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Automatic methods for the detection of accelerative
cardiac defense response
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Abstract—Cardiac Defense Response (CDR) is a basic psycho-
physiological response that precedes the emotion of fear. In the
health-care context, the definition of methods to automatically
identify the CDR is a relevant issue, because frequent CDR
activations (not associated to proper danger stimuli) can pose
the subject to health risk and eventually develop into severe
psychophysical disorders, such as hysteria and schizophrenia.
Therefore, providing tools for automatic identification of this
defense mechanism can significantly help psychologists and
caregivers in understanding the patient’s mental and health
status. This work discusses and compares different methods and
specifically proposes a novel algorithm designed to detect the
CDR by analyzing the electrocardiogram (ECG) signal. It is
based on the extraction of specific features from a signal, directly
generated from the ECG, which are compared against an ad-hoc
computed reference CDR template. The proposed method has
been tested on real ECG traces, a number of them containing
full activations of the CDR pattern, and compared against other
techniques, discussed in the paper, reaching an improvement of
10% in sensitivity, 18% in specificity, and 24% in precision with
respect to the best performance of the other related methods.

Index Terms—Emotion recognition, ECG analysis, Pattern
recognition, Cardiac Defense Response.

I. INTRODUCTION

Motions can be generically seen as a change from the

normal psychophysical state of a person, accompanied
by an impulse to action in conjunction with some specific
internal physiological reactions, each of which is expressed
through different parameters and designates different emo-
tional responses, such as joy, sadness, anger, and fear.

In addition to physiological response, emotions have clearly
motivational, cognitive and communicative relevance. At a
physiological level, both central and autonomic nervous sys-
tem play a central role, responsible for specific internal reac-
tions related to the manifestation of various emotions and for
regulating the intensity of stress and anxiety. These changes
are accompanied by cognitive aspects, capable of mediating
the relationship with the environment, assessing and giving
significance to surrounding events.

Among the many emotions, this work focuses on fear, a
primal and intense emotion derived from the perception of a
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threat or danger (either real or simply perceived so by the
subject). It is one of the primary and most basic emotions,
common to many species in the animal kingdom, because it is
dominated by the instinct (i.e. impulse) with the primal goal of
survival to any potential hazardous situation. The emotion of
fear is accompanied by many internal and external (visible and
invisible) phenomena [1], including acceleration of the heart
and respiratory rate, with the aim of preparing the organism
to react (both mentally and physically) against the perceived
danger with proper defensive reactions.

Any stressor disturbing the organism’ homeostasis immedi-
ately recalls regulatory reactions at psychological, emotional,
locomotor, hormonal and immunological level.

It is worth noting that today many of these internal reactions
can be observed and analyzed by acquiring certain physio-
logical signals. Among them, electroencephalogram (EEG),
electrocardiogram (ECG), and skin resistance (galvanic skin
response - GSR), represent the most promising alternative to
conventional methods for enabling automatic emotion recog-
nition [2].

Specifically, the use of these signals for emotions recog-
nition can give an answer to known issues suffered by other
literature methods [3], [4]:

« evaluation of facial expressions through computer vision
techniques is problematic in terms of video capture in
free unconstrained environments;

« analysis of movements and gestures is heavily influenced
by noise and often not achievable in practice;

« speech processing has zero relevance in the many situa-
tions in which the subject is silent; it is also significantly
affected by environmental noise in real-world scenarios.

In addition, biosignals have the advantage of being rela-
tively free from privacy concerns (particularly with respect
to camera-based approaches) and can be measured by non-
invasive wearable sensors, making them appropriate for a wide
range of real-world everyday applications.

In this work, we specifically focus on the basic car-
diac defense mechanism, called Cardiac Defense Response
(CDR) [5], which is related and precedes the fear. This paper
represents a significant extension of our previous work [6] and
describes, compares and evaluates four different methods of
automatic CDR detection; one of them, in particular, represents
a significant improvement to the state-of-the-art. To the best
of our knowledge, this is the first work addressing such
systematic analysis and proposing a practical and effective
answer to the problem of automatic CDR detection.

As aforementioned, CDR is a physiological reaction with a
protective and primal defensive role; however, it can lead to
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severe psychological disorders (such as stress, anxiety, phobia,
and depression), if its activation is too frequent or maintained
for long periods [5], [7], [8].

Indeed, the CDR could be also used to detect emotions
and emotional states, (e.g. fear, fluster, and panic); this would
imply its use in the context of emotion recognition and its
potential impact on the affective computing area.

Therefore, we claim that it is important to define a method
to detect CDR activations automatically, so to provide quanti-
tative psychologists and caregivers with a valuable tool to help
understanding the psycho-physiological state of subjects with
certain types of known psychological conditions.

To detect the CDR, we exploit the electrocardiogram (ECG)
signal, that is the graphical representation of the electrical
activity inside the heart during its operation, recorded from
the body surface (specifically, attaching electrodes on the skin
in specific locations in proximity of the heart).

