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Abstract

This article proposes an approach to modelling and analysis of distributed
probabilistic timed actors. The approach rests on a lightweight infrastruc-
ture of actors -Theatre- whose design aims to favoring the development
of predictable time-dependent applications. Adopted actors are thread-less
and their evolution is transparently regulated by a customizable control layer
which has a reflective link with the application. A Theatre system con-
sists of a collection of interacting computing nodes (theatres) each one host-
ing a sub system of local actors. The control layers of the various theatre
components coordinate each other so as to enforce a common global time
notion (real or simulated time). The abstract Theatre modelling language
can be reduced in a case to Uppaal, which opens to the analysis of the
functional/non-functional aspects of a distributed system. A key factor of the
reduction process concerns the possibility of making both a non-deterministic
analysis of an actor model (checking that something, e.g., an event, can oc-
cur), and a quantitative evaluation of system behavior by statistical model
checking of the same model (e.g., estimating the probability for an event
to occur). The paper describes the Theatre architecture and introduces
a real-time case study which is used as a running example throughout the
paper. The operational semantics of Theatre is provided and the proposed
reduction of Theatre actors on top of Uppaal detailed through the cho-
sen example. Some experimental results are reported about qualitative and
quantitative analysis of the case study. Finally, conclusions are presented
with an indication of further work.

Keywords: Modelling and verification, model checking, statistical model
checking, actors, asynchronous message passing, timing constraints,
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probabilistic behavior, Uppaal.

1. Introduction

The work described in this paper is concerned with a model-driven method-
ology for the development of distributed real-time systems such as cyber-
physical systems [1, 2]. Ensuring the correctness of such systems is chal-
lenging and strongly depends on the use of formal tools for modelling and
analyzing the system behavior earlier in a design, so as to assess the fulfill-
ment of functional and temporal requirements.
The starting point of the methodology is the Actors computational model [3]
which is a well-known formal framework [4] suited for modeling and imple-
mentation of untimed distributed systems based on asynchronous message
passing. Each actor exposes a message interface and hides an internal data
status which can only be modified by responding to messages. Incoming
messages get buffered into a local mailbox of the actor, from where they
are extracted, one at a time, by an underlying control thread of the actor,
and eventually processed. Being not based on shared variables and associ-
ated lock mechanisms for excluding data races, the actor concurrent model
is intrinsically less incline to common pitfalls of classical multi-threaded pro-
gramming [5]. However, problems are tied to message delivery to actors which
can follow complex interleaving, whose consequences on system behavior are
required to be predicted before of an implementation. Non-deterministic be-
havior of threaded actors makes them less suited to a time-sensitive context
such as real-time, whose essence is predictability [6], or discrete-event simu-
lation which requires high-performance execution [7]. For example, achieving
a simulation control engine with threaded actors typically implies the simu-
lation engine (that is a specialized actor) delivers a message to an applicative
actor and needs an explicit message back from the activated actor to witness
message processing was completed thus the engine can possibly advance the
simulated time and proceed with the next message delivery and so forth. All
of this introduces an obvious overhead at each message (event) occurrence.
In the last years many efforts and tools have emerged addressing specifically
the modelling and analysis of distributed timed, possibly probabilistic, actors.
A significant state-of-the-art example is represented by the Rebeca modelling
language [8] along with its probabilistic and timed extension (PTRebeca) [9].
Rebeca represents an interpretation of the classical actors model [3], formally
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defined through a structural operational semantics [9]. Different tools were
implemented for the analysis of both functional and temporal behavior of a
system. Analysis tools are based on a preliminary translation of a PTRebeca
model into the terms, e.g., of a Timed Markov Decision Process (TMDP)
and its properties studied using the PRISM model checker [10] or the IMCA
(Interactive Markov Chain Analyzer) [11], or targeting the model to Erlang
with the timed McErlang tool [12] used for model checking or, to avoid state
explosion problems, by statistical model checking activities [13]. Despite
their value, these efforts lack, in our opinion, of an effective link to the im-
plementation phase of a system.
The work described in this paper claims that a full model-driven methodol-
ogy can be established by using lightweight (thread-less) actors in a reflective
control-sensitive framework [14] which clearly separates application concerns
from crosscutting control aspects affecting message scheduling and dispatch-
ing. The adopted actor framework is named Theatre. A system consists of
a collection of computing nodes (logical processes, LPs, or theatres) where
each theatre hosts a subset of applicative actors plus a (transparent) control
structure. The control structure can be tailored to the application needs
and can manage a specific time notion (simulated or real-time). The entire
system life-cycle is addressed: a same model can be transitioned without
distortions (model continuity [2]) from the analysis phase based on model
checking and/or simulation, down to design and real implementation in Java.
The overall process mainly depends, at each phase, on a different concretiza-
tion of message processing and on the replacement of the regulating control
structure.
The Theatre actor framework was recently successfully applied, e.g., to
the performance evaluation of a new version of the minority game [15], to
the real-time control of power management in a smart micro grid [2], to the
support of modelling and analysis of general complex multi-agent systems
[16, 17]. A library of prototyped control forms can be found in [14, 18], and
includes controls for distributed simulation and distributed real-time oper-
ation where a time server is used to orchestrate the various theatres thus
homogenizing the local times through the achievement of a common global
reference time for the theatres.
A side benefit of the adopted control-based actor framework relates to the
possibility of customizing also the programming style. For example, in [14]
the actor behavior, which in general follows the pattern of a finite state ma-
chine, is captured in one single handler() method which receives the next

3



message and updates the actor status and possibly sends new messages to
acquaintances.
In this paper, following the PTRebeca [9] approach, a more intuitive and
readable programming style is advocated, where messages are handled by
corresponding message server methods, which are reflectively activated by
the control engine. All of this corresponds to the design and realization of
new specific control forms (see Section 7) inspired by the timing model of
PTRebeca. The goal is to capture the PTRebeca programming and timing
model into the terms of our control-based and time-predictable actor frame-
work.
The original contribution of this paper consists in tailoring the abstract mod-
elling language of Theatre according to PTRebeca, providing its formal op-
erational semantics, and defining a reduction of a Theatre model into the
terms of the Timed Automata [19] of the Uppaal popular toolbox [20, 21]
so as to support, for a same model, both qualitative non deterministic analy-
sis through the exhaustive model checker, and quantitative simulation-based
analysis through the Statistical Model Checker [22] [21]. Current paper sig-
nificantly extends the preliminary experience described in [23] where only
statistical model checking activities were enabled. A major difference from
[23] consists in the replacement of dynamic message templates [21] which
were used to model message exchanges among actors, with a statically di-
mensioned pool of message automata, which are dynamically activated and,
after their dispatch, are reset so as to be reused again. In addition, the new
message TA more faithfully reproduces the timing model of PTRebeca (see
later in this paper).
The paper is structured as follows. The next section describes some related
work. Then the basic concepts of Theatre, related to both the “in-the-
large” (architectural view) and the “in-the-small” (application view) aspects
are discussed. After that the abstract modelling syntax of Theatre is fur-
nished together with a real-time modelling example which is used as a case
study throughout the paper. The paper goes on by presenting a formal struc-
tural operational semantics for Theatre. After that the proposed reduction
process of Theatre onto the timed automata of Uppaal is presented, using
the modelling example to clarify the transformation details. Then the paper
illustrates the analysis activities which can be carried out on a reduced model,
by focusing both on the non-deterministic analysis (model checking) and the
quantitative analysis (statistical model checking) of the chosen case study,
also considering the partitioning concerns. After that the paper discusses

4



the implementation status of Theatre and some methodological guidelines.
Finally, the conclusions are presented together with direction of further work.

2. Related Work

The actors paradigm suited to general untimed distributed and asyn-
chronous systems was originally developed by C. Hewitt in [24] as an agent-
based language. The computational model was then refined by Agha in [3]
as a formal language where the actor is the fundamental unit to express a
concurrent/distributed computation. Examples of popular actor frameworks
include Scala [25] and Erlang [26] which can be used for the development of
general-purpose distributed applications.
Actors were first extended toward real-time system requirements through the
RTSynchronizer abstraction mechanism [27] which declaratively captures the
interaction patterns existing in group of actors. An RTSynchronizer filters
exchanged messages in a group of actors and manages them according to the
“safe progress, unsafe block” semantics: if a message cannot be delivered for
a timing issue, it will be kept pending in the synchronizer; otherwise the
message is allowed to be consigned to its relevant actor. The aim of an RT-
Synchronizer is to fulfill actor timing constraints.
A framework for the schedulability analysis of distributed real-time actor
systems modelled by Colored Petri Nets was proposed in [28] which is based
on the RTSynchronizer concept. RTSynchronizers were also exploited in [29]
for designing and implementing a Time Warp synchronization mechanism [7]
adequate for high performance networked simulations.
The RTSynchronizer mechanism was specialized in [30] where QoS synchro-
nizers are introduced for controlling and enforcing quality of service to a
multimedia application. A similar experience was pursed in [31, 32] using
the actor model described in [28].
A real-time actor language was proposed in [33] where each message send
can have a release time and a deadline which are relative times measured
from the activation time of the method raising the send operation. The two
time quantities respectively express the earliest and the latest times con-
straining the delivery of the message to its recipient actor. Timed Rebeca [9]
uses similar time requirements (see also later in this paper), called after and
deadline. It is intended that the message cannot be delivered before after
time units are elapsed, and should be dispatched before deadline time units
are elapsed. Timed Rebeca also allows to specify an expected duration of a

