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Abstract

A Cyber Physical System (CPS) is given by the integration of cyber and phys-
ical components, usually with feedback loops, where physical processes affect
computations and vice versa. Design and implementation of complex CPSs
is a multidisciplinary and demanding task. Challenges arise especially for the
exploitation of heterogeneous and different models during the various phases
of system life cycle. This paper proposes an agent-based and control-centric
methodology which is well suited for the development of complex CPSs. The
approach is novel and supports model continuity which enables the use of a
unique model along all the development stages of a system ranging from anal-
ysis, by simulation, down to real-time implementation and execution. In the
paper, basic concepts of the methodology are provided together with imple-
mentation details. Effectivenesses of the approach is demonstrated through
a case study concerning a prototyped CPS devoted to the optimization of
power consumption in a smart micro-grid automation system.

Keywords: Multi-agent systems, control-based methodology, actors,
parallel actions, model continuity, Cyber-Physical Systems, simulation,
real-time execution, power management, smart micro-grid

1. Introduction

Cyber-physical systems (CPSs) [1, 2, 3, 4] integrate a physical system with
a computational part through a network infrastructure. Their exploitation
is advocated in various domains including avionics, automotive, traffic man-
agement, health care system, mobile communications, medical technology,
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manufacturing, smart grid, procurement and logistics, industry and build-
ing automation, plant construction and engineering [5]. A correct design for
CPSs is of great importance as they are often applied in safety or business-
critical contexts [6].

CPS development challenges arise from the necessity of adopting pow-
erful software engineering methods for the cyber part, capable of ensuring
modularity and evolution of a software architecture, while at the same time
guaranteeing an effective control of the runtime platform and communica-
tion network for the fulfillment of the physical plant real-time constraints.
Design difficulties [7, 6, 8] are related, for instance, to the needs of conjoin-
ing continuous dynamics of the physical components with the discrete time
model of the cyber components. In addition, the use of open and public net-
works requires the handling of security concerns [9] arising from the real-time
operation of a CPS.

Architectural means for CPS modelling are described, for instance, in [10],
where the use of agents [11] and their interactions (events) to one another
and with the external controlled environment are the basic concepts. The
adoption of crosscutting agent coordination policies at both the local and the
global/system level emerged as a fundamental way to control the achievement
of system goals. Multi-agent systems have demonstrated their advantages as
an open and flexible software technology capable of unifying control aspects
in smart grid applications [12]. As an example, agents were used to handle
the power management problem in a smart home automation system [13].
Holonic agents, instead, are used in [14] as basic architectural building blocks
for the development of manufacturing automation systems.

In this work an original agent-based control framework [15, 16] is advo-
cated for CPSs, which rests on mechanisms for managing control and coordi-
nation aspects of agents as in [10]. Managing control aspects means that the
approach makes it possible to use, in a transparent way, different message
scheduling and dispatching policies according to a chosen time notion (real or
virtual) so as to fulfill specific application requirements. The control frame-
work acts as an operating software solution that integrates both flexibility
of an agent-based design [13] with time-sensitive control structures which
coordinate agents’ evolution. A unique feature of the adopted framework,
not supported by other existing agent-based approaches for CPSs, is model
continuity [17, 18], which consists in the possibility of transitioning unaltered
an agent model throughout the entire development life cycle, from analysis,
down to design, implementation and real-time execution. The approach pro-
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vides also a concurrency model which favours predictability and determinacy
by avoiding common pitfalls of multi-threaded programming [19] (see section
3.2).

With respect to other approaches supporting model continuity [17, 18],
the proposed framework distinguishes by its abstraction mechanisms which
enhances separation-of-concerns during the development of CPSs. In par-
ticular, the following abstraction entities can be exploited: (i) agents to
structure the business logic of the application to realize, (ii) boundary ele-
ments to interface the application with the external physical environment,
(iii) the environment Gateway (envGateway) taking into account aspects re-
lated to modelling, analysis and implementation of the physical part of a
CPS and more in general of the external environment in which an appli-
cation runs, and (iv) customisable time-sensitive control structures suited
to scheduling and dispatching system events and message exchanges. Model
continuity depends on different concretizations of the boundary elements, the
envGateway and the control-specific components. The envGateway requires
to be re-interpreted when moving from the analysis to the implementation
phase. It offers a transparent yet uniform way for dealing with communica-
tion protocols and hardware equipments needed for sensing and acting upon
a controlled environment. During system analysis, besides the modelling of
single sensors and actuators, the envGateway takes also into account the
causal-effect relations tied to operations carried out on the environment. As
an example, turning-on a lamp through a relay implicitly affects the value
read by a luminosity sensor, placed near the lamp itself.

During the simulation phase the envGateway can also interface software
components like ordinary differential equations (ODEs), modelling continu-
ous time behavior of a system plant. From this point of view, the proposed
approach can integrate continuous models within an overall discrete-event
based framework. As an example, such techniques as quantization [20, 21],
experimented, e.g., in the DEVS community [22], can be used.

In this paper the above mentioned agents and control framework is tai-
lored to CPSs and the focus will be on proposing a methodology which ad-
dresses all the development stages of a system.

The paper is an extended version of authors’ previous work published
in conferences [23] and [24]. With respect to previous authors’ works, the
contributions of this paper are the following: (i) the methodological aspects
of the proposed approach are better defined and weaved so as to cover all the
development phases, ranging from modelling, analysis, to final implementa-
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tion of a CPS; (ii) more insights are provided about the envGateway design
and about the hardware equipments necessary to instrument a real CPS; (iii)
the methodology is practically demonstrated through a case study concerned
with optimizing power management in a smart micro-grid home or industrial
electric power system.