The ECG is used to obtain a new signal that is more conve-
nient for processing. Our algorithm searches for the presence
of typical CDR pattern (using a reference CDR template)
inside this generated signal. The general concept is that, having
characterized the CDR template by means of certain features,
we look for portions inside the incoming signal that match
the reference pattern. A significant experimentation discussed
in Section IV demonstrates the effectiveness of the proposed
method against other pattern recognition techniques known in
literature.

The reminder of the paper is organized as follows. Section II
describes the scientific background of our work, focusing
in detail on the psycho-physiological relevance of the CDR
mechanism and on related work in terms of the different
pattern recognition techniques that we applied for CDR detec-
tion (including a description of our previously published CDR
detection approach [9]). Section III discusses how we applied
these techniques and specifically describes our novel approach
for automatic CDR detection that significantly outperforms
previous methods. Section IV describes the experiment pro-
tocol used to generate experimental data for performance
evaluation; the section then compares the results obtained with
the different detection methods and finally discusses some
interesting findings of our experiments. Finally, Section V con-
cludes the paper and provides insights for future developments.

II. BACKGROUND
A. Cardiac Defense Response

The cardiac defense response (CDR) refers to the idea that
organisms react physiologically to the presence of danger or
threat [2], [5]. This reactivity has a protective function, as it
provides the basis for adaptive behaviors, such as the “fight-or-
flight” response. This response is the first stage of a sequence
of internal processes that prepare the organism for struggle
or escape, therefore to react to threats priming for fighting or
fleeing [7].

An interesting experiment, videorecorded by happenstance,
revealed that emotions (including fear) can quickly transform
according to the progressive interpretation of the event dynam-
ics [10]. During an indoor video recording, a bird flew into an

open window hitting a windowsill. The recording documented
all the scene. Immediately, a woman in the room oriented
toward the sound stimulus. The very first reaction was surprise,
immediately after she moved away from the threat (a flight
response) but at the same time she grabbed an umbrella as
improvised weapon (a fight response). A few moments later,
however, her concern moved from herself to the bird, as it
was trapped in the hairs of another person in the room and in
danger of being hurt. Finally, she took a napkin to rescue the
bird by wrapping and releasing it out the window.

Authors hence observed a progression from surprise about
the unexpected event, to concern for self-protection, to final
concern for others, including what was originally perceived as
threat. The dynamics evolved from flight to fight to compas-
sion in less than 3 seconds.

In any case, there are increased health risks if the CDR
is maintained for long periods, degrading the physiological
response to anxiety [5], [8]. Excessive physiological reactivity
is indeed one of the main causes of emotional stress and other
psychological disorders [11]. The CDR mechanism shows
how a person reacts to unexpected dangerous situations: on
average, within the first 3 seconds the person will react with a
basic CDR response (the brain determines whether the external
stimulus represents an actual imminent danger). If the event
is classified as not dangerous, the body returns to a normal
state and the heart rate stabilizes. On the contrary, it takes
around 6 seconds further to develop a sense of fear and the
brain decides which action has to be taken. In the case of an
actual danger, the person can either move away (“flight”) to
avoid it (e.g. dodging a skidding car), or fight the threat and
self-defense.

The “defense cascade” is described as a (accelerative and
decelerative) cardiac response model with activation of the
sympathetic nervous system but also with parasympathetic
influences. It involves an attentional component also with
motivational significance, thus highlighting the dynamic na-
ture of this defense reaction. The defense reaction follows
a dynamic sequence (or cascade) of reactions; during the
initial stages, attentional factors predominate (i.e. detection
and analysis of the potential danger), while in the later
stages, motivated actions must to take place (i.e. attack/escape
strategies must be activated). Therefore, depending on the type
and severity of the danger, its spatial and temporal proximity,
and the success or failure of the initial stages to cope with it,
different components of the defense reaction may take place
subsequently.

The complex pattern of heart rate changes, that characterizes
the cardiac defense mechanism, can also be analyzed under a
naturalistic perspective. The rate alteration pattern observed
in response to aversive unexpected and intense stimuli, with
two consecutive accelerative/decelerative components, seems
to reflect the sequence of two defensive phases described
earlier: (i) a first protection phase related to attentional low
latency acceleration/deceleration causes the interruption of
ongoing activity and forces the analysis of the potential danger,
and (ii) a latter motivational protection phase related to long
latency acceleration/deceleration prepares for active defense.

Therefore, the cardiac defense model would represent the
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be present into a bigger source image, in practice is typically
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necessary to apply a brute force approach to calculate the
SSD over a range of x, y displacements to find the minimum
SSD value, which would correspond to the best alignment
offset. Therefore, the general idea is that for matching images
the SSD is small [17]. Although other methods (e.g. based
on Normalized Cross Correlation) [18] are typically more
effective, the SSD is often chosen for its simplicity and low
computational cost.