5



message processing by a delay operation.
The control-sensitive actor-based architecture described in [14] enables mes-
sages to be time-stamped by their due delivery time. Assessing/enforcing
timing constraints rests the responsibility of a customizable control structure
whose operation follows the semantics of the RTSynchronizer mechanism.
The above mentioned literature of timed actors is exploited in the work de-
scribed in this paper where the Rebeca timing model and programming style
[9] is embedded in the Theatre architecture which favors time predictabil-
ity in distributed timed actors. Theatre is described in the next section.
The goal is supporting in a seamless way modelling, analysis and imple-
mentation (in Java) of a distributed (possibly probabilistic) real-time actor
system. Similar goals are advocated, in the context of Rebeca, by Marjan
Sirjani in a recent paper [34] where the concept of friendliness as a synthesis
of usability and faithfulness is recommended. Usability refers to the easy of
use of a modelling language for the modeller working on a domain specific
application. Faithfulness, instead, is concerned with the degree with which
a design/implementation strictly obeys to the analyzed model.
The analysis phase of a Theatre model can conveniently exploit the Timed
Automata [19] in the context of the popular Uppaal toolbox [20]. First the
model checker of Uppaal can be used for exhaustive, qualitative evaluation
of an actor model. All of this is challenging due, e.g., to the asynchronous
message passing communication model which implies buffering of messages
and then the risk for the state graph to easily end into a state explosion. State
explosions are avoided by the use of the statistical model checker (SMC) of
Uppaal [21] which does not build the model state graph and uses instead
simulation runs whose memory demand are linear with the model size. The
SMC permits a quantitative property checking of system behavior, which in
any case is of great value from the engineering practical point of view.
The reflective control architecture of Theatre can be related to the Ptolemy
approach [35]. Ptolemy is characterized by its flexibility in supporting differ-
ent models of computation in actor-based applications. In a case, Ptolemy
offers a lightweight, not thread-based, notion of actors where the exchange
of messages is asynchronous and where a Director (similarly to the concept
of control machine in Theatre as described in this paper) can supervise
the actual delivery of messages to actors. The Ptolemy toolbox features an
extensive set of tools for the analysis and synthesis of a modelled system.
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3. THEATRE concepts

3.1. Architectural view

A Theatre system (see also Fig. 1) consists of a collection of interacting
theatres (logical processes or LPs) each allocated for execution onto a com-
puting node (a core or a JVM instance). A theatre hosts an application layer
populated by a subsystem of local actors, a control layer which provides to
local actors the basic services of message scheduling and dispatching, and a
network layer which interfaces the theatre with its peers using a communi-
cation network and a reliable transport layer.
The control layer is realized by a control machine component which has

Control 
layer

Time notion

Control Machine
Scheduling & Dispatching

Subsystem of actors

theatre#1 (LP/JVM)

Control Machine
Scheduling & Dispatching

Subsystem of actors

theatre#n (LP/JVM)

Msgs

Actors

Comms network (e.g. Internet)

…

TimeServer

App layer
send

dispatch
msgs

Figure 1: A Theatre system

a reflective link with the application layer and regulates its behaviour in a
transparent manner: each message send is first captured by the control ma-
chine and put in a cloud of sent but not yet dispatched messages. Major
responsibilities of a control machine are the management of the cloud of sent
messages and of a particular time notion (real time or simulated time). A
control machine repeats a basic control loop. At each iteration, a message
is selected, if there are any, in the cloud of messages, possibly according to
an application dependent strategy, and dispatched to its destination actor.
The control machine is founded on the macro-step semantics of messages
[36]. Only one message at a time, in a theatre, can be dispatched and pro-
cessed by its recipient actor. When the message processing is completed, the
control loop is re-entered and the story continues. Therefore, a cooperative
concurrency schema, determined by message interleaving, is ensured within
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a same theatre. Actors can instead be executed in parallel if they belong to
distinct theatres allocated, e.g., on different physical CPUs.
The transport layer can be directly based on TCP sockets (see section 7).
However, other solutions were experimented as well. For example, in [14, 2]
the JADE agent infrastructure [37] was used as a middleware providing nam-
ing, messaging and network services; in [38] the Terracotta services were ex-
ploited, in [39] the Globus middleware was used etc.
A Theatre system (see Fig. 1) can admit a time server (allocated to a
given theatre) which is in charge of managing a global time notion, e.g., the
common “real time” in a cyber-physical system, of the global simulation time
in a distributed simulation. A suitable protocol is defined among the theatres
and the time server for the exchange of control information.
As a final remark, it should be noted that the Theatre architecture can
logically reproduce the classical Actors model [3] by allocating one actor per
theatre.

3.2. Abstract modelling language

In the following, the “in-the-small” modelling aspects of Theatre actors
are tailored according to the PTRebeca modelling style [9]. In Fig. 2 it is
shown the assumed abstract modelling language.
Theatres are abstracted as processing units pu1, pu2, . . . , puN each one host-
ing a disjoint set of actors. The meta symbols < · · · > embody a block of
elements, | denotes alternatives, [. . . ] envelop an optional text, superscripts
+ and ∗ respectively mean repetition of the left symbol one or more times,
and zero or more times. Furthermore, the notation < e >∗ or < e >+ sub-
sumes a comma separated list of elements e. T is a primitive type (int or
boolean); C is a class name; v is a variable or value; a denotes an actor in-
stance; pu denotes a processing unit; e means either an arithmetic or boolean
expression; m is a method name.
A Theatre model can admit environmental declarations which introduce
scenario parameters. For the rest it consists of a collection of actor classes.
An actor class, besides encapsulated local variables, including acquaintances,
specifies the message servers (msgsrv) which provide reactions to correspond-
ing messages. An actor can be a main actor if it defines the main method
which is used for bootstrapping purposes. The main instantiates actors and
puts a model into operation.
For generality, the initialization of actors does not rely on a built-in construc-
tor but is delegated to a first message like init, which carries the initialization
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Model ::= Env* Class*
Env ::= env T v = literal;
Class ::= actor C{VarDcl* MsgSrv*[Main]}
VarDcl ::= T < v[=literal] >+; |C <a>+;
Msgsrv ::= msgsrv m(<T v|C a>∗){Stmt∗}
Main ::= main() { InstanceDcl∗ Stmt∗}
InstanceDcl ::= a = C();
Stmt ::= v = e; |v =?(e <,e>+; |v= ? (ep:e <, ep:e >+); |

if(e){Stmt∗}[else {Stmt∗}] | Send | delay(v) | move(a,pu)
Send ::= a.m(<e>∗)[after(v)][deadline(v)]

Figure 2: Theatre abstract modelling language

data (both acquaintance actors and primitive data values). The main actor
can receive an acknowledgment message (e.g., a done message) from actors
to state the initialization is terminated. In a typical setting, the main is
launched on a default processing unit (pu) which is then inherited by created
actors. Following the initialization, actors can be moved to different pus,
using the move operation.
The asynchronous send operation can optionally be tagged by an after and
a deadline time. Such values are relative to the instant in time the send was
issued. When missing, after evaluates to 0, whereas deadline defaults to ∞.
In a message server, self identifies the executing actor. The predefined func-
tion now() returns the current time. As in PTRebeca, all the time quantities
are assumed to be int.
Statements include a delay operation which expresses a duration of (a code
segment of) a message server. Also a delay time parameter is an int and is
relative to the current time value.
Both a non-deterministic v =?(e1 , e2 , . . . , en) and a probabilistic v =?(p1 :
e1, p2 : e2, . . . , pn : en) assignment are available. pi are probabilistic weights
with the constraint

∑
pi = 1 . The result of expression ei is assigned to v

with probability pi . In the non-deterministic assignment, the probabilistic
weights are implicitly equal to 1/n.
It is worth noting that a Theatre model can be straightforwardly be ex-
pressed in Java syntax, where actors are programmed as classes inheriting,
directly or indirectly, from an Actor base class (see Section 7) which exposes
all the fundamental services: send, now(), etc. Actor classes rely only of the
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default language constructor implicitly used at each actor creation.

3.3. A modelling example

Fig. 3 depicts a Theatre model of a dependable real-time toxic gas sens-
ing system (TGSS), adapted from [9]. The system is devoted to controlling
a lab environment wherein there is a working scientist. In the environment a
toxic gas level, changing with time, can assume a critical level thus putting
the life of the scientist to a severe risk. One or more sensors in the lab
periodically measure the gas toxicity, and transmit the gas level to a con-
troller for a decision. Periodically, the controller checks if the scientist life
can have a danger, in which case the scientist is asked to immediately aban-
don the lab. The scientist must acknowledge in a timely manner a danger
signaling message. Not receiving the expected ack, the controller requires
the intervention of a rescue team. If the rescue reaches in time the lab, it
informs the controller that the scientist was saved. If the controller does not
receive this notification, it means the scientist is dead. The model consists
of 6 types of actors: Environment, Sensor, Scientist, Rescue, Controller and
Main, together with some scenario parameters (see Fig. 3) which affect actor
operation. Fig. 4 summarizes the message exchanges among the actors.
The TGSS model is configured by the Main which creates the remaining ac-
tors and sends them an init message with initialization parameters (e.g., the
acquaintances for each actor). After that, each actor is moved to a specific
theatre (processing unit) thus establishing, as an example, a maximum par-
allelism setup. Every actor replies to the Main with a done message. When
all the replies are received (see the done() msgsrv in Fig. 3), the main actor
starts model execution by sending a changeGasLevel() to the environment
actor with CHANGING PERIOD as the after time, a checkGasLevel() to
each sensor (Fig. 3 considers only one sensor) and a checkSensors() to the
controller.
The periodic arrival of a checkGasLevel() message causes the environment
to randomly change the gas level (with probability 0.98 the normal level 2 is
kept, but in the 2% of the cases the abnormal value 4 is established). If a dan-
gerous level occurs, a die() message is sent to the scientist with an after time
of SCIENTIST DEADLINE, which is the assumed amount of time within
which the scientist should be saved. The controller gets regularly informed
of the gas level by the sensor(s) which periodically ask the environment for
the current gas level through a giveGas() message.
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// scenario parameters

env int SCIENTIST_DEADLINE =14;

env int SCI_ACK_DEADLINE =3;

env int RESCUE_DEADLINE =5

env int NET_DELAY =1;

env int CONTROLLER_CHECK_DELAY =3;

env int SENSOR_PERIOD =2;

env int CHANGING_PERIOD =5;

env int RESCUE_DELAY =2;

env int NR_SENSORS =1;

actor Environment{

// acquaintances

Scientist sc;

// state vars

int gasLevel =2; //4 is dangerous

bool meetDangerousLevel=false;

msgsrv init(Main m, Scientist s){

sc=s; m.done();

}//init

msgsrv changeGasLevel (){

if(gasLevel ==2)

gasLevel =?(0.98:2 ,0.02:4);

if(gasLevel >2 &&

!meetDangerousLevel){

sc.die()

after(SCIENTIST_DEADLINE);

meetDangerousLevel=true;

}

self.changeGasLevel ()

after(CHANGING_PERIOD);

}// changeGasLevel

msgsrv giveGas(Sensor sender){

sender.doReport(gasLevel);

}// giveGas

}// Environment

actor Sensor{

// acquaintances

Environment en;

Controller co;

msgsrv init(Main m, Environment e,

Controller c){

en=e; co=c; m.done();

}//init

msgsrv checkGasLevel (){

en.giveGas(self);

}// checkGasLevel

msgsrv doReport(int gasL){

if (?(0.99: true , 0.01: false)){

co.report(gasL)

after(NET_DELAY);

self.checkGasLevel ()

after(SENSOR_PERIOD);

