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Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two
dimensions. In the steady state, the trajectories of single protons andproton pairs are studied, at different values
of plasma β (ratio between kinetic and magnetic pressure). For single-particle displacements, results are
consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very
long times, with higher β’s being more diffusive. In an intermediate time range, with separations lying in the
inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction.
These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical
and laboratory plasmas, where turbulence is crucial for heating, mixing, and acceleration processes.
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The motion of particles in complex fields has been one of
the most fascinating problems in physics, with interdisci-
plinary applications that span from hydrodynamics to
astrophysical plasmas. The study of Lagrangian tracers is
complementary to the theory of turbulence [1], wherein
individual tracers undergo a randommotion, asymptotically
approaching the diffusive Brownian behavior [2]. The
relative motion of a pair of tracers is a different and more
subtle problem, as the growth of separation may reflect
turbulent correlations [3]. Both individual and pair particle
transport are of great importance in applications ranging
from laboratory plasmas [4,5] to magnetic field wandering
and tangling in the Galaxy [6–8], corona [9], and interplan-
etary medium [10,11]. Often discussed in the purely
diffusive limit, these varieties of transport may also fre-
quently display nondiffusive (superdiffusive or subdiffu-
sive) behavior (e.g., [12]). These subjects have been studied
mainly in the test-particle approximation, appropriate, for
example, in describing high-energy cosmic rays [13].
When the transported particles are elements of the

thermal plasma [4,14], the distribution is often taken as
an equilibrium Maxwellian. In this context, test particles
and passive tracers in magnetohydrodynamics (MHD) have
been of interest [10,15–17]. However, for low collisonality
plasmas, where kinetic effects typically generate strong
departures from thermal Maxwellian equilibria [18], one
should treat the transport problem self-consistently. We
present the first results on this fundamental topic in the
present Letter.
In the case of stationary random motion, a single fluid

element at position xðtÞ and velocity vðtÞ has a finite
autocorrelation time (or Lagrangian integral time)

τl ¼ 1

hvðt0Þ2i
Z

∞

0

hvðt0Þ · vðt0 þ τÞidτ ¼ Ds

hv2i ; ð1Þ

where the ensemble h•i has been computed over a large
number of realizations, positions, and times and Ds is the
diffusion coefficient. The mean square displacement of
Δs ¼ xðt0 þ τÞ − xðt0Þ, in the limit of τ ≫ τl, obeys

hΔs2i ¼ 2Dsτ: ð2Þ
The above represents the long-time limit diffusive behavior,
typical of Brownian motion. In the opposite limit, τ → 0, in
the so-called dissipative range, particles conform to bal-
listic transport, governed by hΔs2i ∼ τ2 [19,20].
Together with the asymptotic behavior of single-particle

motion, it is interesting to consider the motion of two
particles, as done by Richardson [3]. In this pioneering
work, it was predicted that, at intermediate separations, the
inner-particle distance r2 ≡ jr1;2j2 ¼ jx1ðτÞ − x2ðτÞj2 is
superdiffusive in time. Averaging over time and volume,
it is observed that

hr2i ∼ τ3: ð3Þ
This motion is very rapid, explosive in time, and related to
the mixing properties of a turbulent field. Richardson
obtained this law from basic principles, computing solu-
tions to the particle-pair probability distribution and using
hints from observations. Note that this work has been a
precursor of the Kolmogorov theory of turbulence and here
will be applied to kinetic self-consistent models of plasmas.
Single-particle displacement and pair dispersion are here

investigated in plasmas, using self-consistent kinetic mod-
els of turbulence [21–23]. We study the motion of the
plasma particles themselves, represented by elements of
the proton distribution function, in the phase space given by
the position and velocity. We will emphasize a novel study
of the particle statistics in a collisionless plasma, in a driven
turbulent state, for different plasma parameters.
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Driven simulations of the hybrid-particle-in-cell model
(kinetic ions and fluid electrons) have been performed (ions
hereafter are intended to be protons), in a 2.5D geometry,
solving [24,25]

∂x
∂t ¼ v;

