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A B S T R A C T

Currently, ECG-based authentication is considered highly promising in terms of user identification for smart
healthcare systems because of its inimitability, suitability, accessibility and comfortability. However, it is a great
challenge to improve the authentication accuracy, especially for scenarios that include a large number of users.
Thus, this paper proposes a parallel ECG-based authentication called PEA. Specifically, this paper proposes a hy-
brid ECG feature extraction method that integrated fiducial- and non-fiducial-based features to extract more com-
prehensive ECG features and thereby improve the authentication stability. Furthermore, this paper proposes a
parallel ECG pattern recognition framework to improve the recognition efficiency in multiple ECG feature spaces.
Through the experiments, the performance of the proposed authentication is verified.

1. Introduction

To improve the degree of certain qualities or attributes, such as
availability, privacy, reliability, safety, security, and their nonintelligent
counterparts, smart healthcare systems focusing on these qualities are
intended to improve health outcomes, reduce costs, and enhance the
quality of life (Laplante et al., 2016; Gravina and Fortino, 2016). Be-
cause these systems involve various sensitive information, such as med-
ical data and privacy records, it has become an indispensable task to
safeguard the security and privacy of smart healthcare systems (Li et al.,
2016). Therefore, various authentication methods have been proposed
to protect user privacy and security.

It is now widely recognized that biometrics are more reliable than
knowledge- and possession-based approaches such as identity cards and
usernames/passwords because for biometrics, there is no need to re-
member anything. Biometric attributes cannot be lost, transferred or
stolen, and they offer better security because these attributes are very
difficult to forge and require the presence of a genuine user to grant ac-
cess to particular resources (Unar et al., 2014). Therefore, the biomet-
ric-based approach is considered to play a critical role in balancing pri-
vacy with performance (Dantcheva et al., 2016). Generally, biometrics
are divided into the following two categories:

1. Behavioral Biometrics are often implemented on mobile and wear-
able devices to identify users by gesture, touch dynamics, keystroke,
etc. (Abate et al.,; Bo et al., 2013). Generally, behavioral biometrics
are used to prevent inside attacks, but they have also been deemed
valid for entry into a system (Manning, 2017). Hence, some ad-
vanced biometrics involving more behavioral information are pro-
posed to provide better authentication (Peng et al., 2017).

2. Physiological Biometrics are powerful emerging modalities and are
becoming a promising technology for automatic and accurate in-
dividual recognition in human identification, including electrocar-
diograms (ECGs) (Zhang et al.,) and electroencephalograms (EEGs)
(Kumari and Vaish, 2015). For example, Martinovic, et al. proposed
a pulse-response biometric system to enhance the security of contin-
uous authentication on a secure terminal (Martinovic et al., 2017).
More specifically, Barra, et al. proposed a physiological biometric
system based on the extraction of fiducial features (peaks) from the
ECG combined with the spectrum features of the EEG to support bet-
ter authentication in healthcare applications (Barra et al., 2017).

3. Multimodal Biometrics have been proposed to combine physiolog-
ical and behavioral biometrics to improve the robustness (Bansal et
al., 2017). In (Gowda et al., 2017), Gowda, et al. developed a hy-
brid biometric system in which both psychological and behavioral
traits are fused at the score level, including face, palm, signature and
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speech traits. Furthermore, Sultana, et al. proposed mining social be-
havioral information from an online social network and fused tradi-
tional face and ear biometrics to enhance the performance of a tradi-
tional biometric system (Sultana et al., 2017).

Obviously, physiological biometrics are suitable for authentication
in healthcare systems because the complexity and scalability that be-
havioral and multimodal biometrics often need to collect more data are
unconnected with user healthcare. Therefore, ECG-based biometrics are
widely used to provide continuous authentication for healthcare systems
(Satija et al., 2017; Zebboudj et al., 2017; Zaghouani et al., 2017).

However, based on a comprehensive investigation of ECG-based au-
thentication, in (Fratini et al., 2015), A. Fratini et al. concluded that
that new techniques will be developed to improve the authentication
accuracy, especially for scenarios that include a large number of users.
Hence, this paper proposes a parallel ECG-based authentication named
PEA for smart healthcare systems to provide more accurate and effec-
tive biometrics. Specifically, the main contributions of this work include
the following:

• Addressing the instable accuracy of authentication in different scenar-
ios, this paper proposes a hybrid ECG features extraction integrating
fiducial and non-fiducial based features. This approach attempts to
extract more comprehensive ECG features to improve the authentica-
tion stability.

• To improve efficiency, this paper proposes parallel ECG pattern recog-
nition based on MapReduce that can effectively search the multi-
modal ECG feature space.