}

}// doReport

}// Sensor

actor Scientist{

// acquaintances

Controller co;

// state vars

bool isDead=false;

bool isOutEnv=false;

msgsrv init( Main m, Controller c ){

co=c; m.done();}

msgsrv leftEnv (){

if(! isDead) isOutEnv=true;

else isOutEnv=false;

}// leftEnv

msgsrv abortPlan (){

if (?(0.90: true , 0.10: false)){

if(! isOutEnv && !isDead){

isOutEnv=true;

co.ack() after(NET_DELAY);

}

}

}// abortPlan

msgsrv die(){

if(! isOutEnv) isDead=true;

else isDead=false; }//die

}// Scientist

actor Rescue{

// acquaintance

Controller co;

msgsrv init(Main m, Controller c){

co=c; m.done(); }//init

msgsrv go(){

delay(RESCUE_DELAY);

co.rescueReach ()

after(NET_DELAY+RESCUE_DELAY)

deadline(RESCUE_DEADLINE -NET_DELAY

+RESCUE_DELAY)

}//go

}// Rescue

actor Controller{

// acquaintances

Scientist sc;

Rescue re;

// state vars

bool danger=false;

bool abortSent=false;

bool sciAlive=false;
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msgsrv init(Main m,

Scientist s, Rescue r){

sc=s; re=r; m.done();

}//init

msgsrv report(int value){

if(value >2)

danger=true;

}// report

msgsrv rescueReach (){

sciAlive=true;

sc.leftEnv ();

}// rescueReach

msgsrv checkSensors (){

if(! sciAlive){

if(danger){

if(! abortSent){

sc.abortPlan ()

after(NET_DELAY);

self.checkScientistAck ()

after(SCI_ACK_DEADLINE);

abortSent=true;

}

}

self.checkSensors () after(

CONTROLLER_CHECK_DELAY);

}

}// checkSensors

msgsrv ack(){ sciAlive=true; }

msgsrv checkScientistAck (){

if(! sciAlive)

re.go() after(NET_DELAY);

}// checkScientistAck

}// Controller

actor Main{

Environment en;

Scientist sc;

Rescue re;

Controller co;

Sensor se1;

int cnt=0;

msgsrv done(){

cnt++;

if(cnt ==1){

move(en ,1);

sc.init(self ,co); }

else if(cnt ==2){

move(sc ,2);

re.init(self ,co); }

else if(cnt ==3){

move(re ,3);

co.init(self ,sc,re); }

else if(cnt ==4){

move(co ,4);

se1(self ,en,co); }

else if(cnt ==5){

move(se1 ,5);

en.changeGasLevel () after(

CHANGING_PERIOD);

se1.checkGasLevel ();

co.checkSensors ();

}

}//done

msgsrv main(){

move(self ,0);

// create actors

en=Environment ();

sc=Scientist ();

re=Rescue ();

co=Controller ();

se1=Sensor ();

en.init(self , sc);

}//main

}//Main

Figure 3: A Theatre model for the toxic gas sensing system, adapted from [9]

After that the sensor receives a doReport() message from the environment
with the gas level and transmits it to the controller through a report() mes-
sage. The controller periodically checks the sensor(s) and in the case a dan-
gerous situation is sensed, it sends an abortPlan() message to the scientist
with NET DELAY as the after time so as to “immediately” ask the sci-
entist to abandon the lab. The scientist is expected to send back to the
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Sensor Controller

Rescue
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giveGasdoReport

changeGasLevel

report

ack le!Env abortPlan

go rescueReach

checkSensors

checkScien stAck

Main

done

changeGasLevel
checkGasLevel

checkSensors

checkGasLevel

Figure 4: Message exchanges in the toxic gas sensing system model

controller an ack() message. The controller checks the arrival of the scientist
ack by sending to itself a checkScientistAck() message whose after time is
SCI ACK DEADLINE, i.e., the maximum time allowed to the scientist for
replying. In the case the ack() message is not received in time, the controller
delegates the rescue team to go to the lab to try to save the scientist. The
sciAlive variable in the controller is put to true as soon as an ack from the sci-
entist is received or when the rescue communicates it reached the scientist.
A true value of sciAlive only indicates that possibly the scientist is saved.
The problem is that message delivery times and non-deterministic/random
aspects of the model can imply, e.g., the rescue team arrives late and find the
scientist already dead. For example, a sensor which receives a doReport()
message from the environment, can be found working in 99% of the cases,
but in 1% of the cases the sensor is not working and then it cannot inform
the controller about a dangerous gas level. The scientist model includes a
probabilistic behavior when it receives an abortPlan() message. The abort-
Plan() can be perceived with a probability of 0.90. This in turn can force
the controller to activate the rescue team because it raises the probability of
violating the SCI ACK DEADLINE.
Besides any similarity with the PTRebeca modelling syntax [9], significant
semantics differences are due to the operational and timing model of The-
atre (more details in the next section) where, e.g., global time is assumed
and message servers cannot be preempted nor suspended. In PTRebeca each
actor owns its local notion of time. The existence of global time simplifies
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and makes it uniform the interpretation of message time constraints across
actors. In addition, whereas a delay(d) statement blocks the actor thread
for d time units to express, during modelling and analysis, the duration of
a code segment, in Theatre a delay request is just another asynchronous
operation like the non-blocking send. A delay(d) operation causes the cor-
responding processing unit of the requesting actor to become occupied for
d time units. No messages can be delivered to actors sharing an occupied
processing unit. The processing unit becomes again free at the end of the
delay duration. Therefore, the delay duration parameter has to be added,
during modeling and analysis phases, to any following send operation in the
message server (see the go() msgsrv in the Rescue actor in Fig. 3). Further
details about the semantics of Theatre are given in the next section.

4. An operational semantics of THEATRE

As in [9], a structural operational semantics of Theatre in the style of
the transition rules of Plotkin [40] and Kahn [41] is provided in the following.
First some basic data structures are introduced.

• E, a set of environments (an environment maps variable names to their
values);

• M , an unordered bag of messages (cloud of sent but not yet dispatched
messages);

• D, an unordered bag of delays (cloud of set but not yet expired delays);

• C, configuration, a set of N theatres abstracted as a set of processing
units pu1, pu2, . . . , puN , paired with their associated free or occupied
(delayed) status. Each pu consists of a set of actors which share the
pu for the execution: pui ∩ puj = ∅, i ̸= j. The function pu(a) returns
the processing unit of the actor a. A particular configuration associates
one pu (theatre) to each distinct actor (maximal parallelism);

• now, a variable holding the current global time.

Typically, E is the union of all the local stores of the actors Ai : ∪ρAi. A local
store also holds the predefined name (noun) self which denotes the currently
executing actor.
A sent message, i.e., an item ofM , is a tuple: < receiver,m, args, AF,DL >
where
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• receiver is an actor name;

• m is a message name of the receiver, which identifies a method/msgsrv
which handles the message;

• args is the list of arguments of m;

• AF and DL are the absolutized values of the after and deadline timing
attributes of the message, that is: AF = now + after, and DL =
now + deadline. It is recalled that after and deadline are relative to
the send time. When omitted, after amounts to 0, and deadline to ∞.

It is worth noting that in the case a message server needs to know the iden-
tity of the sender actor, the sender information is assumed to be explicitly
transmitted as an argument.
A delay object, i.e., an item of D, is a tuple < receiver, ET > where

• receiver is the actor name who is delaying;

• ET is the absolutized expire time of the delay, that is: ET = now +
duration where duration is the amount of the delay.

The configuration C maps processing units to their statuses: C[pu ◃ free],
C[pu ◃ occupied]. In the default configuration, at the creation of a new ac-
tor bound to varname in current store of actor self , it occurs: C[pu(self) =
pu(self) ∪ {varname}], that is the new actor is grouped together with the
self actor. A move operation such as move(a, pu′) is equivalent (see also
later in this section) to pu(self) = pu(self) \ {a}

∧
pu′ = pu′ ∪ {a}.

A system state is a tuple: < E,M,D,C, now >. The stepwise evolution of a
theatre system is characterized by a relation → thus: < E,M,D,C, now >→
< E ′,M ′, D′, C ′, now′ > . Basic steps correspond to a message dispatch or to
a delay expiration, both of which are executed by the scheduler (control ma-
chine). Each step is then realized by an atomic block of micro-steps which
correspond, e.g., to the statements which compose a msgsrv method, and
which consume no time.
Due to the use of probabilistic constructs in a Theatre model (see the as-
signment operations in Fig. 2 which can affect the temporal behavior of an
actor by probabilistically defining the time duration of an after or deadline
or of a delay clause) the transition relation evolves in general a system state
according to a probability distribution which assigns probability values to
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reachable states. In the following, though, such a probability distribution is
only handled implicitly, i.e., the probability weight of transitions is not spec-
ified but left implicitly defined by the executing steps. Reasons for doing this
are simplicity and the chosen goal of analyzing a Theatre model through
the Uppaal SMC [21] Statistical Model Checker, hence through simula-
tions, and not by a Probabilistic Model Checker which would require, e.g., a
Timed Markov Decision Processes model, as advocated in PTRebeca using
the IMCA (Interactive Markov Chain Analyzer) tool [9]. On the other hand,
probabilities are ignored and turned into non-determinism when a Theatre
model is analyzed through an exhaustive symbolic model checker like Up-
paal [21, 42]. Anyway, the provided semantic rules could be extended to
specify the probability distribution of transitions using an approach similar
to that shown in [9].
The representation of the step-wise evolution of a Theatre model can con-

cretely be based on two specific relations:
i−→ and

d−→ , the first one being
concerned with an instantaneous pure-action state change, the second one
with a pure time-advancement operation, needed to reach the time of the
(or one of the) next most imminent event in the system, that is either a
msg-dispatch or a delay-expiration.

4.1. Transition rules
i−→ and

d−→
The transition relation

i−→ specifies an instantaneous action transition
(it consumes no time). Two important occurrences of this transition are the
selection and dispatching of an eligible message (see Fig. 5) and the execution
of the associated message server in the receiver actor, or the processing of an
expired delay which makes again free a given processing unit (Fig. 6).