∂v
∂t ¼ Eþ v × B;

∂B
∂t ¼ −∇ × E ¼ ∇ ×

�
u × B −

1

ρ
j × Bþ 1

ρ
∇Pe − ηj

�
;

ð4Þ
where x are the proton positions and v their velocities, B ¼
bþ B0ẑ is the total (solenoidal) magnetic field, j ¼ ∇ × B
is the current density, and ρ and u represent the proton
(electron) density and the proton bulk velocity, respectively.
Electron pressure Pe is adiabatic, with βe ¼ βp ¼ β, and a
small resistivity η suppresses small grid-scale activity.
Space is normalized to the proton skin depth dp, time
with the proton cyclotron frequency Ωcp, velocities to the
thermal speed vth, and magnetic field with an Alfvèn speed
of the mean magnetic field B0. A spatial grid of Nx × Ny ¼
5122 mesh points is defined in a periodic box of side
L0 ¼ 128dp. A large number (1500) of particles per cell
has been chosen to suppress the statistical noise. Three
values of plasma β (thermal or magnetic pressure) are
chosen, as reported in Table I. The initial fluctuations are
chosen with random phases and with the Fourier modes
satisfying 3 ≤ m ≤ 7, where the k vector is defined as
k ¼ ð2π=128dpÞm. Fluctuations have brms ¼ vrms ¼ 0.5,
with B0 ¼ 1. Proton heating in low-noise simulations is
moderate [23], and the value of the effective β at the end of
each simulation is increased by ∼12%.
To achieve steady state turbulence in a plasma, we

borrow ideas from hydrodynamics [26–28]. We initially
let the system decay freely, and then we introduce a forcing
at the peak of nonlinearity t⋆ (roughly the peak of hj2zi
[29]), with t⋆ ∼ 25Ω−1

cp . The forcing consists of “freezing”
the amplitude of the large-scale modes of the in-plane
magnetic field, with 1 ≤ m ≤ 4, leaving the phases
unchanged. This corresponds to a large-scale input of
energy. We perform the analysis described below when
a steady state has been achieved, for 50 < tΩcp < 250.
To characterize turbulence, we computed the second-

order structure function of the magnetic field SbðδÞ ¼
h½bðxþ δ; tÞ − bðx; tÞ�2iV;T , where h•iV;T represents a

double average over the volume and time. Positions x
and increments δ are in the ðx; yÞ plane. For an isotropic
inertial range of turbulence,

SbðδÞ ∼ δγ: ð5Þ

As reported in Fig. 1, the structure functionmanifests a clear
self-similar range. Fitting with Eq. (5), we find that γ is quite
close to unity, as reported in Table I. Note that, in classical
3D hydrodynamic turbulence at a large Reynolds number,
γ ¼ 2=3, corresponding to the celebrated Kolmogorov law
[1]. In plasmas the case is more complex, and it can depend
on other factors, such as compressibility, dimensionality,
and anisotropy, as well as the effective Reynolds numbers.
Note, however, that observations and simulations suggest
nonuniversality of the plasma turbulence [30,31].
We computed the autocorrelation function CbðδÞ ¼

hbðxþ δ; tÞ · bðx; tÞiV;T and the autocorrelation length as

λC ¼ R L0=2
0 CbðqÞdq. For these simulations λC ∼ 9dp, which

provides a large-scale bound to Eq. (5). Analogously, one
might identify the small-scale termination of the inertial
range approximately as the Taylor microscale, which in our
case is λT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2i=hj2i

p
∼ 1.5dp. From Fig. 1, Eq. (5)

holds for λT < δ < λC. It is interesting to note that, at the
highest β (run III), a slightly shorter inertial range is
observed, with an higher value of γ. This is possibly due
to a higher damping of the Alfvénic and magnetosonic
activity.
We analyzed a subset of Np randomly selected particles,

represented by particle-in-cell pseudoparticles, with
Np ¼ 105. Convergence tests have been performed varying
Np from 5 × 104 to Np ¼ 2 × 105 showing no significant
difference. The space-time trajectories of some “puffs” of
particles, located at different (randomly selected) regions,
are reported in Fig. 2. In the same plot, shaded contours
report jz at tΩcp ∼ 50 and 250. Particle bunches spread
explosively in time, with a very fast departure in the first
10–30 cyclotron times. The inset shows the initial

TABLE I. Plasma β; structure function exponent γ; Lagrangian
integral times (τl and τlg, in units of Ω−1

cp ); diffusion coefficient

Ds and its expectation DðaÞ
s ; pair-dispersion exponent μ and pair-

diffusion coefficient χ0.