As discussed in Section IV, starting from the natural intu-
ition of considering a time series as a one-dimensional image,
we applied the SSD on cardiac signals to detect CDR patterns
using the following equation:

SSD = (i — i) )
1=0

Where x and y are the reference CDR template pattern and
the actual incoming signal, respectively. After an appropriate
signal alignment, if the obtained minimum SSD value is below
a certain threshold, the algorithm will detect the occurrence
of a CDR pattern into the source signal portion. The value
x; — y; represents the differences between corresponding
points of the two series. The difference is squared to obtain
always positive difference values so avoiding to let summation
decrease if y occasionally goes above x (which would clearly
reduce the quality of the similarity estimation).

2) Derivative Dynamic Time Warping:
Dynamic time warping (DTW) [19] is a template matching
technique for measuring time series similarity. Given two
sequences 1’ and m, the goal of DTW is finding the best
warping path that realizes the alignment between the two time
series, under certain conditions. Its advantage is the minimiza-
tion of shifting (translation) and distortion (amplitude scaling)
effects. However, although DTW has been successfully applied
in several domains, it can fail in certain conditions. In fact,
this algorithm may try to explain variability in the Y-axis by
warping the X-axis. Another critical problem is that it fails to
find obvious alignments between two series simply because
a feature of one series is slightly higher or lower than its
corresponding feature in the other one (this situation is referred
as “singularity”).

Therefore, an optimization of DTW has been proposed [20].
It is called Dynamic Derivative Time Warping (DDTW) and
rather than using the raw series, it considers only their (esti-
mated) local derivatives.

Let Q = {q1,42,--,qn} and C = {c1,¢a,...,cm } be two
time series. There is a n by m matrix D where

d(i, j) = (q; — ¢;)*. 2)

In the original DTW, the distance between g; and ¢; is given
by equation 2. However, in DDTW, the square of difference
of the estimated derivatives of ¢; and ¢; replaces d(i, j). The
q; value is estimated with

Di(g) = (i — qi—1) + <2Qi+1 —qi—1)/2 3)

Similarly, the derivative of C' can also be obtained with
equation 3 and is denoted with Dj(c).

Thus, the distance used with the DDTW is given by
. 2
D'(i. j) = (Di(q) = Dj(c)) “

The original D is therefore replaced by D’ and the rest of
DDTW algorithms is same of DTW [19], [20].

3) Non-stationary Index:

In our previous work [9] we aimed at detecting CDR with an
algorithm designed to detect changes in signal stationary. The
background motivation is that physiological signals, including
the ECG, are generally highly stationary.

In formal terms, a signal is stationary if the mean and
standard deviation of the signal do not change during signal
acquisition. In turn, a signal is non-stationary if the mean
and standard deviation of the signal change during signal
acquisition. In the ECG signal, non-stationary events are due
to external factors, such as changes in posture, changes in
respiration patterns, and other factors.

We put forward a hypothesis that emotions can introduce
non-stationary events in the ECG, due to the physiological
changes associated to responses to basic emotions such as fear
and more specifically the effects of the CDR [2], [5], [11].

The basis for this algorithm is that sudden changes in heart
rate regulation due the CDR can be detected by analyzing the
non-stationary transitions between normal heart rate regula-
tion and during the CDR. The algorithm employs the cross-
correlation integral [21] method to quantify the amount of
stationary present in a signal [22].

By using the concept of Poincare recurrence points [23],
a time series can be mapped into phase space by time delay
embedding. Let {z(i),i = 1,2,...} be a scalar time series;
vectors can be constructed as follows:

7, = [x(i),z(i + L), ..., x(i + (m — 1)L)] )

where m is the embedding dimension and L the time
delay. Thus {Z;,i = 1,2, ..., 7 } represents a trajectory in m-
dimensional space, where 7 is the total number of vectors.

For two separate time series x (i) and y(i) the cross corre-
lation integral is defined as follows:

Cm(@,y) = P([l2™ @) =y ()| < ©) =

N
. . 6
= Yol -vol)

3,J=1

where:

e € is a given minimal tolerance distance,

e N is the size of the series, and

« O is the Heaviside step function and

(e —|lz™ (i) —y™(5)|| ) is set to 1 if © is positive and
to 0 if © is negative.

In brief, the cross-correlation integral provides a probability
that a particular signal is stationary. A probability close to 1
indicates that the signal is stationary; conversely, a probability
close to 0 indicates that the signal is highly non-stationary.

In our previous method [9], (i) we cyclically calculate the
cross-correlation integral over a moving-window (10% of the
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Fig. 2. NSI applied to an RR signal.

length of the signal) to produce multiple samples of the cross-
correlation integral and, finally, and (ii) we convert the cross-
correlation integral samples to percentages within a range from
0 to 100%, by calculating the non-stationary index (NSI) as

follows:
Cm(x> :E) B Cm(x7 y)
Cin(z,2) + Cp(,y)

The NSI allows us to detect non-stationary changes and
transitions of the signal by running the CDR algorithm as a
function of time. In fact, if the NSI value is above a certain,
empirically assigned threshold, it means that the signal is
highly non-stationary (extremely non-stationary signals would
give NSI value close to 100 [22]) and at this point the
algorithm detects the occurrence of a CDR (see Figure 2).