A message dispatch is eligible as soon as its processing unit (pu) becomes
free and now has reached its AF but it is not beyond its DL. When multiple
messages are eligible for dispatch and/or multiple delays are ready to expire,
one event is chosen non-deterministically, therefore executing the message-
dispatch or delay-expiration rule. As a consequence of a message-dispatch,
E ′,M ′, D′ and C ′ are the result of the following changes: (i) modification to
the local store ρAi, as an effect of the execution of assignment statements in
the message server body, (ii) new sent messages scheduled in M , (iii) some
delays scheduled in D, (iv) new actors created whose local store is added to
E and whose configuration (execution location or processing unit) is reflected
in C. Moreover, in the new C the processing unit of Ai is occupied.
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(msg − dispatch)

ρAi /∈ E (Ai,m, args,AF,DL) /∈ M now ≤ DL now ≥ AF C[pu(Ai) ◃ free]

ρAi(m), ρAi[par = args], E,M,D,C, now)
i−→ (ρ′Ai, E

′,M ′, D′, C ′[pu(Ai) ◃ occupied], now)

({ρAi} ∪ E, (Ai,m, args,AF,DL) ∪M,D,C, now)
i−→ ({ρ′Ai

} ∪ E′,M ′, C ′, now)

the local store ρAi and the dispatch message (Ai,m, args, AF,DL) are sup-
posed to be extracted respectively from E and from M for clarity of presenta-
tion

Figure 5: Message dispatch rule

(delay − expiration)

(Ai, ET ) /∈ D now == ET C[pu(Ai) ◃ occupied]

(E,M,D,C, now)
i−→ (E,M,D,C ′[pu(Ai) ◃ free], now)

(E,M, (Ai, ET ) ∪D,C, now)
i−→ (E,M,D,C ′, now)

for clarity the delay object (Ai, ET ) is supposed extracted from D

Figure 6: Delay expiration rule

(time − progress)

d1 = minM{AF − now} d2 = minD{ET − now} d = min{d1, d2}
now < minM{AF} now < minD{ET}

(E,M,D,C, now)
d−→ (E,M,D,C, now′ = now + d)

(E,M,D,C, now)
d−→ (E,M,D,C, now′)

Figure 7: Time progress rule
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(send)

(varname.m(args) after(a) deadline(d), ρself , E,M,D,C, now)
i−→

(ρself , E, {(ρself (varname),m, eval(args, ρself ), AF = a+ now,
DL = d+ now)} ∪M,D,C, now)

(delay)

(delay(d), ρself , E,M,D,C, now)
i−→ (ρself , E,M, {(self,

ET = now + d)} ∪D,C[pu(self) ◃ occupied)]

(assignment)

(x = e, ρself , E,M,D,C, now)
i−→ (ρ′self [x = eval(e, ρself )] ∪ E,M,D,C, now)

(non deterministic− assignment)

(x =?(e1, e2, . . . , en), ρself , E,M,D,C, now)
i−→ (ρ′self [x = eval(el, ρself )

l ∈ [1, n]] ∪ E,M,D,C, now)

(probabilistic − assignment)

(x =?(p1 : e1, p2 : e2, . . . , pn : en), ρself , E,M,D,C, now)
i−→ (ρ′self [α ∈

[0, 1), x = eval(el, ρself , α ∈ [
∑l−1

j=0 pj,
∑l

j=0 pj), p0 = 0,∑n
j=0 pj = 1] ∪ E,M,D,C, now)

(create)

(varname = A(), ρself , E,M,D,C, now)
i−→

(ρself [varname = a] ∪ E,M,D,C[pu(self) = pu(self) ∪ {a}], now)

(move)

(move(a, put), E,M,D,C, now)
i−→

(E,M,D,C[pu(a) = pu(a) \ {a}, put = put ∪ {a}], now)

Figure 8: Statement rules - 1st part
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As a consequence of the delay − expiration rule in Fig. 6, the configura-
tion C will be changed to C ′ = C[pu(Ai) ◃ free] thus (possibly) enabling the
dispatch of messages in M whose receiver is Ai or any other actor belonging
to pu(Ai). It should be noted that, for a selected expiring delay, the value
of now is certainly now == ET . This is a consequence of the fact that the

(cond1 )

eval(e, ρself ) = true (S1, ρself , E,M,D,C, now)
i−→ (ρ′self , E

′,M ′, D′, C ′, now)

(if(e) then S1 else S2, ρself , E,M,D,C, now)
i−→ (ρ′self , E

′,M ′, D′, C ′, now)

(cond2 )

eval(e, ρself ) = false (S2, ρself , E,M,D,C, now)
i−→ (ρ′self , E

′,M ′, D′, C ′, now)

(if(e) then S1 else S2, ρself , E,M,D,C, now)
i−→ (ρ′self , E

′,M ′, D′, C ′, now)

(sequence)

(S1, ρself , E,M,D,C, now)
i−→ (ρ′self , E

′,M ′, D′, C ′, now),

(S2, ρ
′
self , E

′,M ′, D′, C ′, now)
i−→ (ρ′′self , E

′′,M ′′, D′′, C ′′, now)

(S1;S2, ρself , E,M,D,C, now)
i−→ (ρ′′self , E

′′,M ′′, D′′, C ′′, now)

(msgsrv − end)

(self, ?) /∈ D

< E,M,D,C, now >
i−→< E,M,D,C[pu(self) ◃ free], now >

< E,M,D,C, now >
i−→< E,M,D,C ′, now >

Figure 9: Statement rules - 2nd part

execution of a msgsrv is supposed (during analysis) to be instantaneous and
that the duration of a delay is established as an asynchronous event.
The time − progress rule in Fig. 7 is responsible for the time advancement
(now update). It is ensured that the advancement of the global time can oc-
cur only when no eligible event exists. Therefore, the minimum occurrence
time of the (or one of) most imminent message dispatch or delay expiration
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is evaluated and now is advanced of that minimum.
The message dispatch rule implies the atomic and instantaneous execution

of the message server body which is effectively carried through multiple
i−→

relations. Each such a transition is devoted to the execution of a single state-
ment (micro-step) of the msgsrv body. As a consequence, different relations
are provided in Fig. 8 and Fig. 9, each corresponding to a distinct basic
action admitted by the Theatre modelling language (see Fig. 2).
The probabilistic − assignment rule in Fig. 8 deserves some further com-
ment. The probability interval [0 , 1 ) is first split into n sub-intervals (slots):
[0, p1),[p1, p1 + p2), [p1 + p2, p1 + p2 + p3), ..., [p1 + p2 + ... + pn−1, 1), which
are respectively associated to the expressions e1, e2, ..., en. Then a random
value α in [0 , 1 ) is generated using a common uniform random generator.
The slot to which α belongs selects the expression whose value is assigned to
the left-hand variable.
In the non deterministic − assignment rule (see Fig. 8) any expression e1 , e2 ,
. . . , en has the same chance to be selected for the assignment. Its meaning
is equivalent to that of the probabilistic − assignment rule where the proba-
bilistic weights are all equal to 1/n.
It should be noted that a processing unit is occupied at the time a message
dispatch occurs, directed to an actor assigned to the processing unit (see the
msg − dispatch rule in Fig. 5), and it is freed at the message server end
(see the msgsrv − end rule in Fig. 9) provided no delay operation was raised
during the message server. All of this ensures the macro-step semantics of
messages within a same theatre.

5. A reduction of THEATRE onto UPPAAL

The structural operational semantics of the previous section was inter-
preted in a case in the context of the Uppaal toolbox [20, 21] using timed
automata (TA) [19]. Uppaal was chosen because its powerful modelling lan-
guage provides clocks to measure relative times (durations), atomic actions,
normal locations where an automaton can stay an arbitrary time or a limited
time constrained by an invariant, urgent/committed locations which have to
abandoned without passage of time (with the committed which have prior-
ity over the urgent locations), (possibly urgent) unicast/broadcast channels,
integer and boolean data variables, double variables (recognized only by the
SMC), C-like data structures and functions, etc., which facilitate the trans-
lation of actors. Table 1 recapitulates basic correspondences.
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The micro-step statements of a message server can easily be achieved by
atomic actions attached to the edges outgoing from a committed location
(see, e.g., Fig. 12). For example, a probabilistic assignment is reproduced by
a branch point whose dashed exiting edges (Fig. 12) are labelled by the prob-
abilistic weights which drive the selection. The mapping of actors, messages
and delays on (possibly stochastic) timed automata (TA) could be based on
the use of dynamic timed automata as permitted by latest version of Uppaal
[21]. Dynamic automata were experimented, e.g., in [23]. However, they
are only supported by the statistical model checker. As a consequence, a
different and more efficient solution is proposed in this paper which consists
in the use of a static configured pool of TA, where each automaton instance
can dynamically be activated by a channel synchronization and, after its
termination, it is reset so as to be reused again. In the toxic gas sensing sys-
tem, a fixed number of non-terminating actors is considered, and dynamic
“creation/consumption” operations are tied respectively to the non-blocking
message send and message delivery to actors, and to the setup and expiration
of a delay.
A critical point concerns the attainment of the control-based message schedul-
ing and dispatching capable of ensuring the macro-step semantics of messages
on a processing unit (see section 3.1).
Concrete steps of the reduction process from Theatre to Uppaal will be
detailed by considering the translation of the toxic gas sensing system mod-
elled in section 3.3.

5.1. Scenario parameters

The environmental scenario parameters are easily handled by correspond-
ing global constants of the Uppaal model.

// scenario parameters

const int SCIENTIST_DEADLINE =14, SCI_ACK_DEADLINE =3, RESCUE_DEADLINE =5, NET_DELAY=1,

CONTROLLER_CHECK_DELAY =3, SENSOR_PERIOD =2, CHANGING_PERIOD =5, RESCUE_DELAY =2,

NR_SENSORS =1;

5.2. Entity naming

A fundamental step is to assign a unique identifier to each existing actor,
message, delay and processing unit. All of this can be achieved by introducing
some sub-range integer types as follows. Sub-range types are also a key for
implicit instantiation of actors, messages and delays at system configuration
time.
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Table 1: Main mappings from Theatre to Uppaal

Theatre Uppaal
actor (stochastic) timed automaton

message timed automaton
delay timed automaton

timing constraint clock invariant on a normal location
(in a message or delay)

message reception (in an actor) normal location without an invariant
message delivery broadcast channel synchronization

asynchronous message send broadcast channel synchronization
delay setup broadcast channel synchronization

message server cascade of committed locations
control machine established by timed and non-deterministic

behaviour of sent message and set delay TA

const int EN=0,SC=1,RE=2,CO=3,MAIN =4;

const int N=5+ NR_SENSORS; // number of actors

//actor subrange types

typedef int[EN,EN] env_id;

typedef int[SC,SC] scie_id;

typedef int[RE,RE] resc_id;

typedef int[CO,CO] cntr_id;

typedef int[MAIN ,MAIN] main_id;

typedef int[MAIN+1,N-1] sens_id;

typedef int[0,N-1] aid;

// message identifiers

const int INIT=0, CHANGE_GAS_LEVEL =1, GIVE_GAS=2, CHECK_GAS_LEVEL =3, DO_REPORT =4,

DIE=5, ABORT_PLAN =6, LEFT_ENV=7, GO=8, REPORT=9, RESCUE_REACH =10, CHECK_SENSORS =11,

ACK=12, CHECK_SCIENTIST_ACK =13, DONE =14;

const int MSG =15; // number of distinct messages

typedef int[0,MSG -1] msg_id; // possible message ids

//delay identifiers

const int DELAY =1; // number of distinct delays

typedef int[0,DELAY -1] did; // delay ids

//PU resources

const int NPU=N; // number of PUs - maximal parallelism

typedef int[0,NPU -1] pu_id; //pu identifiers

bool avail[pu_id]; // availability status of pus

pu_id pu[aid]; // actors to pus mapping

The bool avail[pu id] array stores the status (true →free, false → occu-
pied) of each processing unit. The array pu[aid] specifies the processing unit
upon which a given actor is allocated. The configuration is established by
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move() operations.