The remainder of this article is organized as follows. Section 2 pre-
sents the detailed design of the proposed scheme. Section 3 describes
the proposed hybrid ECG feature extraction consisting of fiducial and
non-fiducial features. The proposed parallel ECG pattern recognition is
introduced in Section 4, followed by the experimental analysis in Sec-
tion 5. Finally, Section 6 concludes this paper.

2. System design

2.1. Motivation and design issues

The proposed ECG-based authentication is considered to be highly
promising in terms of user identification for smart healthcare systems
because of its attractive features:

• Inimitability: Many significant works have proved that ECG is an in-
herent vital signal that cannot be easily imitated, unlike fingerprints,
voice, iris and other biometrics (Arteaga-Falconi et al., 2016).

• Suitability: ECG is more crucial than other physiological signals that
some biometrics are not available for those who are visually impaired
and have amputations (Sidek et al., 2014).

• Accessibility: Because smart healthcare systems often need to collect
various physiological data, among which ECG is one of the most im-
portant vital signals to monitor, ECG is convenient for authentication.

• Comfortability: Compared with other physiological biometrics, espe-
cially EEG, ECG data are easily collected from comfortable conven-
tional mobile or wearable devices (Kang et al., 2016).

2.2. Framework of PEA

Addressing these design issues, this paper proposes PEA to provide
a more suitable authentication process for smart healthcare systems. In
Fig. 2, the framework of PEA is illustrated and includes the following
components:

• Physiological Data Collection: Physiological information is col-
lected through telemedical terminals, wearable devices, sensors, etc.
Only ECG signals are transmitted to the authentication server, and
other physiological data are not transmitted to the healthcare data
center until the user is identified.

• Hybrid ECG Feature Extraction: In PEA, fiducial- and non-fidu-
cial-based features are extracted for ECG pattern recognition. In par-
ticular, non-fiducial-based features include morphological and spec-
tral features.

• Parallel ECG Pattern Recognition: Assisted by cloud computing,
Big Data and other techniques, parallel ECG-based identification is
available and efficiently supports authentication. Specifically, linear
discriminant analysis (LDA) and 2-dimensional principal component
analysis (2DPCA) are implemented in PEA to improve the authentica-
tion accuracy because their effectiveness in ECG pattern recognition
has already been widely proved (Varatharajan et al., 2017; Huang and
Zhang, 2014; Xie et al., 2016; Pinto et al.,).

• Physiological Data Transmission: After authentication, all the
sensed physiological data are transmitted to the healthcare data cen-
ter.

2.3. Scenarios

Due to the privacy of healthcare data, authentication has attracted
more attention in the development of telemedicine and healthcare sys-
tems. Through PEA, only an ECG signal is used to provide acceptable au-
thentication. Because ECG signals are monitored in nearly all telemedi-
cine and healthcare systems, PEA could be implemented in the follow-
ing representative scenarios:

• In an emergency, a patient may be unable to provide details about
their medical history, allergies, etc., which are critical and helpful for
emergency treatment. Assisted by PEA, the system can identify the
patient, whose hospital information can then be accessed.

• Currently, although wearable devices are widely used, most only sup-
port conventional authentication methods, e.g., logging in with user
name and password. However, it is often not convenient to enter ac-
count details while exercising. Through PEA, as long as an ECG signal
can be sensed, rapid and continuous authentication would be avail-
able.

3. Hybrid ECG feature extraction

To accurately represent ECG features, as much information as possi-
ble should be involved in feature extraction. Therefore, this paper pro-
poses a hybrid ECG feature extraction technique that includes fiducial-
and non-fiducial-based features.

3.1. Fiducial based feature extraction

It has been widely accepted that PQRST-peaks are the most signif-
icant fiducial-based features of ECG; they are marked and stored over
the entire ECG signal, and the peak is specified as R-peak (Ravanshad et
al., 2014). Thus, PQRST-peaks are considered the main fiducial features
in the proposed scheme.

Fig. 1 illustrates a typical ECG signal waveform, where PQRST-peaks
can be determined by wavelet transform (Banerjee and Mitra, 2014).
Specifically, PQ, QR, RS and ST duration scans can be directly calculated
to represent the time-domain features of the ECG signal. Furthermore,
the R-peak has a minimal impact on ECG recognition, and only the am-
plitudes of PQ, PT and SQ are calculated to represent the amplitude fea-
tures of the ECG signal. In summary, the time-domain and amplitude
features can be extracted through a PQRST-peak-based approach.
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Fig. 1. PQRST-peaks feature extraction from the ECG signal.

