is 

the expected duration of the impulse response of interest, i.e. the time necessary for the diffusion of the heat.  In PuCT, the 

sample is excited with a coded excitation of duration T while thermograms are collected for a time (T+Th). After the 

application of the PuC algorithm, an estimated impulse thermal response of duration Th is retrieved. 



(1) Exciting the sample with a coded excitation of duration T, (2) collecting thermograms for a time (T+Th) 

where Th
 is the expected duration of the impulse response of interest (i.e. the duration of the equivalent PT 

analysis), and (3) performing pixel-by-pixel the convolution with the matched filter to retrieve an estimation 

of the pixels impulse response of duration Th, see Fig. 1. 

In most of the cases reported to date, the thermograms were collected only when the coded excitation was 

switched on and then the PuC was performed by only analyzing the first T seconds. From a mathematical point 

of view such a strategy is correct only in the case of a periodic excitation, and when the steady-state is reached. 

It is worth stressing that, by truncating the acquisition of the output signal at T seconds, a further mathematical 

error is introduced in the reconstructed impulse response ℎ𝑒𝑠(𝑡) in single-shot PuC besides the one entailed by 

𝛿(𝑡). This error becomes negligible when Th is significantly shorter than T, but this is not typically the case in 

PuCT. While such noise may not severely affect the defect detection task, it significantly hampers the defect 

classification process through time analysis of the impulse responses. To gain insight on this technical aspect 

that has nevertheless a strong impact on the PuCT performance, in Section IV a comparison between the “full” 

PuC procedure and the “truncated” one is reported.  

Regarding point (B), due to the low thermal diffusivity of most composite and thermoplastic materials (10-

6-10-7[m2/s]), even defects at a depth of 1mm needs inspection frequencies in the range from tens to hundreds 

of millihertz. This affects the design of the optimal code for PuC and practically limits the SNR achievable by 

the use of PuC. Except for the complementary Golay code excitation, in general the amplitude of the 𝛿′𝑠 
sidelobes is inversely proportional to the Time-Bandwidth product TB of the waveform, which for binary codes 

coincides with the number of bits L.  If we limit the bandwidth to fractions of Hertz, the code must last a few 

minutes to guarantee high TB products (TB>100), and this is not really suitable for on-line and/or in-situ 

inspections. As the SNR gain provided by PuC is proportional to the parameter TB, a trade-off between SNR, 

sidelobe levels and measurement time must be found. For low values of TB, an optimal choice is represented 

by the use of Barker Codes [32,33,41,42], which are the binary codes exhibiting the lowest sidelobes when 
𝑠𝑇𝑅  = 𝑠  + 𝑠𝑆𝑄  

=

= +

+

𝑦𝑇𝑅(𝑡) 𝑦(𝑡) 𝑦𝑆𝑄(𝑡)

𝑠𝑇𝑅(𝑡) 𝑠(𝑡) 𝑠𝑆𝑄(𝑡)

Fig.2: Typical “true” input 𝑠𝑇𝑅(𝑡)and output 𝑦𝑇𝑅(𝑡) signals of a PuCT experiment: the input signal (top) is a superposition of 

the coded excitation 𝑠(𝑡) and of a square pulse 𝑠𝑆𝑄(𝑡). The output signal (bottom) is a superposition of a coded response 𝑦(𝑡) 

and of a step heating response 𝑦𝑆𝑄(𝑡). 

 



used in a single-shot scheme. In addition, Barker codes do not require two or more measurements (as needed 

by complementary Golay codes for example), making them more suitable for Thermography over long 

measurement times. The main drawback of Barker codes is the fact that they exist only up to length L=13, 

which limits both the maximum theoretical SNR gain and the sidelobe suppression to 22db. In Subsection 

III.B we illustrate how to modify the standard PuC to further reduce sidelobe amplitudes.  

III.A Square pulse response removal 

As stated above, practical PuCT applications require the removal of the underlying square pulse excitation 

contribution. To do this, a fitting procedure must be applied pixel-by-pixel to take the potential variations of 

each pixel’s emissivity into account. Most authors report the use of a simple linear fit to remove the square 

pulse response [27,31]; however, this is too simplistic, leading to errors, and this in turn introduces further 

noise into the estimated impulse responses. Also, it is necessary to collect thermograms for a time Th after the 

end of the coded excitation in order to estimate the first Th seconds of the impulse responses. This means that 

the fitting function must be defined for t>T. Hence, even the decay curve must be separated into two 

contributions, one from the coded excitation 𝑠(𝑡), the other from the square pulse 𝑠𝑆𝑄(𝑡). 