5.3. Message and delay pools

Depending on the fact if messages carry or not arguments, the two classes
of Message and VoidMessage are distinguished. A corresponding pool must
then be introduced with a statically defined dimension. For the case study
translated model the following declarations hold. It should be noted that
the main actor purposely initializes every actor and expects its done message
before proceeding with the next initialization.

const int MI=NR_SENSORS; // number of Message instantiations

typedef int[0,MI -1] mid; //msg instance ids

const int VMI=N; // number of VoidMessage instantiations

typedef int[0,VMI -1] vmid; //vmsg instance ids

const int DI=1; // number of delay instantiations

typedef int [0,DI -1] did; // delay instance ids

bool avVM[VMI]; //pool of void messages

bool avM[MI]; //pool of messages

bool avD[DI]; //pool of delays

Pools are assumed to be initialized to all true. When a (void)message (or
a delay) is requested, the first available message (or delay) in the relevant
pool is returned. Functions nVM() and nM() respectively return the index of
the first available message in the corresponding pool. Similarly, the function
nD() returns the index of the next available delay instance. Would a pool
be exhausted, −1 is returned instead, which causes an obvious runtime array
access error which stops the operation of the model checker. The occurrence
of such one error clearly indicates a pool was insufficiently dimensioned.

5.4. Asynchronous message passing and delay setting

The following broadcast channel arrays make it possible to send (schedule)
a message directed to a given target actor, carrying (send[]) or not (vSend[])
arguments. The channel synchronization has the effect of activating a corre-
sponding automaton instance.

broadcast chan send[mid];

broadcast chan vSend[vmid];

meta aid A; //actor id

meta msg_id M; // message id

meta int AFTER , DEADLINE , DELAY; // timing attributes of a message send

A send operation needs an index in the relevant pool of messages, the name
(aid) of the destination actor, the specification of the involved message id,
and the after and deadline relative times of the message send. The message
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index in the pool is typically achieved by invoking either the nM() (for a
Message instance) or nVM() (for a VoidMessage instance) function. The re-
maining information are provided to the send operation by using the meta
variables [20] A (for the actor id) M (for the message id) and AFTER and
DEADLINE. Meta variables do not take part to the data component of the
states of the model state graph. They thus can contribute to the efficiency
of the model checking process. However, values of meta variables are signifi-
cant only during a channel synchronization. After the synchronization, they
are undefined. The two functions lb(after), ub(after,deadline) are provided
for defining respectively the value of AFTER when DEADLINE is missing
(infinite), or the values of both variables.
In a similar way, the asynchronous setting of a delay can be achieved by
synchronization on a delay channel:

broadcast chan delay[did];

A delay channel is identified by the index of an available delay instance
(typically provided by the nD() function). Setting a delay instance requires
also the identity of the actor requesting the delay, and the duration of the
delay. The A meta variable is used for the actor id, the DELAY meta variable
provides the amount of the delay. The function d(delay) can be used to assign
a value to the DELAY variable.

5.5. Message delivery and arguments

The following global declarations support the delivery of a message to an
actor, along with some possible carried arguments.

broadcast chan msgsrv[aid];

const int MAX_ARGS =3;

int args[MAX_ARGS ]; // buffer of msg arguments

An output synchronization on a channel like msgsrv[a]! causes the deliv-
ery of the message specified by meta variable M to actor a, thus activating
the corresponding message server. Carried arguments of message M can be
retrieved from the args[] buffer.

5.6. The Message automaton

Fig. 10 shows the Message automaton (parameterized as: const mid
mi) which is provided of arguments transmitted through the args[] buffer.
Message uses a local clock x. A Message instance is activated through a send
operation. As a consequence, the automaton passes from the idle location to

24



the scheduled location, and it is flagged as unavailable into its belonging pool.
The function getParams() copies the global args[] buffer onto a local params[]
buffer. Function putParams(), at final dispatching time, copies back the
local params[] on to the args[] buffer from which they are finally retrieved by
the target actor. From the AFTER and DEADLINE variables the Message
instance gets the after and deadline times of the message. The message
cannot be delivered before after time units are elapsed from the sending
time. Such a time is awaited in the scheduled location through an invariant
based on the after time. When the after time is elapsed, the automaton
moves to the delivery location. However, for the dispatching to occur it
is necessary that the message becomes eligible (see section 4), that is the
processing unit of the destination actor is free and the time is not greater than
the deadline time. As soon as the message automaton finds the processing

scheduled deliveryidle

send[mi]?

dispatch

deadline_miss

msgsrv[dest]!

avail[pu[dest]] && (deadline==INF || x<=deadline)

M=msg,putParams(),avM[mi]=true

deadline!=INF && x>deadline

!avail[pu[dest]] &&

(deadline==INF || x<=deadline)

x>=after avail[pu[dest]]

dest=A,msg=M,after=AFTER,

deadline=DEADLINE,getParams(),

x=0,avM[mi]=false

x<=after
check!

Figure 10: The Message timed automaton

unit is available, it abandons the delivery location and moves to the dispatch
location where one of three events can occur: (a) the current time is found
beyond the message deadline and therefore the message is no longer valid
and must be discarded (the deadline miss location is reached); (b) for non-
determinism, a different message is dispatched whose processing occupies the
processing unit, and the automaton must come back to the delivery location;
(c) the message is found effectively eligible and a synchronization over the
msgsrv[dest] channel is generated toward the destination actor (the identity
of the message msg is assigned to the meta variable M). Message dispatching
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causes the “consumed” message instance to be returned to its pool and the
idle location is re-entered.
A subtle point in Fig. 10 concerns the transfer from delivery to dispatch. In
order to ensure the dispatch location is immediately entered as the processing
unit becomes free, the following urgent and broadcast channel check is used:

urgent broadcast chan check;

The synchronization signal check! obliges, due to the urgent character of the
channel, the automaton to immediately exit from delivery.
Another subtle point in the design of Fig. 10 regards the dispatch location
which was made urgent but not committed. This way, the automaton can
remain in delivery (without passage of time) would a message server of a dif-
ferent actor be triggered into execution on the same processing unit. Recall
(see also Table 1) that a message server is realized by a cascade of committed
locations which have priority on urgent locations, and consume no time. At
the end of this alternate message server, the message instance in dispatch can
still proceed with its own dispatching or it is forced to come back to delivery
if the processing unit was just occupied by a delay operation.
As a final remark, the timed automaton of Fig. 10, rests on the relative time
model of Uppaal: the after and deadline times of a message are directly
used as relative times. This is due to the use of clock x which measures the
time elapsed since its last reset (see the edge from idle to scheduled in Fig.
10).
The VoidMessage automaton, not shown for brevity, is identical to Message
except that it does not manage any arguments, so it does not use the get-
Params()/putParams() functions and does not have a local params[] array.

5.7. Delay automaton
A delay is scheduled through a synchronization on a delay[did] channel

which activates a Delay instance. The Delay timed automaton in Fig. 11
admits the parameter: const did di. It uses a local clock x which is reset when
the delay is set, and measures the elapsed time until expiration. During the
delay, the processing unit of the requesting actor is kept occupied. Time is
awaited in the scheduled location in Fig. 11 through an invariant on the delay
amount. When the delay expires, the automaton must move from scheduled
to idle. It should be observed, though, that at the last time of the delay
expiration the scheduled location becomes equivalent to an urgent location:
it must be exited before time can go on, but it has no priority with respect
to another urgent location.
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x<=d

scheduledidle

x>=d

delay[di]?

a=A,avail[pu[a]]=false,

d=DELAY,avD[di]=false,x=0

avail[pu[a]]=true,avD[di]=true

Figure 11: The Delay automaton

5.8. An actor automaton

The model of an actor (see, for example, the Environment automaton of
the toxic gas sensing system in Fig. 12 which is parameterized as: const
env id self) can easily be built in Uppaal around two basic locations: Re-
ceive and Select. Receive is often also the initial location. It is a normal
location, meaning the actor can stay in Receive an arbitrary amount of time
until the reception of the next message.
When a message arrives, that is, a synchronization over the channelmsgsrv[self ]
is received, with the message id being communicated through the M meta
variable, the actor moves to the Select location which is committed. From
Select, the particular arrived message is checked, and its processing (mes-
sage server) launched through, in general, a cascade of committed locations.
When the processing of the message server is complete, the automaton comes
back to Receive for it to be ready for a next message to be received, and
so forth. As one can see from Fig. 12, the execution of a message server
(message reaction) can exploit branch points for a probabilistic behaviour.
For instance, when a CHANGE GAS LEVEL message is received, and the
gasLevel is currently equals to 2 (normal level), with 98% of probability it
remains to 2, but with 2% of probability it is raised to 4 (abnormal level).
INIT and GIVE GAS are two examples of messages carrying some argu-
ments. When INIT is received, in args[0] is transmitted the identity of the
Main actor, and in args[1] the identity of the scientist actor (acquaintance)
is specified. The Environment actor directly sends to args[0] a reply DONE
message, and stores into its local variable sc the identity of the scientist.
Similarly, when receiving a GIVE GAS message, sent by a sensor, in args[0]
is contained the sender identity. The message server replies by sending a
DO REPORT message to the sender sensor and puts into args[0] the current
value of the gas level.
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gasLevel>2 && 

!meetDangerousLevel

msg==INIT

gasLevel>2 && 

meetDangerousLevel ||

gasLevel==2
gasLevel==2

msgsrv[self]?

gasLevel>2

SelectReceive

send[nM()]!