However, we found a number of limitations with this ap-
proach. First, it is not possible to distinguish the different types
of CDR patterns (see Section III). Secondly, and probably
most important, in real-life scenarios - where abrupt heart rate
changes might be due to several factors other than defense
response - with the NSI method, any short term heart rate ac-
celeration/deceleration pattern might be incorrectly classified
as potential CDR activation.

NSI =

100 7

III. PROPOSED METHOD

Accelerative CDRs are more frequent than decelerative
CDRs [13], this is our reasoning to focus on the definition of
an algorithm tailored for automatic detection of accelerative
CDRs.

In addition to the methods discussed in Section II.B, we
propose a method aiming at recognizing the CDR pattern
directly. We found the proposed method to be the most
effective among others related approaches, as discussed in
Section IV.

Our approach consists of real-time collection and off-line
analysis of the ECG trace. The algorithm is composed of a
number of processing blocks, as depicted in Figure 3.

First, the original raw ECG signal is analyzed to obtain the
tachogram signal. The tachogram (or RR signal) is an interval
series in which each point represents the time interval (usually
expressed in ms) between an heartbeat and the previous one,

ECG ECG QRS-complex RR RR and HR series HR HR series
Acquisition Detection Extraction Segmentation
Classification Instantaneous HR
F1 series segments
TRUE if (ing, !satisfies CDRy) j<—
return false; F2
if (ing, !satisfies CDRy,) [<— Median
return false; F3 intervals _—_
Sf (ing !satisfies CDRy) 3 Feature Medlan-lnt.erval
Extraction Calculation
FALSE return false; F4
if (ing !satisfies CDRg,) <
return false; F5
if (ings !satisfies CDRys) [<—1
return false;
return true;

Fig. 3. Block diagram of the proposed CDR detection method.

FI'{ R-R Interval Ff
!

I
Qs

Fig. 4. Peak-to-peak interval (RR).

as depicted in Figure 4. We identify and timestamp the
occurrence of heartbeats by detecting the QRS complex (the
intra-cardiac indication of the ventricular contraction) inside
the raw ECG signal, using a dynamic threshold-based QRS
detection algorithm [9].

RR intervals are useful to quickly obtain the instantaneous
(i.e. beat-by-beat) heart rate (HR) signal. Let RR; be the time
interval, expressed in seconds, between the ith heart beat and
the previous one. Then, the corresponding instantaneous heart
rate, expressed in BPM (beats per minute), is simply given by:

60
RR;

The HR series are then segmented. Specifically, according
to consolidated studies [5], [11], [13] (see also Figure 1), we
assume the duration of the accelerative CDR pattern is equal
to 75 seconds; thus, our segments are also 75 seconds long.

Then, to reduce the size of the input for our pattern recog-
nition problem, following the same approach proposed by Vila
et al., we perform a transformation of the HR signal using the
‘method of the medians’ [12]. This method gives a simplified,
compact representation based on 10 points corresponding to
the medians of 10 progressively longer intervals: 2 of 3s, 2 of
5s, 3 of 7s, and 3 of 13s. This representation simplifies pattern
recognition without altering the topographic characteristic of

Samples

Fig. 5.  Accelerative CDR pattern generated by averaging all the CDRs
detected in our experiments.
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Fig. 6. Our proposed CDR pattern - expressed in terms of medians of 10 intervals - and its five significant features.

the response [12]. The calculation of the median values is
performed over non constant time intervals to better adapt to
the nature of the event of interest. More precisely, the intervals
to which each of the 10 median values is calculated, are sized
as follows:

o first two intervals include 3 RR values each;

« two intervals include 5 RR values each;

o three intervals include 7 RR values each;

o last three intervals include 13 RR values each.

This methodology is very useful as it tends to drastically
reduce individual changes in the CDR pattern, and it is robust
against motion artifacts or other noise that might be present in
the original ECG signal. The plot in Figure 6 represents the
application of the method of the medians to the CDR reference
template shown in Figure 5.

We then characterize the median-interval series with the
following five features:

e FI. Location of the first maximum (i.e. first accelerative
component) in the medians signal between the second
and fourth median interval;

o F2. Amplitude of the first accelerative component at least
20% above the average HR value, calculated during the
previous minute;

e F2. Location of the minimum between the fourth and
seventh median interval;

e F3. Location of the second maximum (i.e. second accel-
erative component) between the sixth and tenth median
interval;

o F5. Amplitude of the second accelerative component
peaking at a value that is at least 50% of F2.