The paper structure is as follows. Section 2 describes related works about
CPS methodologies and challenges. Section 3 details the proposed method-
ology and outlines the adopted agent and control based framework. Section
4 presents the case study and applies to it all the phases of the methodology.
Some experimental results are reported and discussed. Section 5, finally,
draws some conclusions and furnishes indications about some on-going and
future work.

2. Related Work

CPS engineering challenges include the use of integrated models, facing
issues related to interoperability, reconciliation of Newtonian time of the
physical part with the discrete time of the cyber part [8], privacy protection,
security, non-functional requirements, timing constraints, humans-system co-
operation and so forth [5].

Service-oriented architectures (SOA) and multi-agent systems (MAS) are
two important software technologies which have proved their effectiveness in
general ICT systems and whose exploitation for CPS is deemed promising to
sustain a revolution in industry automation and smart factories [25, 26, 27,
28, 29, 30].

A service-based approach for developing CPS is proposed in [25] which ex-
ploits service-oriented architecture concepts and/or cloud concepts to realize
service-based CPS. The approach deals with some design challenges of CPSs
such as dynamic composition, dynamic adaptation, and high confidence CPS
management, hardware heterogeneity. Three tiers were defined: an Environ-
mental Tier for dealing with the target physical environment, a Control Tier
for making decisions for networked physical devices, and a Service Tier for
managing reusable services. The final goal is that of allowing the handling
of complex and resource-consuming processes even on downsized mobile In-
ternet devices which are usually involved in a CPS.

Another service-based approach is discussed in [26] where the WebMed
middleware is proposed. The goal is promoting the use of the service metaphor
for the development of CPS applications. By exploiting the service-oriented
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computing, WebMed fosters the realization of loosely coupled CPS infras-
tructures that expose the functionality of physical devices as Web services.
Exposed functionalities can be easily integrated with other existing software
components. The middleware consists of: (i) a WebMed device adapter,
aiming at hiding heterogeneity related to the use of specific hardware, data
structures and communication protocols; (ii) a Web service enabler, which
provides a mechanism for the data and functionalities of a physical device to
become accessible as a Web service; (iii) a service repository ; (iv) an engine,
which is the core element providing a runtime environment for all Web ser-
vices and operations in the middleware; and (v) an application development
tool providing high-level management of interaction and composition of Web
service components in the middleware. The latter serves as user interfaces
for developers, and as front-end in order to invoke a developed Web service.

In [29] MAS and SOA are identified as strategic technologies for CPS
development and industry automation [14]. Agents contribution mainly de-
rives from being decentralized, autonomous and modular entities, encapsu-
lating data and ”intelligence”, and interacting to one another (for social-
ity and holonic aspects [14]) for the fulfillment of goals which could not be
reached by each agent operating in isolation (property emergence at the so-
ciety/population level). Other relevant agent features include robustness,
flexibility, learning and adaptation, and self re-configurability. The usage of
MAS, though, can be critical from the timeliness point of view. Therefore in
[29, 14] the notion of an ”industrial agent” is envisioned where an agent is
paired with a Programmable Logic Controller (PLC) for low-level control and
responsiveness, while ensuring, at the higher level, intelligence and adapta-
tion. Services are purposely combined with agents in [29], by abstracting and
exposing agent functionalities and low-level control through services, to favor
in-the-large interoperability, modularity and composability. In [14] holonic
agents interact and coordinate each other by FIPA [31] inspired mechanisms.
Various kinds of simulators, already existing or especially developed for spe-
cific needs, are used to validate a control solution.

The work described in this paper argues that an agent framework together
with a control-based approach, can be a basis for light-weight concurrency
and effective timing control.

A methodological approach based on MAS is proposed in [28] for the
analysis and prototyping of CPS. The analysis phase is directed to MAS
simulation and CPS validation. However, the paper mainly focus on the sys-
tem requirements elicitation, e.g., sensor measurements and effector actions,
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using a specialization of SysML profile, and the assignment of requirements
to behaviors of organizations which finally map on agents. The identification
of organizations is helped by a problem ontology which describes all the con-
cepts involved in a CPS and their relationships. The proposed methodology
appears at a preliminary stage and has to demonstrate its effectiveness in
the design of real systems.

Another agent-based approach aiming at developing CPS is proposed in
[27]. A goal of the approach is that of trying to assess system behavior. Both
qualitative and quantitative system property evaluation is considered. The
quantitative evaluation, which is based on the exploitation of the INGENIAS
methodology [32], is carried out by using a multi-agent model that supports
event-driven behaviors. In the paper, the multi-agent approach is considered
as the proper one to model a CPS with dependability features. This is due to
the flexibility provided by agents as autonomous and intelligent components
in decisions support actions. Raw data-streams, collected by various de-
vices like sensors, video cameras, mobile phones, and measuring devices, are
transmitted to the cyber components which, by using hardware and software
facilities as well as communication connections, can provide several main
functions as learning and adapting for intelligent control, self-maintenance,
and self-organization.

An agent-based framework for smart factory is proposed in [30]. The
framework consists of four layers, namely physical resource layer, industrial
network layer, cloud layer, and supervisory control terminal layer. The physi-
cal resources are implemented as smart things which communicate each other
through the industrial network. The integrated information system exists in
the cloud which collects massive data from the physical resource layer and
interacts with people through supervisory control terminals. All of this, actu-
ally forms a CPS where physical objects and informational entities are deeply
integrated. Furthermore, a negotiation mechanism for agents to cooperate
each other is proposed, and four complementary strategies are designed to
prevent deadlocks by improving the agents decision making and the coordi-
nators behaviour. Properties of the proposed framework are assessed through
simulation. A simulation program has been developed by using the Microsoft
VS integrated development environment (IDE).