A=args[0],M=DO_REPORT,lb(0),

args[0]=gasLevel

A=sc,M=DIE,

lb(SCIENTIST_DEADLINE),

meetDangerousLevel=true,z=0

msg=M

2

msg==CHANGE_GAS_LEVEL

msg==GIVE_GAS

A=self,M=CHANGE_GAS_LEVEL,lb(CHANGING_PERIOD)

gasLevel=4

A=args[0],M=DONE,lb(0),

sc=args[1],gasLevel=2
98

vSend[nVM()]!

vSend[nVM()]!

vSend[nVM()]!

Figure 12: The Environment actor automaton

Each message server (i.e., message response or reaction) can directly be
achieved from the abstract model of the actor. Since a message server is
atomic and consumes no time, multiple data updates can be put on a same
edge of the message server. The exact composition of the message server
depends on the number of messages which are sent within it. Indeed, only
one message send (channel synchronization) can be specified per edge.

5.9. Preservation of THEATRE semantics

Into a reduced Uppaal model of a Theatre system, the cloud of sent
messages (see theM data structure in section 4) is represented, at any instant
in time, by all the activated message automata. Similarly, the cloud of delays
(see the D data structure in section 4) is composed by all the delay instances
which were activated but are not yet expired. The reduction process, and in
particular the design of message, actor and delay timed automata, directly
complies with the structural operational semantics of Theatre. In fact:

• it there exists a notion of global time, implicitly advanced by Uppaal;

• at each instant in time, the most imminent event (message dispatch or
delay expiration) occurs;
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• when multiple events exist which can occur at the same time, one of
them is chosen non-deterministically.

A key point of the reduction process is concerned with the attainment of the
macro-step semantics (see section 3.1), i.e., no new message can be dispatched
in a theatre (i.e., processing unit) before the current dispatch is completely
processed. Toward this it should be noted that:

• an event occurrence (message dispatch or delay expiration) is always
provided by an urgent location of an automaton;

• a message server, in an actor, is achieved by a cascade of committed
locations.

As a consequence, a message server is atomic and instantaneous. In addition,
the use of committed locations guarantees message server termination before
any new event (message dispatch or delay expiration) can occur. Whereas
this result does not impede message server parallelism (i.e., message dis-
patches occurring at the same time, although they are executed one at a
time) into distinct processing units, it genuinely ensures, in a same theatre,
the macro-step semantics of messages.
As a further remark, there is no need to explicitly occupy the processing unit
during a message server execution (see the msg−dispatch rule in section 4).
The processing unit, in fact, remains unavailable during the message server
as a consequence of the use of committed locations. The processing unit
needs to be occupied explicitly only in response to a delay operation.
In the light of the above observations, it emerges that the proposed reduction
process automatically realizes the behaviour of the control machine compo-
nents of a Theatre model.

5.10. Translated UPPAAL model of the toxic gas sensing system

Fig. 13 to Fig. 17 show all the remaining Uppaal actor timed automata
for the case study (the Environment automaton is shown in Fig. 12). Each
actor model is parameterized with only one parameter of its corresponding
sub range type (see section 5.2).
In the Sensor model, the arrival of a DO REPORT message from the Envi-
ronment, is accompanied by the gas level as an argument in args[0]. Such a
value is not stored locally. In the case the sensor is correctly working, the
args[0] value is then transmitted as part of a REPORT message sent to the
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Figure 13: The Sensor actor automaton
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msgsrv[self]?

Figure 14: The Scientist actor automaton

controller. Care was taken in the model in Fig 3 and its Uppaal reduction
toward avoiding the introduction of unnecessary data variables which would
complicate the model checker exhaustive verification activities.

It is worth noting, in the Main automaton, that sensor ids range from
MAIN + 1 to MAIN +NR SENSORS.
The following is the system configuration line:

system Environment ,Sensor ,Scientist ,Rescue ,Controller ,Main ,Message ,

VoidMessage ,Delay;

Of each template automaton a number of instances is automatically created
as determined by the corresponding sub-range type (see section 5.2). The
Main automaton can easily be adapted to work with a different number of
sensors, or with a different grouping of actors to processing units.

6. Analysis of a THEATRE model reduced into UPPAAL

In general, the verification of a real-time Theatre model aims to check
safety properties (i.e., a bad state is never reached), liveness properties (i.e.,
a good state is eventually reached, possibly within a timing constraint), and
reachability properties (i.e., assessing that a certain state is reachable in the
model behaviour). In the following, the toxic gas sensing system (TGSS)
model reduced in to Uppaal will be thoroughly analysed by both non deter-
ministic analysis, that is qualitative evaluation of system properties through
exhaustive model checking, and by simulation, that is quantitative evalua-
tion of system properties through statistical model checking. Each kind of
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Figure 15: The Controller actor automaton
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Figure 16: The Rescue actor automaton
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Figure 17: The Main actor automaton
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Table 2: Space/time demands of the A[] !deadlock query on the TGSS model

Number of sensors WCT (sec) RAM Peak (MB)
1 4 38
2 2244 10842

analysis exploits a corresponding temporal logic language for the formal ex-
pression of system properties (specification) to check. The exhaustive model
checker of Uppaal relies on a subset of the Timed Computation Tree Logic
(TCTL) [20] which does not admit formula nesting. The statistical model
checker of Uppaal uses, instead, an extended version of the Metric Inter-
val Temporal Logic (MITL) [43]. All the experiments were carried out on a
Linux machine, Intel Xeon CPUE5−1603@2.80GHz, 32GB, using Uppaal
4.1.19 64bit.

6.1. Qualitative non-deterministic model checking

In this case the complete state graph of a reduced Theatre model is
built and queries are verified on the state graph. A preliminary concern was
to check the absence of deadlocks in all the states of the TGSS model, under
maximal parallelism, through the query:

A[] !deadlock

which is satisfied. This in turn guarantees the number of generated mes-
sage and delay instances (of the Message, VoidMessage and Delay template
automata, see section 5.3) is sufficient to cope with the model needs. An
insufficient number of such instances would cause the model checker to im-
mediately stop its operation for an illegal access to a non-existent array po-
sition. Another critical issue is concerned with the possible loss of a message
when the time goes beyond the message deadline, which can be unacceptable
in the context of a real-time application. The following queries were used.

E <> exists(m : mid)Message(m).deadline miss

E <> exists(m : vmid)V oidMessage(m).deadline miss

They respectively check for the existence of at least one state of the state
graph where a message instance can be found in the deadline miss location
(see Fig. 10). Both queries terminate by saying they are not satisfied.
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Due to the asynchronous message exchanges among actors, a reduced The-
atre model can easily suffer of scalability problems for state explosions.
Table 2 collects some space/time demands of the TGSS model when one or
two sensors are used. The wall clock time (WCT) and peak memory usage
observed when checking deadlock absence are shown.
In the following, the TGSS model with one sensor will be used for the re-
maining verification work. A fundamental time parameter is the SCIEN-
TIST DEADLINE (see section 3.3) which constrains, following a detected
dangerous level of the toxic gas, the end-to-end delay (response time) within
which the scientist could be saved. Such a value mainly depends on the sensor
period and the sensor correct behavior. Since during the exhaustive verifi-
cation, any probabilistic behavior is turned into a non-deterministic one, to
properly check the SCIENTIST DEADLINE, the TGSS model was slightly
modified to ensure the sensor is always correctly working (if the sensor could
not work, it would there exists a path in the model state graph in which the
sensor is always not working and then there would be no upper bound for
the SCIENTIST DEADLINE capable of saving the scientist), and the sci-
entist was observed both in the case it always perceives an ABORT PLAN
message sent by the controller, and in the case it, non-deterministically, can
perceive or not this message thus (possibly) triggering the intervention of the
rescue team. More in particular, during this verification phase, the SCIEN-
TIST DEADLINE was set to an over estimated value (e.g., 50), the SEN-
SOR PERIOD was varied from 1 to 20, and the remaining scenario parame-
ters set as shown in Fig. 3. In addition, a decoration clock z was introduced
which is reset when the environment detects a dangerous gas level, and then
checked when a scientist critical event occurs, that is an ABORT PLAN, a
LEFT ENV or a DIE message is received. The following query, based on the
leads-to operator, was used to determine the best case value (lower bound
lb) of the response time:

Environment(EN).gasLevel > 2 &&

!Environment(EN).meetDangerousLevel →
(!Scientist(SC).isOutEnv && !Scientist(SC).isDead

&& (Scientist(SC).SafeByAbort||(Scientist(SC).Select

&& msg == LEFT ENV ))) && z ≥ lb

where the value lb is the highest value which satisfies the query, and repre-
sents the minimum time required for saving the scientist. The query permits
to check the time amount which elapses from the time instant the environ-
ment changes the gas level to a toxic value (starting or premise state), to the
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Figure 18: Response time windows when the scientist can perceive an ABORT PLAN

time instant the scientist is alerted about the dangerous situation (inevitable
consequent state). Changing the clock constraint to z ≤ ub where ub is the
lowest value which satisfies the query, allows one to find the upper bound of
the response time.
Fig. 18 shows the [lb, ub] emerged time windows for the scientist to be saved
in the case an ABORT PLAN message would not be perceived. As expected,
as the sensor period increases, the upper bound of the response time aug-
ments because the controller gets late informed about a dangerous gas level.

It is interesting to note, that under the assumed operating conditions, the
scientist is always saved, either by an ABORT PLAN message or through a
LEFT ENV message. In fact, the following query

A[] !Scientist(SC).isDead

which checks that in no case the scientist dies, is satisfied.
Fig. 19 depicts the observed time windows when the scientist, optimistically,
is always capable of perceiving an ABORT PLAN (in Fig. 14 the two dashed
arcs are pointed to the SaveByAbort location). In this case, the scientist is
always saved and the rescue team is never contacted as witnessed by the (not
satisfied) query:

E <> Rescue(RE).RescueReach
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Figure 19: Response time windows when the scientist always perceives an ABORT PLAN

With respect to Fig. 18, the lower bounds of the response time in Fig.
19 are obviously the same, and the upper bounds are lower because an
ABORT PLAN message gets heard soon by the scientist, and there is no
rescue team involvement.
By enabling the full model behavior, that is the sensor can fail and the sci-
entist can or not perceive an ABORT PLAN, the following query:

E <> Scientist(SC).isDead

is satisfied thus testifying, as expected, that the scientist can die.