These “structural” features closely characterize the phys-

iology of the accelerative CDR pattern [5]: low latency,
rapid heart rate increase (F1, F2) followed by a second,
long latency, slower and less pronounced heart rate increase
(F3, F4, F5). Their values have been obtained by empirical
analysis of our experiments; we created a reference CDR
template (depicted in Figure 5) by averaging all the HR signal
portions (whose data come from our experiments) in which
we visually identified accelerative CDR activations. It is worth
noting that the template we obtained is fully consistent with
previous literature (compare qualitatively our CDR template
with solid black line in Figure 1; note that our plot contains
100 instantaneous HR samples, roughly corresponding to 75
seconds), confirming the significance of our experiments and,
consequently, our feature characterization.

The last step of our CDR detection algorithm is the clas-
sification, which, thanks to the previous processing steps,
becomes very simple: with if-then-else blocks, the algorithm
analyzes the incoming medians signal portion, searching for
the appearance of a pattern that satisfies, in the correct
sequence, the CDR features. If all of them are satisfied, the
algorithm detects a CDR activation; conversely, as soon as
it detects a non corresponding feature, the potential match is
discarded.

IV. PERFORMANCE EVALUATION

To evaluate the performance of the proposed approach and
to compare it against the other methods described so far,
we used the same dataset that was collected during a set of
experiments conducted according to a well-defined experiment
protocol [9].
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Fig. 7. Protocol used to elicit the start reflex and CDR using sounds.

Fig. 8.
produced by the auditory stimulus (right).

Experiment participant right before (left) and during the startle

A. Experiment Protocol

The aim of the experiment protocol, summarized in Figure 7
was to elicit the CDR by exposing the subject to sudden, un-
expected, beep sounds (at a frequency of 440Hz and duration
of 750ms) [11]. This has the effect of producing the typical
startle reflex response when a sudden threat is perceived by
the brain.

Figure 8 shows one of the participant during the experiment.
In particular, the picture on the left of the figure depicts
the subject a moment before hearing the auditory stimulus
with his headphones: the subject appears calm and his facial
expression is relaxed. The picture on the right of the figure
depicts the subject just in the moment of the beep sound being
played in the headphones: although he was not among the
ones exhibiting very pronounced startles with their body or
face (unfortunately, we could not obtain written permission
to show pictures from other participants), we can still clearly
observe his startle reflex by his facial expression. For instance,
a clear indication is given by the open mouth. Mouth opening
can have indeed functional significance, as an instinctive act
of favoring inhalation to oxygenate the blood in preparation
for a fight or flight response [10].

The startle reflex is natural in humans and animals. A
characteristic of the startle reflex is that it can trigger the
emotion of fear (if a person is under danger) and further
progress to other states such as anxiety, panic attacks, and heart
palpitations. The cardiac counterpart of the (motor) startle

reflex is indeed the CDR [7].

More specifically, during each experiment, we recorded the
ECG signal and extracted the RR signal over a period of
30 minutes. The participants were blindfolded and exposed
to four beep sounds played at roughly regular intervals via
professional headphones 7. We recruited 40 healthy younger
adults: 15 women (average age of 25) and 25 men (average
age of 29). Ethical consent was obtained from each of the
participants.

Specifically, the raw ECG signal acquisition system is
shown in Figure 9 and is composed of a wearable ECG sensor
consisting of a Shimmer2R [24] unit equipped with a dedicated
ECG expansion daughter-board. Full list of specifications is
given in Table L.

ECG signal is sampled at 150Hz and data are periodically
sent over Bluetooth to an Android-based smartphone.

TABLE 1
SPECIFICATIONS OF THE WEARABLE SENSOR PLATFORM USED FOR THE
EXPERIMENT.

Specification

Shimmer 2R with ECG-daughter board
TinyOS/NesC
350 (includes ECG board)
8MHz Texas Instrument MSP430
Chipcon CC2420 (IEEE 802.15.4)
Roving Networks RN42 (Class 2 BT)
2GByte on microSD card
280mAh Li-Ion rechargeable

Description |

Sensor Platform
Programming Environment
Retail Price
Microcontroller

Low power Radio Chip
Bluetooth Radio Chip
Local Storage

Battery type

ECG Type four leads, with disposable electrodes
ECG Maximum sampling rate 159Hz

ADC resolution 12 bit

Bandwidth 8.4 kHz

Input range
Total weight
Total dimensions

differential dynamic, 800 mV
35 grams (includes ECG board)
53 x 37 x 15 mm

The incoming ECG signal is processed online by the mobile
device to generate the RR interval series and the corresponding
instantaneous HR signal. These generated signals (as well as
the raw ECG trace) are saved locally to file allowing for off-
line CDR analysis.

B. Other Related Methods

To evaluate the effectiveness of our proposed method,
we applied other two state-of-the-art pattern recognition
approaches to compare their performances in recognizing
our accelerative CDR template. These alternative methods
are based on the sum of squared differences and derivative
dynamic time warping (see Section I1.B), respectively and are
discussed in the following subsections.

1) Sum of squared differences:
We first applied the Sum of Squared Differences (SSD), a
simple and lightweight algorithm to measure the similarity
between our CDR template pattern and the actual heart rate
signal.