In [6, 7] it is argued that the design of CPSs strongly requires both an
integrated view and co-designing of the physical and the computational part
of a whole system. Authors of [6] suggest a model-based view to cope with
designing aspects of the hardware and software components, and their inter-
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actions. The goal is to derive relationships among the design, analysis and
implementation models so as to ensure, for example, that analysis results
are reflected in the executable system. What is envisioned is an incremental,
simulation-based development approach, where initially the whole system is
simulated and, subsequently, simulated parts are replaced by real ones.

To summarize, CPS development is currently trying to exploit powerful
methodologies capable of systematically addressing all the CPS design issues.
Anyway, the research about models, approaches, middleware architectures or
platforms for realising CPS applications is still in its infancy [25, 26, 6].

This paper claims that model continuity [16, 17, 18] and MAS technology
are fundamental tools for CPS development. Model continuity naturally
addresses the CPS requirement of model integration [6], that is the need of
ensuring coherence between the properties assessed during model analysis
with the properties exhibited by a system during its execution. However,
no experimented methodology based on the concepts of model continuity is
actually exploited for CPSs. The contribution of this paper is to propose a
novel approach based on MAS and model continuity and to demonstrate its
practical usefulness through the realization of a real CPS case study.

The proposed approach mainly focuses on methodological issues embed-
ded within a discrete-event framework. The approach, though, can integrate
continuous time (CT) components and co-simulation activities as permitted,
e.g., by well-known frameworks and toolboxes supporting CPS modelling and
analysis like DEVS [22] and PTolemy II [8]. Both DEVS and Ptolemy en-
able the construction of hierarchical complex models. In addition, Ptolemy
too rests on actors as the basic building blocks. The model of computation
of a non atomic actor model can be defined so as to work with either syn-
chronous or asynchronous interactions. Code generators are finally in charge
of transforming an analyzed model into a final implementation. DEVS builds
on a discrete-event world vision and has an efficient and modular simulation
structure, which is open to interact with CT components. The DEVS com-
munity has experimented with such techniques as quantization [20, 21] for
integrating CT components with discrete-event operation. With respect to
CT components, which can be required during system analysis, the approach
developed in this paper is able to exploit the same concepts and techniques
of DEVS.
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3. From Modelling to Implementation of a CPS

The life cycle of a CPS can be viewed as composed of different transition
phases. First a model of the system is built. The model is then used to
analyse its functional and temporal behaviour both in a simulation context
and in a real execution environment. Thereafter, an analysed system can be
put into operation.

In this section, a methodology is proposed which is based on the agent
and control framework introduced in [15, 16] and here specialized for its use
with CPSs. The approach relies on pure-software components, which remain
unchanged during the transition from model analysis to system implemen-
tation, and on hybrid components which require to be concretized for actual
system implementation. The methodology furnishes also entities suitable to
model external resources needed by the system, and to capture and abstract
the interactions between the system and the external environment the system
operates in. In the following, the methodology is discussed together with its
related entities. Current version of the control framework is prototyped on
top of the JADE (Java Agent DEvelopment framework) open source FIPA
compliant project [33], which provides a distributed architecture supporting
agent naming, creation, execution, message passing, behaviour and mobility.

3.1. The proposed methodology

The development of a CPS follows four main phases, namely modelling,
analysis (e.g., by standalone or distributed simulation), preliminary execution
and real execution, which are described below.

3.1.1. The modelling phase

A model is built in terms of the following basic abstractions: actors (or
agents), messages, actions, processing units and the environmental gateway
(envGateway).

Actors and messages are pure-software components which capture the
business logic of a model. Actors are thread-less agents whose behavior
is patterned by a finite state machine, and whose communication model
depends on asynchronous message passing (see Figure 1). Message processing
is atomic and consumes a negligible time. A time-stamp can be attached to
a message to specify when it has to be consigned to its recipient. If the
time-stamp is not specified the message has to be delivered at the current
time.
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Figure 1: Actor structure and cross-cutting control aspects

Actions are self-contained computational entities which are submitted for
execution by actors. Following its submission, an action can run to comple-
tion or it can be suspended/resumed or aborted [15]. Actions are hybrid-
components modelling time-consuming tasks which require external entities
not owned by actors (e.g., a document to be printed requires a printer to
print it). Actions are executed on top of processing units which also are hy-
brid components. An action is ready to be executed as soon as it has been
submitted. However, the available processing units actually determine if and
when a submitted action is actually executed.

The envGateway is a hybrid component devoted to (i) modelling the ex-
ternal environment the actor-based application runs in, (ii) abstracting the
interactions of an actor with its external environment, e.g., for sensing or ac-
tuation purposes. The envGateway plays the role of abstracting the external
devices as well as hiding the used communication protocols. For example,
if a temperature sensor is handled by an Arduino device [34], only the en-
vGateway is aware of the presence of Arduino and of the specific protocol
adopted for interacting with the temperature sensor. From the application
viewpoint, the only relevant thing is requiring a read operation from the sen-
sor. In addition, the external environment needs to be modelled, e.g., with
the help of continuous time components implementing ODEs, each time a
carried out operation has a side effect on the environment itself. For in-
stance, let’s consider an application which monitors the temperature in a
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room and, when the temperature goes below a certain threshold, activates a
heating system. Within the real system, the activation of the heating system
increases the temperature of the room and, as a consequence, the increased
temperature is automatically observed by the sensor. During simulation, in-
stead, the cause/effect relation existing between the heating system and the
temperature read by the sensor requires to be explicitly considered. Such
aspects are dealt with through the envGateway modelling.