Fig. 2. Framework of PEA

3.2. Non-fiducial-based feature extraction

3.2.1. Morphological features
Morphology features, which are one of the most representative ECG

non-fiducia- based features, are easily recognized. Hence, the proposed
scheme includes morphological features in the hybrid ECG feature ex-
traction. Specifically, the morphological features are extracted with the
following steps:

1. The ECG signal matrix of User i is established through Equation (1),
where C represents the number of the ECG signal files of this user, N
represents the number of signal periods in each ECG file, and Sj is the
ECG signal value acquired at timestamp j.

(1)

2. The global hash matrix is generated through Equation (2), where P
represents the number of users.

(2)

3. Then, the eigenvalues and eigenvectors of G can be directly calcu-
lated. According to their physical significance, the top-n eigenval-
ues and corresponding eigenvectors can approximately represent the
original matrix; i.e., they are considered the morphological feature.

3.2.2. Spectral features
Generally, the spectral features of ECG signals are robust and are not

affected by the environment. Although they are difficult to distinguish,
these features can be involved in the proposed exaction to improve the
robustness. Specifically, ECG spectral features can be extracted through
the following steps:

1. ECG signal of User i is normalized to be signal(i).
2. The linear prediction coefficients (LPCs) of signal(i) are calculated

through Equation (3), where ai is determined by the minimum error
method. Specifically, the minimum error e[n] can be calculated by

3
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Levinson-Durbin (Zeinali and Shafiee, 2016), as presented in Equa-
tion (4).

(3)

(4)

3. The spectrum of p[n], i.e., Z(Ω), can be generated by the Fast Fourier
Transformation (FFT), as shown in Equation (5); then, the feature of
the ECG signal can be quantitatively analyzed.

(5)

4. Parallel ECG pattern recognition

4.1. Theory model

Parallel processing is the key technique that support incremental
training, in which only new data must be trained rather than re-training
all of the data when new data are generated. Fig. 3 illustrates the de-
tailed theory model of the proposed algorithm.

1. Assisted by the distributed infrastructure of MapReduce, the raw data
are divided into multiple subsets, Sample1, …, SampleN, for training
and recognition.

2. Each subset representing the hybrid features of the ECG signal is par-
titioned into multiple blocks.

3. Through linear discriminant analysis (LDA), the hybrid features can
be extracted and four feature spaces calculated: the amplitude space
A, the duration space D, the spectrum space S and the morphology
space M. Note that it has been proved that though LDA can achieve
good performance, an approach that integrates LDA and two-dimen-
sional principal component analysis (2DPCA) can significantly im-
prove the accuracy, as presented in Section 5.

4. Finally, the optimal result can be obtained by traversing the hybrid
feature spaces.

4.2. Algorithm design and implementation

In contrast to the traditional pattern recognition algorithms, the pro-
posed approach includes two search processes: searching in the same
feature space and in different feature spaces. Based on the model de-
scribed in Subsection 4.1, the proposed parallel algorithm efficiently im-
proves the authentication accuracy, and both the quick search and the
incremental model are supported. Fig. 4 illustrates the proposed paral-
lel search scheme, in which a suitable result similar to the input pattern
‘Test’ is found by the following steps:

1. First, the features should be extracted from ‘Test’; however, the pro-
posed algorithm is different in that ‘Test’ is transmitted to each
node and there is a private abbreviated feature space named ‘Feature
Space Split.’

2. Then, the ’Test’ features are extracted. The number of features is r,
which corresponds to the number of ’Feature Space Split.’ Note that
only one feature is extracted by the conventional approach.

3. Through a two-round search, an optimal value is found according to
the occurrence probability in multimodal feature spaces.

Furthermore, Fig. 5 shows the details of the proposed two-round
search in multimodal feature space.

1. The first-round search is expected to find the local optima in each
feature space, i.e., l_Result1, …, r_Result4. Specifically, ‘Test’ must be
projected with each ‘Subspace’ in each ‘Space’, and each ‘Space’ in-
cudes four ‘Subspaces’, i.e., Subspaces A, D, S and Z.

2. In the second-round search, the resulting sets from all the ‘Sub-
spaces’ are merged as<Result, frequency>, representing the prob-
ability of each result in the overall feature space. Then, the global
optimum can be deduced.

5. Experiment

5.1. Experimental dataset and environment

To verify the performance of the proposed scheme, the MIT-BH data-
base1 is considered the main experimental dataset. Specifically, MIT-BH
includes 100 samples, and each sample contains 200 ECG signal files;
thus, this dataset includes 20, 000 ECG signals. Moreover, 100 morbid
samples are added to the experimental dataset by considering the diver-
sity of the data sources. Each sample includes 10, 000 signals that are
equal to the volume of the ECG signal of one user that is acquired in
approximately 10s.