In order to perform this separation optimally, we tested the two excitation strategies depicted in Fig.3 by 

applying the two different fitting procedures described mathematically by the following expressions: 

Excitation Signal 1 − "Single Barker"

𝑠𝑇𝑅(𝑡) = {
𝐴

2
(𝑠(𝑡) + 1) 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑇

0  𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇 + 𝑇ℎ

Fitting function "1"

 𝑦𝑆𝑄(𝑡) = {
𝑎1𝑡 + 𝑎2𝑡

0.9 + 𝑎3𝑡
0.8 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑇

𝑦𝑆𝑄(𝑇) − 𝑎1𝑡 − 𝑎2𝑡
0.9 − 𝑎3𝑡

0.8  𝑓𝑜𝑟 𝑇 < 𝑡 ≤ 𝑇 + 𝑇ℎ

Excitation Signal 2 − "Barker&Step"

𝑠𝑇𝑅(𝑡) = {
𝐴

2
(𝑠(𝑡) + 1) 𝑓𝑜𝑟 0 ≤ 𝑡 < 𝑇

𝐴/2 𝑓𝑜𝑟 𝑇 < 𝑡 < 𝑇 + 𝑇ℎ

Fitting function "2"

𝑦𝑆𝑄(𝑡) = 𝑎1𝑡 + 𝑎2𝑡
0.9 + 𝑎3𝑡

0.8 ∀𝑡

 (7) 

 

 
Fig. 3 Decomposition of the true excitation signal 𝑠𝑇𝑅(𝑡) into a proper coded excitation 𝑠(𝑡) plus a square pulse 𝑠𝑆𝑄(𝑡) for the 

two procedures proposed: “Single Barker” and “Barker&Step”  



 
Fig. 4. Examples of the application of the fitting function 1 (see Eq.7) to various step-heating data. Green fitting curves 

correspond to a pixel over a defect, red fitting curves correspond to a pixel on a sound area.  

 

The powers used in the fitting functions has been previously optimized using Step-Heating data acquired on 

the same sample. Results of this analysis with the fitting function “1” are reported in Fig.4 for various Step 

durations; the fitting function follows both the rise and decay parts of the curves very well. Since the best fitting 

function could depend on both the sample and the heating source power, the preliminary optimization of the 

powers should be done for each set-up.  

The results of the applications of the fitting functions to PuCT data collected by using the excitation signals 

“Single Barker” and “Barker&Step” are reported in Fig.5.  After the fitting procedure, the separate 

contributions from the coded excitation and that of the square excitation are differentiated. This is discussed 

further in Section IV in terms of SNR and quality of impulse response reconstruction.  

 
 

Fig. 5. (top) Application of the fitting procedures to typical single-pixel curves obtained with the “Single Barker” and the 

“Barker&Step” excitations: green fitting curves correspond to a pixel over a defect, red fitting curves correspond to a pixel on a 

defect-free area. (bottom) Resulting coded output signals 𝑦(𝑡) after the removal of the respective square pulse outputs 𝑦𝑆𝑄(𝑡) 
for the pixel over a defect. 



 

III.B Sidelobes minimization using a Wiener Filter 

It is important to reduce the noise level in the sidelobes in order to obtain the best estimation of the impulse 

response. To tackle this problem, one strategy is to use Wiener Filtering approach [44–46]. Fig.6 shows the 

 �̃�(𝑡) obtained using either a standard matched filter (black) and a Wiener Filter (red). While the main lobe is 

unaltered by the Wiener filter, a sidelobe suppression level of over 30dB is obtained. From a mathematical 

point of view, the use of the Wiener filter simply consists of replacing the matched filter Ψ(𝑡) with a new one, 

Ψ𝑊(𝑡), having the same phase profile in the frequency domain but a different spectrum amplitude. For the 

results reported in the next Section, we used a Wiener filter Ψ𝑊(𝑡) defined in the frequency domain as follows: 

              Ψ𝑊(𝑓) =
Ψ(𝑓)

|Ψ(𝑓)|2+𝑎+𝑏∙f
 ,                     (8) 

where 𝑎 and 𝑏 are two regularization parameters that damp the oscillations in the 𝛿(𝑡); 𝑏 penalizing high-

frequency oscillations. 