3.1.2. The analysis phase

Properties and behaviour of a CPS actor model can be checked by sim-
ulation. The model can be simulated in a sequential context or it can be
partitioned so as to be handled by distributed simulation, which is actually
supported by the proposed framework. Model partitioning is achieved by
allocating actors onto different computational nodes (containers or Logical
Processes, LPs). Distributed simulation [35] can be required in the case a
large/complex model has to be analysed, or in the case the model refers to
a system which is intrinsically distributed.

The same model can be simulated in different conditions by simply con-
figuring a different simulation context. Setting a particular simulation con-
text corresponds to defining the number and the behaviour of the processing
units as well as the policy adopted for scheduling and executing submitted
actions. As an example, actions can be processed in A first-in-first-out or-
der or in a priority-driven way, in which low-priority actions are suspended
and subsequently resumed when no more high priority actions exist. The
action schedulers are the entities which are responsible for managing action
scheduling issues. Properties and behaviour of a same model vary as a differ-
ent simulation context is considered. For example, if a call-centre is modelled
where the calls-to-serve are expressed through actions and the receptionists
by processing units, the study of how the number of served customers (i.e.,
the throughput of the model) changes as further receptionists get available,
can be carried out by simply changing the number of the exploitable pro-
cessing units, without any modification to the model. In this phase, all the
hybrid-components are configured by their simulated counterpart.

During analysis, a simulated (i.e., virtual) time notion is used and, in
addition, in the case of a distributed simulation, the evolution of the entire
actor model has to be time-coherent among all the distributed simulators.
Ensuring the right time notion and coordination among simulators is the
responsibility of a control machine. A control machine is also responsible of
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coordinating and actualizing message delivery to recipient actors. Message
scheduling, dispatching and processing do not increase the simulation time.
The simulation time augments only when a timed-message is processed or an
action gets executed.

3.1.3. The preliminary execution phase

Preliminary execution is an intermediate stage between the simulation
phase and the real execution of a system. A notable difference between
this phase and the previous one concerns the used time notion which is no
longer a simulated time but the real time (the wall-clock time) of the system.
Therefore, all the time needed for processing messages, and for sending in-
formation through a network, are implicitly taken into account. In fact, the
execution of the business logic of the system, e.g., the execution of a control
or an optimization algorithm, can be expensive in terms of computational
and time resources, and the real time required by the computation and com-
munication ultimately depends on the chosen hardware infrastructure. Such
real execution time is taken into account during the preliminary execution
phase. As a consequence, this phase can be exploited to assess if the time
constraints and system performance, previously checked in simulation, con-
tinue to be satisfied during real-time execution on top of the final exploitable
hardware infrastructure. More in particular, the behavioural drift existing
between simulation and real-time execution, i.e., the deviation between the
actual processing of a timed message and its due time, can be quantitatively
assessed during this phase.

Analogously to the previous phase, an execution context requires to be
configured: the processing units and the action schedulers used in simulation
must be replaced by the corresponding entities, able to deal with real-time
and physical computational resources (e.g., processing units can be mapped
on Java threads). Actions are implemented as pure resource-consuming tasks
having a time duration and being capable of keeping busy a processing unit.
The envGateway and all the pure software components remain exactly those
used in the analysis phase.

A real-time aware control machine is now required, both in a sequential
or distributed execution scenario.

3.1.4. The real execution phase

In this phase the system is put into real execution onto the target physical
architecture. All the hybrid-components of the model are replaced by their
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real counterpart. The control machine and the execution context coincide
with those used in the previous phase. With respect to the preliminary exe-
cution, only the actions and the envGateway must be modified. Actions are
reified so as to interact with physical devices and carry out real computational
tasks, whereas the envGateway abstracts the used physical devices together
with the communication protocol and physical infrastructure. Obviously, the
pure-software components remain unchanged also in this phase.

3.2. Control machines and time management

A subsystem of actors (Logical Process or LP) is allocated for the execu-
tion on a computing node. All the actors of a same subsystem are governed
by a local control machine, which transparently buffers exchanged messages
into one or more message queues and ultimately consigns messages, one at a
time, to recipient actors, according to a proper control structure, e.g., based
on a specific time notion (simulated or real-time). Message processing is the
unit of message dispatching (macro-step semantics). All of this determines
a cooperative (i.e., not pre-emptive) concurrency schema for the local actors
of an LP, ensured by message interleaving, which favors time predictability
[15, 16].

Multiple actor subsystems (LPs) are federated to constitute a distributed
system, using the services of a transport layer and communication protocol.
Fig. 2 shows a distributed actor system as prototyped by using JADE.
Both actors and messages can be dynamically transferred from an LP (JADE
container) to another one. Migrating actors can be a need to ensure that
an actor is located close, e.g., to a controlled device, or it can respond to
dynamic load-balancing issues. A Time Server is responsible of maintaining
a global time notion across the entire system. In a distributed simulation
setting [16], all the control machines interact with the time server in order to
negotiate time advancements so as to evolve all together in a coherent way.
The exploitable APIs and the library of the available control machines are
detailed in [15, 16].

3.3. Actions and processing units

By design, an action is a black box with a list of input parameters and
a list of output parameters. Actions have no visibility to the internal data
variables of the submitter actor and they do not share any data. Therefore,
no mutual exclusion mechanism is needed and no interference problem can
derive from the action parallel execution schema and message processing.
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Figure 2: A JADE based distributed actor system

An action completion message can be generated by an action to inform its
submitter actor about action termination.