6.2. Quantitative statistical model checking

The importance of this second analysis phase can derive, in general, from
an impossibility of making an exhaustive verification on a given complex
model, and from the necessity to quantify the rate or likelihood with which se-
lected events can occur in the system. From the latter point of view, whereas
the qualitative non-deterministic analysis can suggest that “something can
occur”, e.g., the “scientist can die” following a dangerous gas level, it is of
great interest from the practical point of view knowing how is the probability
of the event to happen. Therefore, qualitative and quantitative analysis are
synergic to each other and both contribute to a full characterization of the
system behavior. On the other hand, a Statistical Model Checker (SMC)
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does not build the model state graph but relies on simulation runs and sta-
tistical techniques, such as Monte Carlo-methods and sequential hypothesis
testing [22], for estimating properties of the simulated model. As a conse-
quence, the memory usage during SMC is linear with the model.
A series of experiments were carried out on the toxic gas sensing system
(TGSS) model using Uppaal SMC, under the general behavior of the scien-
tist which can or not perceive an ABORT PLAN message, and of the sensor
which can or not be working thus possibly not transmitting to the controller
the gasLevel. No changes are required by the model except for some new
decoration variables which, although unnecessary under exhaustive model
checking, can be useful to gather information from the simulations. As a
preliminary test, Fig. 20 shows 30 simulation traces of the TGSS model, us-
ing 2 as the sensor period, 14 as the SCIENTIST DEADLINE (1 more of the
upper bound of the response time emerged during exhaustive verification)
and keeping the values of the other scenario parameters as in Fig. 3. In Fig.
20 the monitored values of the gasLevel managed by the environment and of
the isOutEnv and isDead variables of the scientist, are depicted. The picture
is directly achieved from Uppaal SMC as part of the query:

simulate 30 [<= 1000] {Environment(EN).gasLevel,

Scientist(SC).isOutEnv, Scientist(SC).isDead}

As one can see from Fig. 20, 1000 time units enable the environment to
generate, in many cases, a toxic gas level. Furthermore, the picture confirms
that there are cases where the scientist is rescued and others where he dies.
For example, it was observed that the dangerous gas level generated at time
635 is followed by the scientist which gets saved at 640, thus strictly within
its deadline. But at time 785 the toxic gas level is followed by the scientist
which dies at time 800, i.e., one time beyond the allowed deadline.

Fig. 21 shows the estimated probability with which the scientist can die
following a toxic gas level, when the sensor period is varied from 1 to 20.
For each sensor period, the SCIENTIST DEADLINE parameter is set to the
corresponding value determined during exhaustive verification, augmented
by 1 for safety reasons. In particular, Fig. 21 depicts the bounds of the
confidence intervals proposed after launching the query:

Pr[<= 5000](<> (Scientist(SC).isDead))

The default values of Uppaal SMC statistical parameters were used, e.g.,
95% of confidence degree with a confidence interval error ϵ = 0.05. Each
confidence interval emerges after a number of simulation runs which ranges
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Figure 20: Traces of 30 simulations monitoring the gasLevel, isOutEnv and isDead vari-
ables

between 300 and 400. The probability decreases as the sensor period aug-
ments. Indeed, low values of the sensor period imply a high value of the
sensor activation frequency and then the higher is the probability for the
sensor to become not working. Vice versa, a high value of the sensor period
diminishes the number of times the sensor is activated and also the proba-
bility of being not working. Therefore, in these cases the controller can be
informed late about a dangerous gas level. However, the use of a larger SCI-
ENTIST DEADLINE value (see Fig. 18) ensures in many cases the scientist
can be rescued.

The time bound of 5000 proved sufficient for injecting in the system the
event of a dangerous gas level. In fact, the query:

Pr[<= 5000](<> Environment(EN).gasLevel > 2

&& !Environment(EN).meetDangerousLevel)

proposes, after 29 runs, a confidence interval of [0.901855,1], thus confirming
the event has a great occurrence probability.
The results in Fig. 21 are also a consequence of the transformation of a non-
deterministic behavior into a true probabilistic one guided by the adopted
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Figure 21: Probability of the scientist to die vs. sensor period, when only one sensor is
used

probabilistic weights. For example, whereas during non-deterministic analy-
sis perceiving or not an ABORT PLAN message by the scientist is a matter
of a non-deterministic choice (see Fig. 14), during SMC analysis percep-
tion is an event whose occurrence probability is 0.90, thus in many cases the
scientist is saved by an ABORT PLAN message. All of this was controlled
by the following queries, in extended MITL, based on the until operator U
[43]. First it was checked that the probability of saving the scientist (with
SENSOR PERIOD=2 and SCIENTIST DEADLINE=14) is almost the com-
plement of that of the scientist dying in the same operating conditions (Fig.
21) thus:

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 14] Scientist(SC).isOutEnv))

The query asks to quantify the event occurrence: “assuming that at an
instant in time in [0,5000] a dangerous gas level occurs, what is the probability
that within the next 14 time units the scientist is saved?”. Uppaal SMC uses
738 runs and suggests a probability confidence interval of [0.384959,0,484959]
with confidence 95%.
The following query estimates, in particular, the probability of saving the
scientist through an ABORT PLAN message:

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 14] Scientist.SafeByAbort))

In this case, always by 738 runs, a confidence interval is proposed of [0.355149,0.455149].
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Figure 22: Probability of the scientist to die vs. sensor period, when one or three sensors
are used and the probability for a sensor to be working is 95%, and not be working is 5%

Finally, the query

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 14] msg == LEFT ENV ))

quantifies the probability of saving the scientist through the rescue team
(LEFT ENV message). Uppaal SMC proposes, after 738 runs, a confidence
interval of [0,0.0920054] to testify the event has a very low occurrence prob-
ability. The stochastic behavior of the TGSS model was also checked when
more sensors are used. In these cases it is expected that whereas a sensor
can possibly be not working, another one can be working so as to guarantee
the controller gets informed of a dangerous gas level. However, as expected
and confirmed experimentally, the use of probability weights 99 and 1 (see
Fig. 13) for the sensor to be respectively working or not, would imply a not
real benefit can be gained by the use of multiple sensors. Therefore, some
experiments were performed by changing the probabilistic weights to 95 and
5.
Fig. 22 shows the probability for the scientist to die when one or three
sensors are used. The sensor period is varied from 1 to 20, the SCIEN-
TIST DEADLINE is set to 1 more of the value detected during model check-
ing for the same sensor period, and the other scenario parameters are left
unmodified. As one can see from Fig. 22, the probability is greater than that
shown in Fig. 21 when only one sensor is used and the probability weight
for the sensor to be worked is diminished from 99 to 95. Moreover, it clearly
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Figure 23: Probability of the scientist to die vs. sensor period, when the SCIEN-
TIST DEADLINE is 10

emerges from Fig. 22, that the probability value significantly decreases when
3 sensors are used.
Finally, in Fig. 23 and Fig. 24 the probability of the scientist to die is shown
when the model is that of Fig. 3, only one sensor is used, the sensor period
is varied from 1 to 20, and the SCIENTIST DEADLINE is kept fixed in all
the experiments (a safety requirement). In particular, Fig. 23 refers to the
case the SCIENTIST DEADLINE is 10 and in Fig. 24 it is 12. The following
query was used for Fig. 23. Each point is the result of 738 runs. The until
interval is turned to [0,12] for Fig. 24.

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 10] Scientist(SC).isDead))

It emerges that for small values of the sensor period, the probability to die
is high because the sensor more likely can be not working. Similarly, for high
values of the sensor period the probability is again high because the sensor,
although now is more likely to be found working, could detect late the change
in the environment, causing a delay in the start of the rescue operations.
Both figures 18 and 19 confirm there is a value for the sensor period where
the probability gets to a minimum. In the case of Fig. 23 this occurs at
abscissa 5, whereas it shifts to 10 in Fig. 24, due to the greater value of
the SCIENTIST DEADLINE. In reality, in fig. 23 there are more local min-
ima. This is due to a parameters alignments configuration in the proposed
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Figure 24: Probability of the scientist to die vs. sensor period, when the SCIEN-
TIST DEADLINE is 12

scenario. Setting the SCIENTIST DEADLINE=10, it happens that when
the sensor period moves to multiples of the CHANGING PERIOD=5, it can
perceive a dangerous gas level contextually with the environment change or
with a delay that, in these cases, leaves more time to complete the rescue
operations. In Fig. 24 there is only one minimum, because the widest SCI-
ENTIST DEADLINE already offers time units sufficient to act the saving
operations, and the die probability curve has lower levels.

6.3. Partitioning

A key factor of a Theatre model is the possibility of modulating the
number of processing units/theatres (i.e., the parallelism degree) upon which
the application actors can be partitioned. From this point of view, although
the TGSS example was modelled and analyzed using the maximal parallelism
hypothesis (i.e., by using 6 processing units (PUs) when only one sensor is
involved), it can as well be studied and implemented using a different par-
titioning schema which uses less resources. In particular, from the model
interactions (see Fig. 3) one can infer that a configuration with 3 PUs is
sufficient to cope with the distribution requirements of the system. In fact,
the Environment, Sensor, Scientist and Main can be grouped together onto
one PU, and the Controller and the Rescue assigned each to a distinct PU.
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The TGSS model can easily be adapted to work with 3 PUs by varying
the number of available processing units (constant NPU in the section 5.2),
(possibly) adapting the required number of Message instances and, finally,
adjusting the move() operations in the main automaton (see Fig. 17).
It is worth noting that the TGSS temporal behavior, e.g., the scientist dead-
line values when the sensor period is varied from 1 to 20, emerged unchanged
also when only three PUs are used. For demonstration purposes it was also
verified that the timeliness of the system rests confirmed even when all the
actors are put on to one PU.

7. Implementation issues

A full implementation of Theatre was achieved in Java together with
some methodological guidelines which assist transitioning a verified model to
final implementation and real-time execution.
The framework structure of Theatre is a consequence of being realized by a
hierarchy of classes (see Fig. 25) together with a flow of events . The flow of
events glues together, transparently, the user-defined actor classes with the
operation of a control machine. A control machine iterates its control loop
until a termination condition is possibly met. At each iteration one event is
selected (i.e., a message delivery or a delay expiration) and actuated. In the
case of a message, a corresponding message server is activated in the desti-
nation actor. At the termination of the message server, control is returned
to the control machine which proceeds with the next iteration of the control
loop and so forth.
The following briefly summarizes some key points of the Java realization.