β γ τl τlg Ds DðaÞ
s μ χ0

Run I 0.1 1.07 11 22 2.66 2.56 1.97 0.11
Run II 0.5 1.07 5 17 2.77 2.65 1.99 0.15
Run III 5.0 1.21 1 7 3.64 3.64 1.80 0.47
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 Run II

Run III
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FIG. 1. Structure function of the magnetic field as a function of
the spatial increment δ, for all the runs. Solid (green) and dashed
(blue) lines represent the fit with Eq. (5), for run II and III,
respectively. Exponents γ are given in Table I.
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spreading of the central puff, together with some of the
trajectories of the associated gyrocenters. Gyrocenter posi-
tions have been computed as xgðtÞ ¼ ð1=TÞ R tþT=2

t−T=2 xðt0Þdt0,
using the gyroperiod T ¼ 2πΩ−1

cp . The initial separation
suggests a superdiffusive behavior, while at very long times
the motion seems to be uncorrelated and erratic.
Trajectories vary greatly: Some remain near the origin;
others experience long flights; some rapidly change direc-
tion. These differences may reveal interesting correlations
between particles and local structures [11,32–34] and will
be a matter for future investigations. As mentioned above,
some trajectories are similar to test particles in MHD or
model fields [35].
To understand the ergodic motion in Fig. 2, we analyzed

single-particle statistics. We computed the Lagrangian cor-
relation times defined by Eq. (1), for both particles xðtÞ and
gyrocenters xgðtÞ. These correlation times τl and τlg,
reported in Table I for all runs, are larger than the cyclotron
time and depend on the value of β, being much smaller for
higher β’s. This faster decorrelation is evidently due to the
higher plasma thermal noise, which decorrelates the motion
earlier. The gyrocenters have longer decorrelation times.
To establish the link between plasma particles and fluid

tracers, we analyzed the single-particle displacement
hΔs2i. Here brackets indicate again an average over
particles and times. Following Eq. (2), one can compute
the running diffusion coefficient asDs ¼ 1

2
ð∂hΔs2i=∂τÞ. If

the displacement is stochastic, for times τ ≫ τl,

Ds → const. On the contrary, for τ → 0, hΔs2i ∼ τ2, typical
of ballistic transport. As reported in Fig. 3, hΔs2i behaves
asymptotically as ∼τ. The horizontal lines indicating Ds
computed as a fit for very large times, namely,
τ > 90Ω−1

cp ≫ τl. This value can be compared with the

asymptotic coefficient, computed from Eq. (1) as DðaÞ
s ¼R

∞
0 hvðt0Þ · vðt0 þ τÞidτ. As can be seen, from Fig. 3 and
Table I, the long-time diffusive limit is evident [4,36]. As
expected from the Lagrangian correlation time estimation,
plasmas with higher β (run III) are more diffusive, with the
decorrelation being faster, due to the enhanced importance
of fast microscopic particle speeds. (Note that the typical
oscillation of running diffusion coefficients, commonly
observed in test-particle studies, has a period on the order
of the cyclotron time.) In the inset in Fig. 3, the mean
square displacement is shown at earlier times, for run II (all
the runs have similar behavior, not shown here). It is
evident that the Batchelor regime, where ∼τ2 [20], is
observed for τ < 1.7Ω−1