We did not obtain satisfactory results with the SSD ap-
proach. The biggest issue has been found when the two
signals present similar average heart rate values. Figure 10(a)
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Fig. 9. Wearable 4 leads ECG sensor (using Shimmer2R node) and the
smartphone used to collect data.
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Fig. 10. SSD-based algorithm failure examples: (a) with a false positive
CDR detection, (b) with a false negative CDR detection.

shows a practical example in which data refers to one of the
participants to our experiment: signal in green represents our
CDR template while in black is the incoming signal; although
their SSD value is equal to 378 (that should generally suggest
that the signals are somewhat similar), the incoming signal
does not contain any CDR activation.

Conversely, we found many other cases in which the al-
gorithm fails to detect an accelerative CDR pattern simply
because it was stretched over the y axis. Figure 10(b) shows
a practical example: in this case the two series present
SSD = 1518 which should generally suggest that the signals
are significantly different.

As a consequence, it is impossible to identify a SSD
threshold to discriminate with sufficient accuracy the
presence of an accelerative CDR inside the incoming signal.
As summarized is Table II, the highest results we obtained
with this algorithm are yet poor.

NN

NN

Fig. 11.  Visual representation of DDTW signal matching.
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Fig. 12. DDTW warping effect to a HR signal containing an accelerative
CDR.

2) Derivative Dynamic Time Warping:

DDTW is a template matching technique for measuring time
series similarity. The fundamental concept of this algorithm
is finding the best warping path that allows the alignment
between two time series by a non linear distortion (see
Figure 11) with respect to the independent variable (typically,
the time).

It is worth noting that this pattern recognition method
is particularly effective on series in which only individual
components have features that can vary in function of time.

We have applied this algorithm to our RR series aiming
at finding a satisfactory warping to align a certain portion
of the incoming RR signal to our CDR template, so to
help the subsequent classification phase. Unfortunately, we
found out that our incoming RR series and the CDR template
often presented similar features with respect to time but very
different in terms of amplitude (y scaling, see Section II.B.2).
Although DDTW has been proposed to improve standard
DTW performance specifically in cases of amplitude distortion
between the sequences, it did not lead to excellent results either
(see Figure 12).

Howeverm, we found that the main issue of applying this
algorithm for CDR detection is that misalignments on RR

Page 8 of 17



Page 9 of 17

O©oOo~NOOPRWN-=-

Transactions on Affective Computing

FORTINO et al.: AUTOMATIC METHODS FOR THE DETECTION OF ACCELERATIVE CARDIAC DEFENSE RESPONSE 9

TABLE II
PERFORMANCE INDEXES OBTAINED BY OUR DIFFERENT PROPOSED CDR DETECTION APPROACHES.

Index | NSI-based | SSD-based | DDTW-based | Template-based
Sensitivity 40% 40% 58% 68%
Specificity 65% 54% 49% 83%
Precision 57% 50% 52% 81%

series can actually appear both over x and y axis, as there
exists variations (with respect to the CDR template) both in
terms of heart rate (specifically the intensity of the second
accelerative component presents significant variance among
subjects) and over time (the overall duration of the CDR
response is never exactly the same).

C. Results

To compare the different methods described so far, we
calculated the following performance indexes:

“Sensitivity” is the ability of the system to detect a CDR.
This value is the ratio between the number of detected CDRs
and CDRs actually occurred.

itivit TP ©)
sensitivity = ————

YZTP+FN

“Specificity” is the ability of the system to avoid false
positives. Intuitively, it is the ability to detect a CDR only
if this has actually occurred.

TN
ficity = ————— 10
speci ficity TN+ FP (10)
“Precision” is the ability of the system to properly distin-
guish both the occurrences of the CDR and its lack.

TP+ TN
Precision = ——— 11
recision P+ N (11)

The parameters of each equation are defined as follows:

e P: the total number of actual CDR activations that are
present in the available data;

o NV: the number of times in which the auditory stimulation
did not elicit the CDR;

o True Positive (I'P): a CDR actually occurred after the
stimulus and the detection method was able to identify
the event.

e False Positive (I'P): there is no appreciable cardiac
reaction after the stimulus, but the method (incorrectly)
detects a CDR activation;

o True Negative (I'N): there is no appreciable cardiac
reaction after the stimulus and the method does not detect
the CDR;

o False Negative (F'N): a CDR actually occurred after the
stimulus, but the detection method did not identify it.

Table II summarizes the values of the performance indexes
obtained by the described CDR detection approaches. The
table clearly shows the improvement obtained with the current
proposed approach.

D. Discussion

An interesting finding of our experiments is that the CDR
activation is constantly more pronounced after the first audi-
tory stimulus while its effect on the HR signal fades out with
the following beep sounds; in most of the cases, the third and
fourth stimuli did not elicited the CDR at all.

This phenomenon can be attributed to the adaptation of
the subject after the first auditory stimulus, so the first beep
elicits a clear CDR response while the heart rate alteration
due to the following beeps shows, instead, weaker changes
and occasionally unusual patterns, until the defense response
becomes completely undetectable.