More details can be found in [18].
Actors are programmed as classes which inherit from the Actor base class
which exposes the fundamental services like the non-blocking send operation.
Actor universal names are strings. The programming style naturally follows
the abstract modelling style shown in Fig. 3.
Distributed functionalities are split between the theatre, which interfaces
to network and transport layer services (see Fig. 1), and the control ma-
chine which regulates the evolution of local actors. A standalone and a
distributed version of many control machines are available (see Fig. 25).
Concurrent/DConcurrent are control machines which support the execution
of general untimed applications. Simulation/DSimulation enable simulation
and performance prediction of general stochastic systems. DSimulation de-
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Figure 25: UML class diagram of Theatre framework, taken from [18]

pends on a conservative synchronization algorithm [7]. AbstractSimulator
implements in Java the abstract semantics of a Theatre model, and corre-
sponds to the same control structure realized by the reduction process into
Uppaal proposed in this paper. However, whereas AbstractSimulator rep-
resents an ad hoc simulator, which requires the addition (decoration) to a
model of suitable observer/monitor classes for collecting output data and ex-
tracting statistical information, the use of a temporal logic in Uppaal like
MITL [21] provides greater flexibility for property specification and assess-
ment. Preliminary/DPreliminary are control machines which use real-time
but still operate on an abstract Theatre model. They are useful to control
the overhead introduced by message scheduling and dispatching, message
server execution and network communications delay and their influence on
the message timing constraints. RealTime/DRealTime manage real-time and
regulate the execution of a Theatre model with final concrete implemen-
tation of message servers. The model is supposed to be partitioned so as to
run over one or multiple theatres.
It is useful to observe that whereas the virtual clock of a simulation con-

43



trol machine is immediately advanced to the time of the next most immi-
nent event, in a preliminary/real-time control machine, the real-time clock
advances at its own rate and the control loop can, sometimes, have some
no-operation cycles just to allow time to increase.
The adopted transport layer depends on Java sockets. The network of theatre
sockets (in general a full mesh structure) required by a system is initially set
up on the basis of an xml configuration file (config .xml). A theatre coincides
with a JVM instance. The main program of each theatre plays alternatively
the role of server or client for each distinct socket instantiation, according to
the configuration file. After socket creation, actors are created and allocated
(moved). From this point of view, in a typical configuration, a main theatre
can create actors, initialize them and then move them to their destination
theatres. Control messages are exchanged among the theatres of a system,
to start/stop a distributed execution and to regularly keep updated a global
time notion with the help of a time server (Fig. 1).
The implementation ensures actors and messages can be remotely transmit-
ted (in a serialized format). When an actor moves from a theatre A to a
theatre B, it leaves on A a proxy version of itself which acts as a message
forwarder . Would an actor come back to a theatre where a proxy version
of itself exists, the proxy version is replaced by the actual version. Sending
a message to a local proxy actor causes (transparently) a remote message
transmission to occur.
Some methodological guidelines based on the concept of model continuity are
defined in [2, 14, 18]. They can be naturally exploited with theTheatre ver-
sion described in this paper and are assisted by specific control machines (see
Fig. 25). Following modelling and analysis a preliminary execution phase,
based on Preliminary/DPreliminary control machine, can be actuated where
the model is still abstract (that is message servers still use delay constructs
instead of final concrete code) but time is real.
Whereas during modelling and analysis message scheduling and dispatching
activities are assumed to consume a negligible time, during preliminary exe-
cution their timing overhead can be monitored and its influence upon message
timing constraints and the overall temporal behavior of a system evaluated.
The Preliminary/DPreliminary control machines represent processing units
(theatres) as Java threads and delays are achieved by sleep operations on
such threads.
After preliminary execution, a model can be finally implemented with the
actual version of message servers provided. Such a final implementation de-
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pends on the services of a control machine like RealTime/DRealTime in Fig.
25.

8. Conclusions

This paper introduces Theatre, a variant of the Actors model [3] de-
signed specifically to address modelling, analysis and implementation of time-
dependent probabilistic distributed systems. In its current version Theatre
adopts the timing model and programming style of PTRebeca [9]. Theatre
is formally defined through a structural operational semantics. Theatre
models can straightforwardly be expressed in Java. The paper contribution
consists in proposing a reduction of an abstract Theatre model onto the
timed automata of Uppaal [20, 21]. The reduction process is novel because
it enables both the exhaustive verification through model checking (MC) and
the statistical model checking (SMC) of a system functional and temporal
behavior. A same model can be used unchanged for MC and SMC pur-
poses. In general, though, due to the asynchronous character of actors, MC
can be difficult to apply to complex and scalable models for state explosion
problems. In these cases, SMC makes it possible to quantitatively evaluate
system behavior through simulation runs.
The practical aspects of Theatre modelling and analysis are demonstrated
through a real-time distributed and dependable case study. Finally, the pa-
per gives a summary of an implementation which was achieved in Java along
with some methodological guidelines which practitioners and engineers can
follow to transform, without distortions, an abstract model into a final im-
plementation for real-time execution.
Prosecution of the research mainly aims to use Java as the modelling, analysis
and implementation language for Theatre systems. Preliminary experience
is reported in [18]. To help formalization and assessment that a final Java
program correctly corresponds to an early analyzed model, the use of such
tools as Java Modelling Language [44] can be a key. Starting from the de-
veloped control structures of message scheduling and dispatching, the goal is
to experiment with the Java Path Finder (JPF) tool [45] which permits, in
general, the exhaustive verification of Java multi-threaded programs.
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smc tutorial, Int. J. Softw. Tools Technol. Transf. 17 (4) (2015) 397–415.
URL http://dx.doi.org/10.1007/s10009-014-0361-y

[22] G. Agha, K. Palmskog, A Survey of Statistical Model Checking, ACM
Trans. Model. Comput. Simul. 28 (1) (2018) 6:1–6:39.
URL http://doi.acm.org/10.1145/3158668

[23] L. Nigro, P. F. Sciammarella, Statistical model checking of distributed
real-time actor systems, in: 21st IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications, DS-RT 2017,
Rome, Italy, October 18-20, 2017, 2017, pp. 188–195.
URL https://doi.org/10.1109/DISTRA.2017.8167684

[24] C. Hewitt, Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and manipulating models
in a robot, Tech. rep., Massachusetts Inst of Tech Cambridge Artificial
Intelligence Lab (1972).

[25] P. Haller, M. Odersky, Actors that unify threads and events, in: Inter-
national Conference on Coordination Languages and Models, Springer,
2007, pp. 171–190.

[26] Erlang, on-line, https://www.erlang.org.

[27] R. Shangping, G. A. Agha, RTSynchronizer: language support for real-
time specifications in distributed systems, ACM SIGPLAN Not. 30 (11)
(1995) 50–59.

[28] L. Nigro, F. Pupo, Schedulability analysis of real time actor systems
using Coloured Petri Nets, Lecture Notes in Computer Science (2001)
493–513.

[29] R. Beraldi, L. Nigro, Distributed simulation of timed Petri nets. a mod-
ular approach using actors and Time Warp, IEEE Concurrency 7 (4)
(1999) 52–62.

48



[30] A. G. Ren S., Venkatasubramanian N., Formalizing Multimedia QoS
Constraints Using Actors, IFIP Advances in Information and Commu-
nication Technology, Springer, Boston, MA, 1997, pp. 139–153.

[31] A. Furfaro, L. Nigro, F. Pupo, Aspect oriented programming using ac-
tors, in: Proc. of 2nd Int. Workshop on Aspect Oriented Programming
for Distributed Computing Systems (AOSDCS 2002), IEEE CS, 2002,
pp. 493–502.

[32] A. Furfaro, L. Nigro, F. Pupo, Multimedia synchronization based on
aspect oriented programming, Microprocessors and Microsystems 28 (2)
(2004) 47–56.

[33] B. Nielsen, G. Agha, Semantics for an actor-based real-time language, in:
Fourth International Workshop on Parallel and Distributed Real-Time
Systems (WPDRS96), IEEE Computer Society Press, 1996.

[34] M. Sirjani, Power is overrated, go for Friendliness! Expressiveness,
Faithfulness and Usability in Modeling-The Actor Experience, Princi-
ples of Modeling-Essays dedicated to Edward A. Lee on the Occasion
of his 60th Birthday. Available at http://rebeca-lang. org/assets/pa-
pers/2017/Friendliness. pdf.

[35] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, S. Neuendorffer, Taming heterogeneity - the Ptolemy ap-
proach, Proceedings of the IEEE 91 (1) (2003) 127–144.
URL http://chess.eecs.berkeley.edu/pubs/488.html

[36] R. K. Karmani, G. Agha, Actors, Springer US, Boston, MA, 2011, pp.
1–11.
URL https://doi.org/10.1007/978-0-387-09766-4_125

[37] F. L. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent
Systems with JADE (Wiley Series in Agent Technology), John Wiley &
Sons, 2007.

[38] F. Cicirelli, A. Furfaro, A. Giordano, L. Nigro, Performance of a multi-
agent system over a multi-core cluster managed by terracotta, in: Proc.
of the Symposium on Theory of Modeling & Simulation: DEVS Inte-
grative M&S Symposium, 2011, pp. 125–133.
URL http://dl.acm.org/citation.cfm?id=2048476.2048492

49



[39] F. Cicirelli, A. Furfaro, L. Nigro, F. Pupo, Agents over the grid: An
experience using the globus toolkit 4, in: Proc. of the 26th European
Conference on Modelling and Simulation (ECMS’2012), 2012.

[40] G. Plotkin, A structural approach to operational semantics, Tech. rep.,
Computer Science Department Aarhus University, Tech. Report DAIMI
FN-19 (1981).

[41] G. Kahn, Natural semantics, Tech. rep., INRIA Research Report RR-
0601, also Springer LNCS, vol. 247, pp. 22-39 (1987).

[42] G. Behrmann, A. David, K. Larsen, A tutorial on Uppaal, in:
M. Bernardo, F. Corradini (Eds.), Formal Methods for the Design of
Real-Time Systems, LNCS 3185, Springer, 2004, pp. 200–236.

[43] R. Alur, T. Feder, T. A. Henzinger, The benefits of relaxing punctuality,
J. ACM 43 (1) (1996) 116–146.
URL http://doi.acm.org/10.1145/227595.227602

[44] Java Modelling Language, on-line, http://www.eecs.ucf.edu/

~leavens/JML//index.shtml, accessed on April 2018.

[45] W. Visser, K. Havelund, G. Brat, S. Park, F. Lerda, Model checking
programs, Automated Software Engineering 10 (2) (2003) 203–232.

50