To summarize, by combining the square pulse response removal, the correct pulse-compression procedure and 

the Wiener filter, the gain provided by the use of coded excitation is optimized both in terms of SNR and 

impulse response quality. 

Figure 7 qualitatively illustrates the effect of the overall pulse compression procedure on defect detection and 

resolution by reporting a graphical comparison between thermograms collected during the application of the 

Barker code excitation and after pulse compression. The experimental set-up described in the next section was 

used to collect data and many expected features are immediately evident in the compressed thermograms: (1) 

the “compression” of the thermal response of each pixel in the time dimension; (2) the higher SNR/contrast of 

both the defects and the single pixel time-trends; (3) the resulting improved spatial resolution. 

 

 
Fig.6: Comparison between simulated 𝛿(𝑡) obtained by using the Standard matched filter approach (black) 

and Wiener filter (red). The plot on the left is in linear scale, the plot on the right is in logarithmic scale. 



 
Fig.7. Comparison between thermograms collected at different times during the application of the Barker code excitation (top) 

and thermograms retrieved after pulse compression (bottom). 

IV RESULTS 

IV.A Experimental set-up  

A sketch of the experimental set-up used is shown in Fig.8. The signal generation/acquisition was managed by 

means of a National Instrument PCI-6711 Arbitrary Waveform Generation (AWG) board and by a NI-1433 

Camera Link Frame Grubber, both connected to a central PC and managed through a custom Labview virtual 

instrument. The coded excitation was input into a power amplifier consisting on a TDK Lambda GEN 750W 

power supply that fed four 50 W LED chips placed at 30 cm from the SUT. The AWG board provided also a 

clock signal for a Xenics Onca-MWIR-InSb IR camera that acquired the thermograms. 

The carbon fiber composite laminate sample contained twelve plies of carbon fiber fabric with an areal density 

of 0200 g/m2. Its lateral dimensions were 240mm×200mm and the thickness was 2.80mm. The fibers 

orientations were 0° and 90° and the matrix was an Epoxy Resin RIM 935.The laminate was made by vacuum 

assisted resin infusion and it was cured at room temperature and postured at 110°C for two hours, in order to 

obtain a fully cured system. The artificial delaminations were realized by inserting square pieces of Teflon 

tape with lateral dimensions of 20mm×20mm and thickness equal to 75 µm between the plies. Nine artificial 

defects were inserted at increasing depths: the outer was placed under the 2nd ply at a depth 𝑑~0.46 𝑚𝑚, the 

inner under the 10th ply at a depth 𝑑~2.3 𝑚𝑚 see Figure 9.  

 

 The thermal diffusivity α of the SUT was estimated by applying an empirical law obtained for a CFRP sample 

at time t0.5: 

  







 

s

m
Vf

2
79 10*247.1*10*829.2          (9) 

where Vf is the fiber volume fraction (in our case Vf 0.5) [47]. 



 
Fig.8: Sketch of the experimental setup. The heating source consisting of 4 50 W LED chips placed at 30 cm from the SUT 

and the IR camera are synchronously driven by the signals provided by an AWG board.  The data generation and acquisition 

was controlled using LabviewTM Software. 

 

  

IV.B Comparison between the various pulse-compression procedures 

 

In this Subsection, we report a comparison between the results achieved by applying the procedures “Single 

Barker” and “Barker&Step” introduced in the previous Sections and by following the conventional “State-of-

the-art” procedure, i.e. the one with the truncated acquisition and the linear fitting for DC removal. This 

comparison aims to identify which technique assures the highest SNR and the best estimation of the pixels’ 

 
Fig.9: Detailed sketch of the SUT.  

 
Fig.10: Example of the thermal image of the sample from the 

Barker&Step sequence at the instant of maximum SNR value 

for the D7 defect. The defects were labeled from D1 to D9 

depending on the increasing depth from the inspection 

surface. 



impulse response. To fulfil this objective, we firstly located the position of each defect within the sample and 

then analyzed their corresponding impulse responses. Figure 10 shows a thermal image of the sample obtained 

after pulse compression. All the defects were visible and they were sorted according to their relative depth 

from the inspection side: D1 is the outer defect, and D9 is the inner one. For each defect, an area of 3x3 pixels 

was associated and an averaged impulse response was calculated following the three procedures (“State-of-

the-art”, “Single Barker”, “Barker&Step”).  