The boundary between physiological and pathological CDR
activation can be indeed linked to this adaptation as it is related
to the concept of fear learning. The subjects that do not adapt
to the auditory stimuli are more exposed to pathologic effects
of the CDR in the real life.

V. CONCLUSIONS

In this paper we have presented a novel method for fully
automatic detection of CDR pattern, a basic cardiac response
that is a natural physiological reaction but that can lead
to serious psycho-physiological implications if its activation
occurs too often and for prolonged periods. We discussed and
compared different methods to detect the CDR by analyzing
the ECG signal and in particular we proposed an effective
and efficient CDR detection algorithm based on the extraction
of specific features from the (ECG-derived) instantaneous HR
series which are then compared against an ad-hoc computed
reference CDR template. The proposed method has been tested
on real ECG traces (obtained after an experiment involving
40 subjects), a number of them containing full activations of
the CDR pattern, and it reached 68% sensitivity, 83% speci-
ficity, and 81% precision. Our results present a reference for
future studies aiming at proposing alternative CDR detection
approaches.

With a vision of open data, ongoing works are devoted to
release all our experiment datasets and our source code with
free access in the framework of the SPINE Project [25], [26],
[27], [28]. In addition, we are evaluating the feasibility of
implementing the proposed CDR detection method as a fully
operating mobile application based on Android and a wearable
ECG sensor. Future works will include the application of our
method in a real world, unconstrained scenario so to obtain
a better understanding of its accuracy outside the context
of laboratory settings. The idea is to continuously monitor
subjects in their daily life throughout a given prolonged period
with the only requirement of annotating date and time in case
of sudden events that generated in the subject sense of startle,
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fear, or panic. It would be also interesting to enhance the CDR
recognition to classify correctly not only accelerative CDRs
but also the decelerative ones.

VI. ACKNOWLEDGMENTS

Our thanks to Filippo Rachiele for his support prototyping
and validating the proposed method. This work has been
partially carried out in the framework of the open-source
SPINE (Signal Processing In Node Environment) Project.

REFERENCES

[1] W. E. Blatz, “The Cardiac, Respiratory, and Electrical Phenomena
Involved in the Emotion of Fear,” J. of Experimental Psychology, vol. 8,
no. 2, p. 109, 1925.

[2] R. Bauer, “Physiologic Measures of Emotion,” J. of Clinical Neurophys-
iology, vol. 15, no. 5, pp. 388-396, Sep. 1998.

[3] E. Jang, B. Park, S. Kim, and J. Sohn, “Emotion classification based
on physiological signals induced by negative emotions: Discriminantion
of negative emotions by machine learning algorithm,” in Networking,
Sensing and Control (ICNSC), 2012 9th IEEE International Conference
on, 2012, pp. 283-288.

[4] J.Wagner, J. Kim, and E. Andre, “From physiological signals to
emotions: Implementing and comparing selected methods for feature
extraction and classification,” in IEEE International Conference on
Multimedia and Expo, 2005, pp. 940-943.

[5] R. Lépez, R. Poy, M. Pastor, P. Segarra, and J. Moltd, “Cardiac defense
response as a predictor of fear learning,” J. of Psychophysiol., vol. 74,
no. 3, pp. 229-235, 2009.

[6] G. Fortino and R. Gravina, “Real-time automatic detection of accelera-
tive cardiac defense response,” in 9th International Conference on Body
Area Networks (BodyNets 2014), 2014.

[7] Philip G. Zimbardo and Ann L. Weber and Robert L. Johnson, Psychol-
ogy (3rd Edition), Addison Wesley Longman, Ed., 1999.

[8] M. Ferniandez and J. Vila, “The cardiac defense response in humans:
Implications for behavior and health,” Int’nl J. of Psychophysiology,
vol. 7, pp. 195-196, 1989.

[9] R. Covello, G. Fortino, R. Gravina, A. Aguilar, and J. Breslin, “Novel
method and real-time system for detecting the Cardiac Defense Response
based on the ECG,” in In Proc. of IEEE Symposium on Medical
Measurements and Applications, May 2013.

[10] S. Marsella and J. Gratch, “Computationally Modeling Human Emo-
tion,” Communications of the ACM, vol. 57, no. 12, pp. 56-67, 2014.

[11] J. Vila, M. Fernandez, J. Pegalajar, M. N. Vera, N. Pérez, M. B. Sdnchez,
I. Ramirez, and E. Ruiz-padial, “A New Look at Cardiac Defense:
Attention or Emotion?” Spanish J. of Psychology, vol. 6, no. 1, pp.
60-78, May 2003.

[12] J. Vila, P. Guerra, M. Munoz, C. Vico, M. V. del Jesus, L. Delgado,
P. Perakakis, E. Kley, J. Mata, and S. Rodriguez, “Cardiac defense:
from attention to action,” Int’nl J. Psychophysiol., vol. 66, no. 3, pp.
169-182, 2007.