cp ≪ τl.
For times on the order of τl and τlg, an interesting

transient is observed, resembling the superdiffusive behav-
ior typical of fluids. These time ranges correspond to the
fast dispersive motion observed in Fig. 2. We study the
temporal behavior of gyrocenter distances rðτÞ (in order to
avoid the trivial particle gyroperiod), randomly selected in
our system, where the initial separation r0 has been chosen
to be sufficiently small. In ordinary fluids, in order to
capture inertial range superdiffusion, this separation must
fall in the dissipative length scales. In our case, we chose
r0 ¼ 0.2dp, which falls in the secondary (dissipative)
range, as can be observed from Figs. 1–3. Note that results
do not depend on this choice for 0.1 < r0d−1p < 0.5 (not
shown here). In analogy with the single diffusion analysis,
we computed the mean squared perpendicular particle-pair
separation hr2iðτÞ, reported in Fig. 4(a). After an initial

FIG. 2. Puffs of particles as a function of time, starting from the
steady state, located at different regions of 2D plasma turbulence.
jz is shown at two times, tΩcp ¼ 50 and 250 (shaded surfaces).
The inset shows the initial spreading of a population (small subset),
up to tΩcp ∼ 75 (small spheres), together with the position of some
gyrocenters (big spheres). Explosive dispersion is observed.
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FIG. 3. Running diffusion coefficients 1
2
ð∂hΔs2i=∂τÞ for all the

runs. Stars indicate Ds, computed as a fit for very large times
τΩcp > 90. The inset shows the mean square displacement hΔs2i
in the very initial stage (run II).
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transient, the mean square separation manifests a self-
similar law, with hr2i ∼ τμ. The index slightly depends on
the plasma beta and is between 1.8 and 2 (see Table I).
Figure 4(a) also indicates that, after the typical separation

exceeds the correlation scale λc, normal diffusive behavior
is established. Analogously, the lower boundary is given
by the dispersive-dissipative length, here on the order of
the proton skin depth dp. The vertical arrows represents the
characteristic Lagrangian times τlg, indicating that the
diffusive scaling law for plasmas appears on time scales
on the order of this decorrelation mechanism. Diffusive
asymptotic behavior is observed at very large times. Lower
β’s show a more clear superdiffusive dispersion, while at
higher β particles are less sensitive to the E ×B inertial
range, which narrows the range of superdiffusion. It is
evident that the temporal behavior is “slower” than the
hydrodynamic law in Eq. (3), and this apparent difference
will be explained as follows.

In analogy with the Richardson work [3], and since an
exact scaling law for compressible anisotropic Vlasov
plasmas has not yet been formulated, we will study
Pðr; τÞ, namely, the probability that particles are separated
by a distance r, at a time τ. Richardson indeed hypothesized
that the probability satisfies [3,37]

∂Pðr; τÞ
∂τ ¼ 1

r
∂
∂r

�
rχðrÞ ∂Pðr; τÞ∂r

�
;

χðrÞ ¼ χ0r2−γ: ð6Þ
Here χðrÞ is a scale-dependent eddy diffusivity due to
turbulence, and in regular fluids, if the Kolmogorov law is
observed, χðrÞ ∼ r4=3. In analogy with his intuition, we
infer χðrÞ in Eq. (6) using the exponent in Eq. (5), as
suggested by Balkovsky and Lebedev [37]. Given an initial
condition Pðr; τ ¼ 0Þ ¼ δðr − r0Þ, and

R
Pðr; τÞrdr ¼ 1,

Eq. (6) admits a general solution [37]:

Pðr; τÞ ¼ A

ðχ0γ2τÞ2=γ
e−r

γ=ðχ0γ2τÞ ≡ P0ðτÞe−rγ=ðχ0γ2τÞ: ð7Þ

The above is a solution for r sufficiently larger than r0, for
separation times which correspond to inertial range length
scales and where γ is again the exponent of the second-
order structure function. In Fig. 4(b), Pðr; τÞ is shown, for
run II (all runs have similar results), together with Eq. (7).
The latter have been fitted varying A and keeping the same
χ0 over for all the inertial range times. As can be seen, the
distribution describes very well the pair dispersion mecha-
nism. In the inset in Fig. 4(b), the normalized Pðr; τÞ are
reported, rescaling the distribution in time according to
Eq. (7). The generalized law is clearly observed for
intermediate times, while it is less robust for τ ∼ 26Ω−1

cp,
where hr2i approaches λ2C [compare panels (a) and (b)].
Finally, computing moments of Eq. (7),

hrμγi ∼ τμ; ð8Þ
which gives μ ¼ 2=γ. The latter expectation is μ ∼ 1.87 for
runs I and II and ∼1.65 for run III. These values are in
agreement with the fits of Fig. 4(a) (see Table I).
Complex diffusive processes have been investigated in