Actions are hybrid-components which have different concretizations dur-
ing the life cycle of a CPS. Simulated actions usually do not carry out any
computation except that used to produce output parameters. They have a
time duration, specified by an input parameter, which is an estimation of the
time duration of the associated modelled task. Real or effective actions hide
a concrete algorithm implementing a computational task. The execution of
a real action increases the real time. Pseudo-real actions, used during a pre-
liminary execution, advances the real time but have no concrete computation
to perform.

In the case an action interacts with physical devices, the interactions are
simulated in both the simulated and the pseudo-real actions. On the contrary,
they are concretely implemented when a real action is used. A useful feature
of actions, which is exploitable during the development of CPS, refers to
the capability of returning partial computed results at some selected time
points. The return primitive is made available for these purposes (see also
the sequence diagram in Fig. 3). The return statement naturally can serve
for implementing a periodic behavior within an action. In this case the time
points are equally spaced within a time window assigned to the action. At
action completion, an operation result message is issued.

An action scheduler administers the local processing units and stores
actions which find no available processing unit in pending action queues. A
processing unit is a hybrid-component: it can be a physical core or it can
be realized by a Java thread, or it is a fake object in the case of simulated
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Figure 3: Message interplay during an action execution with multiple returns

actions. A detailed description of the supported kinds of actions, related
schedulers and processing units can be found in [15, 16].

3.4. envGateway and environment control

During the analysis and the preliminary execution phases, the envGate-
way is exploited to abstract the environment within which the system oper-
ates, in the sense of mirroring the effects of the actuations upon the environ-
ment itself. In the following, a description of the implemented envGateway
for the real-execution phase, is provided (see Fig. 4). During real-execution,
the read/write operations are typically requested by submitted actions which,
for generality, can be executed on dedicated Java threads. In a case, one ac-
tion can be interested to get multiple sensor data, each one being related to a
given time point within an assigned time window. The envGateway maintains
a collection of data variables, which correspond to sensor/actuator devices.
An In/Out layer in the envGateway is in charge of controlling the commu-
nication links with the physical devices and to update the data variables.
In particular, the In/Out layer is composed of input/output Java threads,
which interface the communication channels with a number of I/O hardware
components, e.g., Arduino [34] or similar equipments. Sensors/actuators are
physically linked to the I/O hardware. To simplify configuration and opera-
tion, each I/O hardware can be specialized to handling a disjoint subset of
sensors or actuators.

The communication channels between the envGateway and the I/O hard-
ware components, can either be based on the serial connection or on a wireless
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Figure 4: Organization of an envGateway component

connection. A suitable protocol requires to be established for the exchange
of information between the envGateway and the I/O hardware devices. The
protocol specifies the input/output operation, the involved physical device
and (possibly) accompanying data (in an output command).

The envGateway was implemented as a monitor, which manages the ac-
tion threads and the input/output threads, thus guaranteeing interference-
free access to the I/O device data variables. More precisely, separate concur-
rent hash maps are used for handling the input (sensor) data variables and
the output (actuators) commands and data. A design issue of the envGate-
way is concerned with the adoption of an anticipation schema as described
in the following. The I/O hardware components are supposed to be pro-
grammed so as to repeatedly reading the sensors and providing the data to
the envGateway. At any instant in time, the values of the data variables rep-
resent the most recent data values. Such values are then acquired by actions
according to their own timing. For generality concerns, an action which needs
some sensor data can provide a filter object at the request time. The filter
exposes a guard method (i.e., a boolean function) which must be satisfied by
the values of involved data variables for them to be actually returned.

Finally, it is worth noting, that correct behavior of a real execution of
a CPS system, can require that the reaction to sensed data generated by a
controller actor in the cyber part be provided within the sampling period of
sensors of the physical part.
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3.5. Specializing the envGateway to work with Arduino

The experiments described in this paper were accomplished by using the
serial connection managed by the RXTX.jar Java library. The defined pro-
tocol between the envGateway and the I/O hardware components clarifies
the input/output operation, the involved physical device and (possibly) ac-
companying data (for an output command). The envGateway was concretely
interfaced with some Arduino [34] devices. Arduino configuration is carried
out in the setup() function, where the details of pin connections with phys-
ical devices are defined. setup() is executed only once following a reset
of the device. After that, Arduino enters its main loop(). The loop()

instructions can be directed to reading from sensors and to put the data,
after some A/D conversions, onto the communication channels towards the
envGateway. At the end of the loop, a delay statement is executed before
starting the next loop iteration. During its loop operation, Arduino can also
receive and process interrupt signals. For example, a serialEvent interrupt
which is raised whenever new data arrive through the serial communication
link (RX), can be heard and managed only at the end of each loop itera-
tion. The mechanism can be exploited to modify dynamically the amount of
the loop delay. An Arduino dedicated to controlling only actuators, has an
empty loop and all its output operations are delegated to the serial interrupt
handling mechanism. Each interrupt signal is expected to be accompanied
by all the command information needed for completing the output operation.

During analysis by simulation, the In/Out and I/O hardware layers can
be transparently replaced by software agents which provide, in simulated
time, pre-generated input data to the envGateway or simply consume out-
put commands. Moreover, an EnvAgent can be introduced which through
a mathematical model, fuzzy logic etc., is able to reproduce the necessary
changes in the environmental variables monitored by the envGateway, im-
plied by an actuation.

4. A case study using power management

A problem of electric power management [36, 37, 38], whose context can
be a domestic home or an industrial plant, is considered. Motivation behind
the problem stems from the need to exploit to the greatest extent the power
generated, e.g., by a local photovoltaic panel, thus ensuring that the power
loads in the context are dynamically activated/deactivated (i.e., scheduled)
so as to optimally fit, at any instant in time, to the available generated power
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(reference or threshold power signal). Indeed, it is not economically viable to
sell the surplus of the local produced energy to the external electric provider
as it is not properly paid.