 

 

 
Fig.11: Defects impulse responses obtained by exploiting (left) the “State-of-the-art” procedure, (middle) the “Single Barker”, 

(right) the “Barker&Step”, for defects at increasing depth (D1 to D8). 
 

The resulting impulse responses for the defects D1-D8 are reported in Figure 11. Please note that Defect 9 

was not considered for the comparison purpose. This is because its SNR was very low. The combined 

application of (1) the polynomial fitting, (2) the full pulse-compression procedure and (3) the Wiener filter 

makes the impulse responses achieved with the “Single Barker” and “Barker&Step” procedures more regular 

than those retrieved with the “State-of-the-art”. In particular, while all the “State-of-the-art” curves exhibited 

abrupt variations and tended to have a quite similar time-behavior irrespective of the defect depth, the impulse 

responses attained by means of the “Barker&Step” are quite similar to those typically find in PT experiments, 

see fig.16, and the dependence of the signal shape from the defect depth is evident, as expected due to the 

diffusion time and the dispersive nature of the thermal phenomenon (see Subsection II.A). Larger oscillations 

were instead still present in the “Single Barker” results. We concluded therefore that the polynomial fitting 

applied to the “Barker Step” procedure optimizes removal of the square pulse response ySQ (t) among the three 

methods. Hence the mathematical noise associated to a non-perfect separation of the coded excitation response 

y(t) is minimized. 

  

To quantitatively corroborate this result, the same analysis was repeated in terms of SNR, defined as 

follows: 

𝑆𝑁𝑅𝐷𝑘 =
ℎ𝐷𝑘(𝑡) − ℎ̅(𝑡)

𝜎ℎ(𝑡)
 (10) 

where ℎ𝐷𝑘(𝑡) is the impulse response of the k-th defect averaged over the 3x3 pixel region, ℎ̅(𝑡) is the 

impulse response averaged over all the SUT area and  𝜎ℎ(𝑡) is its standard deviation. The resulting SNR 

curves for the D1-D8 defects are shown in Figure 12. 



 
Fig.12: Defects SNR time-curves obtained by exploiting (left) the “State-of-the-art” procedure, (middle) the “Single Barker”, 

(right) the “Barker&Step” for defects at increasing depth (D1 to D8). 
 

This analysis confirmed that the “Barker&Step” procedure achieved the best results among the three 

techniques analyzed: the “State-of-the-art” curves exhibited the lowest SNRs, especially for inner defects. 

Increasingly there was not a clear dependence of the maximum of the SNR on the defect depth 𝑑, which 

ideally should follow a relation like that indicated in Eq. 6 for the parameter 𝑡𝑚𝑎𝑥(𝑑). Conversely, the “Single 

Barker” and the “Barker&Step” procedures showed an enhanced defect discrimination capability in terms of 

both SNR and time of the maximum SNR, even at the cost of the increasing of measurement time (in this case 

for 25 seconds) in order to collect the decay of the coded excitation response. This last aspect is better 

illustrated in Figure 13 where the values of  𝑡𝑚𝑎𝑥(𝑑) estimated from the SNR curves for the “State-of-the-

art” and the “Barker&Step” techniques are reported. While in the former case 𝑡𝑚𝑎𝑥(𝑑) weakly depends on 

the defects depth assuming only two values for the eight defects considered, for the “Barker&Step” procedure 

an evident correlation between 𝑡𝑚𝑎𝑥(𝑑) and 𝑑 is found, see Fig.13-a. It can be seen also that for the outer 

defects (D1-D4), 𝑡𝑚𝑎𝑥(𝑑) fits well with the quadratic law reported in Eq.6. In particular, by analyzing only 

these four defects an “effective” thermal diffusivity 𝛼𝑓𝑖𝑡 = 0.088 [𝑚𝑚
2 𝑠]⁄   is retrieved, close to the expected 

one 𝛼𝑡ℎ = 0.125 [𝑚𝑚
2 𝑠]⁄ .    

 

 
Fig.13:  Values of time of the maximum SNR  tmax(d) estimated from the SNR curves for the “State-of-the-art” and the 

“Barker&Step” techniques are reported. the “Barker&Step” technique showed an enhanced defect discrimination capability in 

terms of time of the maximum SNR (Left). For the outer defects (D1-D4), the  tmax(d)  trend fits well with the quadratic law 

reported in Eq.6 (Right) .  