[13] M. N. P. Marfil, M. del Carmen Fernindez Santaella, A. G. Leén,
G. Turpin, and J. V. Castellar, “Individual Differences Associated
With Cardiac Defence Response: Psychophysiological and Personality
Variables,” Psychology in Spain, vol. 3, no. 1, pp. 54-62, 1999.

[14] F. Eves and J. Gruzelier, “Individual differences in the cardiac response
to high intensity auditory stimulation,” Psychophysiology, vol. 21, pp.
342-352, 1984.

[15] M. Richards and F. Eves, “Personality, temperament and the cardiac
defense response,” Personality and Individual Differences, vol. 12, pp.
999-1007, 1991.

[16] E. Lehmann and G. Casella, Theory of Point Estimation. New York,
USA: Springer, 1998.

[17] Sum of Squared Differences, “https://siddhantahuja.wordpress.com/tag/sum-

of-squared-differences,” 2015.

[18] J. Lewis, “Fast normalized cross-correlation,” Vision interface, vol. 10,
no. 1, pp. 120-123, 1995.

[19] D. J. Berndt and J. Clifford, “Using Dynamic Time Warping to Find
Patterns in Time Series,” in Workshop on Knowledge Discovery in
Databases, 1994, pp. 359-370.

[20] E.Keogh and M. Pazzani, “Derivative Dynamic Time Warping,” in SIAM
International Conference on Data Mining, 2001.

[21] 1. V. Fel’dshtein, “The cross correlation integral: Its features and ap-
plication to nonstationarity detection in time series,” Technical Physics,
vol. 45, no. 6, pp. 667-671, 2000.

[22] B. Kiremire and T. Marwala, “Nonstationarity detection: The use of the
cross correlation integral in ECG, and EEG profile analysis,” in CISP
'08, May 2008, pp. 373-378.

[23] J. B. Gao, “Recurrence time statistics for chaotic systems and their
applications,” Physical Review Letters, vol. 83, no. 16, pp. 3178-3181,
1999.

[24] Shimmer website, “www.shimmersensing.com,” 2015.

[25] R. Gravina, A. Andreoli, A. Salmeri, L. Buondonno, N. Raveen-
dranathank, V. Loseu, R. Giannantonio, E. Seto, and G. Fortino, “En-
abling Multiple BSN Applications Using the SPINE Framework,” in
2010 International Conference on Body Sensor Networks, ser. BSN
2010, June 2010, pp. 228-233.

[26] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari,
“Enabling Effective Programming and Flexible Management of Efficient
Body Sensor Network Applications,” IEEE Trans. Human-Mach. Syst,
vol. 43, no. 1, pp. 115-133, Jan 2013.

[27] SPINE website, “http://spine.deis.unical.it,” 2015.

[28] E. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri,
and M. Sgroi, “SPINE: A domain-specific framework for rapid prototyp-
ing of WBSN applications,” Software: Practice & Experience, vol. 41,
no. 3, pp. 237-265, Mar. 2011.

Giancarlo Fortino (SM’12) received the Laurea
(B.S and M.S) and Ph.D in computer engineering
from the University of Calabria, Italy, in 1995 and
2000, respectively. He is currently an Associate Pro-
fessor of Computer Engineering (since 2006) with
the Department of Informatics, Modeling, Electron-
ics and Systems (DIMES), University of Calabria.
He holds the scientific national Italian habilitation
for Full Professor and he is also Guest Professor of
Computer Engineering at the Wuhan University of
Technology (China) and adjunct senior researcher at
Italian National Research Council. He authored about 250 publications in
journals, conferences, and books. His research interests include distributed
computing, wireless sensor networks, software agents, cloud computing,
multimedia networks. He is currently an associate editor of IEEE Trans. on
Affective Computing, IEEE Trans. on Human-Machine Systems, Information
Fusion, Engineering Application of Artificial Intelligence, Journal of Network
and Computer Applications. He is co-founder and CEO of Sensyscal S.r.l., a
spin-off of University of Calabria, engaged in advanced applied research and
development of sensor-based systems.

Raffaele Gravina received the PhD degree in com-
puter engineering from the University of Calabria,
Italy, in 2012. He is currently serving as PostDoc-
toral Research Fellow in Computer Engineering at
the University of Calabria, Italy. He is the main
designer of the SPINE Framework and responsible
for the open-source contributions. He spent two
years as researcher at the Telecom Italia WSN
Lab at Berkeley, CA. He is involved in several re-
search projects on WSNss, including BodyCloud and
CONET FP7. He is co-founder of SenSysCal S.r.l.
He is author of more than 30 papers in international journals, conferences,
and books. His research interests are focused on high-level programming
methodologies and frameworks for WBSNs, Collaborative BSNs, BSN-Cloud
Computing integration, pattern recognition on physiological signals, human
activity recognition and motor rehabilitation assistance, ECG analysis for
cardiac monitoring and emotion detection.

Page 10 of 17