The input for the case study is constituted by a threshold signal repre-
senting the generated power, and by a certain number of user power loads.
Each load is characterized by a dynamic temporal behavior such as the start
time and the duration (or computation cost) in the case of one-shot load,
or the start time, the duration and a period in the case of a periodic load.
Every load is tagged with a utility measure. The scheduler gives priority to
loads having a greater utility. To avoid starvation, the utility is aged (i.e.,
increased) in the case a load gets not selected by the scheduler. To capture
the quality of scheduler decisions, a fitting measure, inversely proportional
to the offset between the overall consumed power and the reference thresh-
old signal, is also considered. The scheduler decision takes place as soon as
a variation is sensed either in the threshold reference signal and/or in the
power loads (e.g., a load notifies it would execute, or it informs it just finished
its execution).

The problem of CPS systems like the chosen case study, is trying to keep
aligned the Newtonian time of the physical part with the discrete time of
the cyber part. Depending on the physical dynamics of the controlled sys-
tem, communication and computational delays can make a control reaction
inconsistent (and possibly useless) with the actual state of the physical plant.
The development of the case study was aimed at both assessing the timing
problem and demonstrating the application of the proposed methodology
with model continuity. The impact of the computational/communication
overhead was checked by designing a scheduler agent which can search for an
optimal solution (i.e., optimal load configuration), if there are any, through a
full exploration of the solution space which can be computational demanding,
or it can exploit a greedy heuristic which looks for a suboptimal, approximate
solution, generated in a small amount of time.

For the purpose of the case study, an optimal solution is looked for by
an iterative backtracking technique. An approximate solution, instead, is
greedy searched by examining the candidate set of active loads, preliminarily
ranked by decreasing utility and for the same utility by increasing power.

From a practical point of view, since the backtracking technique can be
applied by specifying the number of required solutions, the heuristic solution
can be generated as the first-found solution by backtracking, which operates
on the candidate set of loads ranked by decreasing utility and then by in-
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creasing power. The backtracking process prunes, as early as possible, those
partial solutions which can be predicted they cannot become a full solution.
Among the acceptable solutions, the optimal one is selected as the one which
maximizes the overall utility of loads, and, among the solutions having the
same maximal utility, the one which optimizes the fitting measure is pre-
ferred.

In the following, the development of the case study is detailed according
to the various transition phases enabled by the approach. The provided de-
scription highlights the achieved benefits which stem from the exploitation of
the same model during the development, to the capability of validating the
correctness of the scheduling algorithms and predicting their overhead when
executed on a real platform. Finally, it is shown how the implemented system
is achievable by concretizing only the hybrid components as described in Sec-
tion 3. The methodology is demonstrated without considering distribution
aspects.

4.1. Modelling the system

The developed multi-agent model for the power control system consists
of load agents (instances of the LoadAgent class), one ThresholdAgent, one
SchedulerAgent and the envGateway for interacting with the external envi-
ronment.

The ThresholdAgent handles the samples of the generated power signal.
The ThresholdAgent helps separating the functionalities of the SchedulerA-
gent from those of the envGateway. It is the ThresholdAgent which reads,
through a periodic action, the samples of the reference power signal and
transmits them to the SchedulerAgent.

Each load agent manages a single physical power load. A publish/subscribe
design pattern is adopted among the scheduler and the load agents. At its
arrival, a LoadAgent first registers itself at the SchedulerAgent by an An-
nouncement message (see also Fig. 5) which carries the identification data
about the load. Subsequently, the LoadAgent communicates with the Sched-
ulerAgent each time a variation in the temporal behaviour of the load occurs.
Similarly, the SchedulerAgent sends commands to load agents for activating
or deactivating the corresponding power load. When a load decides to aban-
don the candidate set of loads, it detaches from the SchedulerAgent through a
Detach message. A LoadAgent is configured with the id of the controlled ac-
tuation device, the temporal parameters which regulate the load behaviour,
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Figure 5: Main interactions among model agents

and the utility value of the correlated load. The agent also holds the ac-
tive/inactive status of the corresponding physical load. Each time a load
agent receives a command from the scheduler agent, it submits a one-shot
action which implements the scheduler command through an interaction with
the envGateway. An activation command sent to an already active load agent
is simply ignored.

A load agent sends to itself a time-stamped message to step along the
load power consumption curve, according to the basic time unit (e.g., 1s).
Processing such a message causes an interaction with the SchedulerAgent, for
communicating current load power level, activation/deactivation status and
its actual utility value.

By design, the scheduler algorithm of the SchedulerAgent was directly
coded in the handler() method of the agent. To avoid taking so long for
the handler() to complete its calculations about an optimal solution, the
handler() of the scheduler is kept busy only for the (minimal) time required
for finding the next solution. A Next message is sent by the scheduler to itself
for starting the computation of the next solution and so forth. In this way
the scheduler remains capable of quickly sensing and processing variation
events, which can require starting from scratch the scheduling process, just
after one further solution was found.
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Table 1: Reference threshold power signal
Available Power (W) Time Duration (t.u.)

750 10
900 15
1300 20
2400 60
3300 205
1800 5
3100 100
2100 25
1800 10
1100 10
600 20

Table 2: Power loads parameters
Load ID Utility Power Request (W) Time duration Available at Periodic
1 3 500 300 8 No
2 2 250 380 18 No
3 4 500 400 12 Yes
4 5 750 350 0 No
5 4 250 330 0 No
6 3 250 350 0 No
7 2 250 320 0 No
8 1 250 410 0 No

4.2. Data configuration

The multi-agent system model was experimented using the configuration
data reported in Table 1 and Table 2. Table 1 specifies the adopted threshold
(or available) power signal. The time-span of the available signal is 480 time
units (t.u.) where a time unit corresponds to 1s of Newtonian time of the
physical plant, that is the sampling period of the generated power signal.
The Table 2 details the assumed power loads. Only the load #3 is periodic,
and, following its termination, it becomes ready again to be scheduled after
12 t.u..