 

 

IV.C Comparison between pulse-compression and pulsed thermography 

 

To corroborate the results reported in the previous section, a comparison between PuCT and PT has been 

executed. Conventional PT data were collected on the same composite sample by using a pair of high-energy 

flash lamps with a total energy of 6 [𝑘𝐽] (Hensel EH Pro 6000 flash system), placed at ~ 40 [𝑐𝑚] from the 

sample surface. Thermograms were acquired at 100 Hz for 25 seconds by means of a FLIR SC7000 camera, 

equipped with a 3-5µm InSb sensor with a resolution of 512x640 pixels. Some basic image processing was 

applied (time and 2D spatial smooth to remove high frequency noise components). This system was chosen 

to obtain a similar total heating energy for both PT and PuCT “Barker&Step” cases. While PT provides 6 kJ, 
the PuCT energy consists in this case of the sum of two terms: the energy of the modulated Barker excitation 

plus the energy of the square pulse.  The peak power during coded excitation is equal to 200 W and the power 

of the square pulse is fixed to 100 W. By using a 13-bit Barker code (𝐵[ ] = {1,1,1,1,1,0,0,1,1,0,1,0,1}) with 

a single bit duration 𝑇𝑏𝑖𝑡 = 2 [𝑠], the resulting coded excitation lasts 26 [𝑠] with a total energy equal to 

3.6 [𝑘𝐽]. By assuming 𝑇ℎ = 25 [𝑠], the energy of the step is 2.5 [𝑘𝐽],  for a total energy of 6.1 [𝑘𝐽]. So, 

although a precise comparison is not possible since the two light sources and the respective set-ups are 

different, the heating energy is roughly equal for the PT and the PuCT “Barker&Step” method. Note also that 

in the “Single Barker” case the heating energy is only 3.6 [𝑘𝐽], and it should be also considered that the square 

response is removed leading to a minor effective coded energy and to a further information to be processed. 

Nevertheless, an accurate comparison between PT and PuCT in terms of heating energy lies beyond the scope 

of this article. The goal here is to verify how close are the results of the proposed PuCT procedure to that of 

the PT technique.  

 

Analogously to Fig. 10, Fig. 14 shows the thermogram obtained with PT at the instant of maximum SNR 

value for the D7 defect.  In Fig.15 the defects’ impulse responses and the corresponding SNR time curves 

measured with the PT set-up are reported and compared with those retrieved by applying PuC to the 

Barker&Step data, see Figs. 11,12. The PT and the PuCT results are in very good agreement both in terms of 

image quality and SNR. 

 

 
Fig.14: Example of the thermal image (512x640 pixels) of the SUT from the 6 kJ Pulsed Thermography sequence at the instant 

of maximum SNR value for the D7 defect. The defects were labeled from D1 to D9 depending on the increasing depth from 

the inspection surface. 

 



 
Fig.15:  Comparison of conventional (left) 6kJ pulsed thermography and PuCT (right) exploiting the “Barker&Step” procedure. 

Top: Defects impulse responses for defects at increasing depth (D1 to D8). Bottom: Defects SNR time-curves obtained for the 

same defects. 
 

In the PuCT time trends some effect of the PuC sidelobes is seen, but at the same time the SNR is higher than 

for the PT case for deep defects. Of the three PuCT approaches considered, the “Barker & Step” results are 

the most similar to those of PT.  

 

CONCLUSIONS 

In this paper the application of the pulse compression technique to active thermographic NDE is analyzed 

both theoretically and experimentally and three different measurement procedures are compared. Some 

strategies capable of improving the performance of the pulse-compression active thermography with respect 

to the state-of-the-art techniques are introduced and the experimental results reported demonstrate the gain 

provided by such procedures. The optimization of the fitting function for the selection of the correct coded 

excitation output, together with the application of both a suitable pulse compression algorithm and of a Wiener 

filter for sidelobe suppression, allows the thermal impulse response of the sample under inspection to be 

reconstructed with an improved SNR and enhanced fidelity. Hence, both the defect detection and the defect 

characterization tasks exhibit better performance than with the standard procedure. The optimized pulse-

compression procedure is also compared with pulsed thermography, showing a good agreement between the 



results obtained with the two different approaches. In perspective, pulse compression thermography can be 

further improved by using coded excitations with an arbitrary power spectrum to increase the SNR of the 

deepest defects [35,48] and by reducing even more the sidelobes.  
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