2D plasma turbulence. In particular, using self-consistent
simulations of a hybrid-Vlasov plasma, particle diffusion
problems have been investigated. Moderately high-reso-
lution simulations have been driven for very long times, in
order to resolve both short and very long asymptotic
behaviors. The plasma β has been varied in order to
identify the role of the thermal disturbances to the diffusive
processes. Particle trajectory show a very interesting and
complex behavior, being similar both to a random walk of
magnetic field lines and to test particles in non-self-
consistent models of magnetic fields in plasmas [13]. In
agreement with fluids, the Lagrangian integral time scale τl
plays an important role: For times much longer than τl, a
classical diffusive behavior is observed, with diffusion
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FIG. 4. (a) Mean squared gyrocenter separation as a function of
time. Inertial range fits ∼τμ are reported (black dashed lines) (see
Table I for μ). The horizontal (orange) dotted line represents λC,
while arrows indicate τlg. (b) Particle separation probability
Pðr; τÞ as a function of r, at different τ. Results are shown for the
intermediate β (run II) but are similar for all the runs. The
Richardson fit is reported with dashed (black) lines. Inset in (b):
Rescaled Pðr; τÞ for the same times (symbols) and Richardson
expectation (−rγ) (dashed line). The generalized law is clearly
observed for t ∼ τlg, being lost when t ≫ τlg (red triangles).
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quantitatively proportional to the plasma beta and τl
inversely proportional to β. For τ ≪ τl, the particle free-
streaming behavior is observed.
For intermediate time scales (τ ∼ τl) and for inertial range

separations, particles (and their gyrocenters) undergo super-
diffusion, separating very quickly in time according to
Eqs. (6)–(8). The analysis of the probability Pðr; tÞ reveals
that dispersion is in agreementwith a generalizedRichardson
law, depending on the exponent of the spectral index (or the
exponent of the second-order structure function). The mean
square displacement shows superdiffusive behavior, defined
by Eq. (8), where μ is related to the fluctuation scaling.
Results are less pronounced for higher β, where evidently the
thermal motion dominates the dispersion and the properties
of the inertial range are less influential.
Space plasma observations and theories suggest than

many effects influence the turbulent fluctuations [31,38],
going from strong to weak turbulent regimes. The solutions
described by the present numerical experiments, although
having been verified here only in a few regimes, indicate for
the first time that plasma particles may exhibit a generalized
Richardson diffusion. The detailed results vary with the
parameters; e.g., for Kolmogorov scaling, Eq. (8) would
predict μ ∼ 3, while for Iroshnikov-Kraichnan spectra it
would predict μ ∼ 4. When this effect is present, bunches of
particles undergo a very fast and effective mixing, with the
duration of this extraordinary separation being related to
the properties of turbulence. The present results must be
viewed as a demonstration rather than a universal result,
given that, despite covering a wide range of plasma β, the
simulations are restricted to a particular driver, turbulence
level, and 2D. Future work will extend the above param-
eters and explore the role of dimensionality. In 3D, for
example, the eddy diffusivity in Eq. (6) may display an
anisotropic character, leading to further variations in the
Richardson solutions.
This qualitative picture suggests that on the solar corona,

for example, where more than 4 decades of turbulence are
expected, two particles starting at about a proton skin depth
will depart very quickly, reaching coronal arch size very
quickly. A similar behavior can be observed, in general, in
any space and laboratory plasma, where turbulence can be
therefore crucial for heating and acceleration processes.
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