4.3. Analysis phase

A first concern was studying in simulation the multi-agent system model.
The goal was checking both functional and non functional (temporal) proper-
ties, particularly the behaviour of the scheduling algorithm. It is worth noting
that, in simulation, message processing consumes 0 time. As a consequence,
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the scheduler algorithm, being implemented in the handler() method of the
SchedulerAgent, either searching an optimal or suboptimal solution, is always
virtually completed in 0 time. Time advancement is mainly related to the
duration of actions, and then to stepping through the power signal samples.

The model was executed on a standalone machine with the Simulation
control structure [16]. Simulated actions are used and their execution imme-
diately schedules the completion message or the message of the next return,
which is time-stamped with their due time. The samples of the available
power signal are pre-loaded in the envGateway. Output commands are sim-
ply logged.

When an active load is interrupted because the SchedulerAgent chooses a
different load, its completion message is invalidated and the remaining time
to completion is stored by the LoadAgent so as to be exploited at its next
activation.

Fig. 6 portrays the scheduling effects on the total consumed power by
loads with respect to the available threshold power signal, when an optimal
or a suboptimal solution is adopted.

For the assumed loads (Table 2), the power consumption curves in Fig. 6
are very similar. However, since the scheduler tends to select different loads,
differences will ultimately emerge between the two curves. At time 437 the
periodic load is reactivated and the consumed power suddenly raises under
optimal scheduling. Under suboptimal scheduling, instead, the same load
reactivates at time 457. This is due to the fact that the optimal scheduler is
capable of ensuring a greater power consumption in the time interval from
332 to 410 t.u..

Fig. 7 depicts the observed fitting, i.e., the deviation between the avail-
able power and the total consumed power, vs. time, in the two cases opti-
mal/suboptimal scheduling.

As one can see from Fig. 7, the two algorithms tend to behave differently
in the long time when, definitely, it seems that the optimal algorithm is
outperformed by the suboptimal algorithm. In reality, since the optimal
algorithm is capable of activating simultaneously more loads (although with a
same total consumption power level) which in the considered case are almost
one-shot, in the long time the optimal scheduler has fewer loads to manage
and then it exhibits a greater deviation of the consumed power from the
available power.

The above observations are confirmed by Fig. 8 which shows the total
observed utility of the scheduled loads vs. time, in the two scenarios. Initial
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Figure 6: Power available and total consumed power vs. time optimal/suboptimal schedul-
ing

and final differences are respectively due to the ageing process of the load
utility and to the fact that definitely the optimal algorithm handles fewer
loads.

4.4. Preliminary execution

Under preliminary execution, the model was run using the RealTime con-
trol machine (with the time unit set to 1s) along with simulated actions and
the FirstComeFirstServedAS action scheduler [16]. No change was intro-
duced in the agent model. The goal was to check the effects of message
processing, which now is no longer negligible, on the scheduling process.
Message processing overhead obviously depends also on the performance of
the hosting computer machine. Fig. 9 depicts the total consumed power vs.
time when the optimal scheduling is used, both in the simulation and the
preliminary execution scenarios. The experiments refer to the use of a Mac-
book Pro Intel Core i5, 2.9GHz, 16GB, OS X El Capitan. A delay clearly
emerges in the scheduler reaction due to the algorithm overhead. Such a
delay disappears in the case the suboptimal algorithm is adopted (picture
not reported for brevity).

In order to highlight the usefulness of the preliminary execution phase,
the experiment was repeated also on a less performing (older) Macbook,
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Figure 7: Observed fitting vs. time

Intel Core 2 Duo, 2GHz, 2GB, OS X Mavericks. In this case the delay of
the optimal algorithm gets increased (see Fig. 10) as expected. A closer
examination of the generated logs reveals that at time 315 a reaction is
required but, whereas the simulation is capable of producing an optimal
schedule by instantaneously (although ideally) responding to the variation
event, the new Macbook employs 10 time units for finding an optimal solution
in preliminary execution, and the old Macbook requires more time and it
happens that a new variation event is sensed during the scheduler operation
which forces it to restart its computation thus missing one reaction.

The worst case of observed drift, i.e., the time deviation with which a
message is processed with respect to its due time, was found to be about
101ms on the less performing Macbook and about 48ms on the high per-
forming Macbook. The worst case occurs during the initialization/bootstrap
of the model. Definitely, the drift tends to be a few ms.

The documented experimental results show that the optimal algorithm,
despite computational and communication delays, is capable of managing
loads by generating control actions consistent with system dynamics. How-
ever, the suboptimal algorithm is preferable because it favors correct tem-
poral dynamics. Its use, in fact, guarantees that the reaction to a variation
event is computed and actuated during the same sampling period or, in the
worst case, until the next one, if a particular disalignment occurs between
the physical clock (of Arduino) and the cyber clock. All these properties
were confirmed by considering both the overhead of the scheduler algorithm
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Figure 8: Total utility vs. time

and the bookkeeping of message scheduling and dispatching, also in the case
a low performing computer is adopted.

4.5. Prototype implementation and real execution

The CPS power management case study was assembled in the context of
an academic electronic measurement laboratory, where loads are realized by
lamps of a basic power of 250W. Single or groups of lamps whose power is
a multiple of 250W were realized so as to be controlled by few relays. This
explains the data assumed in Table 2. Fig. 11 provides an overview of the
overall CPS, in which a group of physical loads (lamps) are controlled by
corresponding load agents, which in turn receive control commands from the
SchedulerAgent which is in charge of monitoring the reference input power
signal and to adapt the power loads accordingly. The threshold power signal
was generated by LabView software and loaded in the memory of an Arbi-
trary Waveform Generator AWG2021, configured to generate the signal with
a frequency of 10Hz. Two Arduino Uno [34] were used as I/O hardware com-
ponents, with serial communication channels. The first Arduino is devoted to
reading the threshold power signal samples. The second one serves to effect-
ing the commands to relays which activate/deactivate the power loads. The
prototyped model implementation was executed using the RealTime control
machine, effective actions and the envGateway which provides interactions
with real input and output physical devices, controlled by the two Arduino.
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Figure 9: Used power vs. time optimal scheduling, simulation/preliminary execution

Except for an initialization time (due to setting up the Arduino, opening
the serial communication channels etc.), which establishes an initial offset
of about 10s, the behaviour of the available power and used power is that
observed during the preliminary execution. As a final remark, although the
case study was driven by pre-configured signals for the generated power and
the consuming loads, the agent-based solution is open and flexible to work
with, e.g., more dynamic load configurations. This is due to the reactive
character of the scheduler which is capable of intervening at each occurrence
of a variation event. In the following, a description of the used measure-
ment bench, the load subsystem, and the adopted communication protocol
is provided.

4.5.1. Measurement bench

The assembled measurement bench is shown in Fig. 12. It is composed
of an Arbitrary Waveform Generator Sony/Tektronix AWG2021, an Arduino
One board, a Digital Oscilloscope Tektronix TDS220, and a personal com-
puter. The personal computer interfaces the AWG2021 by a General Purpose
Interface Bus (GPIB) and runs a proper program developed in the NI Lab-
View environment. The output channel of the AWG2021 feeds the analog
channel 0 of the Arduino board to provide the emulated power signal. More-
over, the marker output signal of the AWG2021 feeds the digital I/O pin
7 of the Arduino One board in order to synchronize the two devices. The
TDS220 is connected in parallel to the output channel of the AWG2021 in
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Figure 10: Power available and total consumed power vs. time optimal scheduling,
preliminary execution, the two Macbooks

order to visualize the trend of the output signal and then the correct shape
of this signal.

4.5.2. Load subsystem

The load subsystem consists of one Arduino One board, 2 relay boards
with 8 high voltage channels characterized by rating of 10A at 250 and 125 V
AC and 10A at 30 and 28 V DC, managed by means of 8 digital pins adapted
to work with the Arduino output operating voltage, and 12 Standard High
Pressure Mercury lamps Philips HPL-N 250 W and 12 ballasts. Each ballast
is connected to a lamp in order to regulate the current to the lamps and
provides sufficient voltage to start the lamp. The loads are obtained by
connection of a pre-established number of lamps. The digital pins of the
Arduino board feed the digital pins of the relay modules, so permitting to
turn on and off the loads.

4.5.3. Communication protocol

The cyber and the physical subsystems interact with each other through
the exchange of character strings. Strings can express commands to be ex-
ecuted by the loads, or can capture information that Arduino achieve from
sensors, ultimately destined to agents. The following clarifies the adopted
format: sensorId/actuatorId # message, where the content of the token mes-
sage can vary. Information about sampling the available power signal is

26



Figure 11: An overview of the realized CPS

Figure 12: Measurement bench and controlled loads (lamps)

transmitted from Arduino as: watt # powerLevel where powerLevel is a dou-
ble number. To change the sampling period the following command can be
sent by agents: arduinoId #samplingTimeInMillis. To act on a relay it is
necessary to send to Arduino the load id and the type of the command to be
executed. The format is: loadId #command powerLevel in which the type of
the command can be:
⇒ A, to activate. It allows to (re)connect a load with a given power level;
⇒ C, to change load power. It permits to change the power level of an al-
ready connected load;
⇒ D, to deactivate. It asks to disconnect a load (in this case no power level
is furnished).
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5. Conclusions

This paper proposes an agent and control based methodology for the
development of Cyber-Physical Systems (CPSs). An original contribution
of the approach consists in the exploitation of model continuity [17, 18, 16]
in the field of CPSs. For demonstration purposes, the methodology was
applied to the design and implementation of a realistic power management
case study, thus illustrating how the development of a CPS can benefit from
model continuity. Prosecution of the research aims at:

• extending the micro-grid power management case study by covering
more complex scenarios, e.g., by experimenting with a scheduler agent
based on the imprecise computing paradigm [39]. One such a scheduler
could evaluate multiple solutions and in the case no more time is avail-
able, the best one among the computed solutions could be adopted.
Such a design would ensure a quality of the scheduler decisions which
should be better than that of the suboptimal scheduler which rests
on the first searched solution, and a little less inferior to that of the
optimal scheduler;

• improving/extending the interconnection between the cyber and the
physical parts currently based on the mediation of Arduino, with more
powerful hardware also in the presence of wireless communications and
protocols;

• enhancing the capabilities of the envGateway by offering basic design
constructs and mechanisms with the goal of simplifying the modelling
and the simulation of the behaviour of more complex physical environ-
ment;

• experimenting with the use of the methodology in more general IoT-
based applications and for the development of augmented environments
like smart homes and smart offices;

• optimizing the agent and control framework by avoiding the recourse
to JADE [33] and directly using the Theatre architecture [40]. All of
this would improve the efficiency of the execution platform and then
the fulfillment of CPS real-time constraints.
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• exploiting the available concurrency, which is cooperative for actors and
true parallelism for actions, in general GPU based high performance
applications.
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