The experimental environment is constructed by four computers
with a computer with a Intel (R) Xeon (R) i7 CPU, 32 core thread 16,
128GB memory, and 16TB drive. Moreover, the operating system is
Ubuntu 12.04, and the version of Hadoop is 0.23.11.

5.2. Experimental results

Three experiments are designed to evaluate the performance of the
proposed scheme in terms of recognition, classification and efficiency.

5.2.1. Comparison between different features
As mentioned before, the proposed scheme involves four categories

of ECG features: time-domain and amplitude features by PQRST-peaks,
spectral features from FTT, and morphological features. These features
are extracted through three approaches, i.e., PQRST, FTT and morphol-
ogy, so an experiment is designed to compare the recognition accu-
racy between PQRST, FTT, morphology and the proposed hybrid fea-
ture-based approach. This experiment contains 20, 000 samples, and a
random ECG signal is selected from each sample to verify whether it is
successfully recognized as the source sample.

Fig. 6 shows that although the fiducial- and non-fiducial-based fea-
ture extractions are widely implemented in ECG recognition, the accu-
racy of these approaches is not very good. In particular, the accuracy of
PQRST- and FFT-based approaches ranges from only 70%–75%, respec-
tively.

Although the accuracy of the morphology-based approach surpasses
91%, it is essentially a typical implementation of pattern recognition.
Moreover, ECG morphology represents multimodal ECG features, so it
could be considered a simple hybrid ECG feature extraction.

The proposed hybrid feature-based approach demonstrates consider-
able performance, as its accuracy surpasses 99%. Only 3 morbid ECG
signals are not recognized accurately, which means that the interfer-
ence of the proposed scheme should be further improved. However, the

1 http://ecg.mit.edu/.
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Fig. 3. Theory model of the parallel ECG pattern recognition algorithm.

Fig. 4. Parallel search scheme.

presence of more features that involve ECG recognition will inevitably
lead to increased computation loads. Thus, a distributed or parallel com-
puting framework should be implemented to improve the efficiency.

5.2.2. Evaluation of ECG recognition
The accuracy of ECG recognition is the key indicator of biomet-

ric-based authentication. Thus, the proposed scheme is evaluated
through the Mahalanobis distance. Specifically, a random ECG signal is
selected from a sample, and the experimental data include 100 samples.
Then, the Mahalanobis distance is measured after recognition to evalu-
ate the accuracy; i.e., a lower Mahalanobis distance represents a higher
recognition accuracy.

In the proposed algorithm, 2DPCA is implemented to improve the
performance, which can theoretically maintain the vital features while
removing the redundancy factors. Thus, this experiment is expected to
evaluate the availability of the proposed algorithm and compare it with
the conventional LDA-based approach.

In Fig. 7, the comparison between the proposed pattern recognition
and LDA-based approach is shown. It is obvious that the accuracy of
the proposed scheme is higher than that of the LDA-based approach
when evaluating the No. 0 and 65 samples, but the overall performance
of these two approaches does not demonstrate significant differences.
In summary, the accuracy of the proposed scheme is considerable and
stable; it effectively avoids the small sample size problem that is often
found in LDA-based approaches.

5.2.3. Evaluation of the parallel algorithm
Through the above experiments, the availability of the proposed

scheme has been verified. However, the results also prove that the pro-
posed hybrid feature-based approach needs more computing resources,
which would decrease the efficiency of authentication, especially for
scenarios that involve a large number of users.

Based on the parallel scheme shown in Fig. 4, 100 user ECG signal
files are processed by 4 ‘Nodes’ in this experiment. In particular, each
‘Node’ has 8 feature subspaces.

Table 1 illustrates the processing at Node 1. Specifically, in the
PQRST feature space, the recognition result of subspace 1 is ‘1’, and the
corresponding Mahalanobis distance is ‘1711.58’. The rest of the sub-
space may be inferred. In particular, because the recognition result of
subspace 3 is ‘16’ and the corresponding Mahalanobis distance is ‘0.00’,
the local optima is in the PQRST feature space. In the same way, the lo-
cal optima in FFT feature space is ‘16’, while it is ‘16’ in morphology.
Finally, because the local optima in each feature space is ‘16’, it is ex-
tremely possible that the global optimum of Node 1 is ‘16’, i.e., that this
signal is recognized as the 16th user.

5.3. Discussion

Although the experimental results verify that the proposed scheme
provides a suitable authentication method for smart healthcare systems,
the following limitations should be addressed in practical implementa-
tion:

• Scalability: In the proposed approach, the hybrid ECG features in-
clude fiducial, morphological and spectral features. With the develop-
ment of telemedicine and e-healthcare, it is a great challenge to in-
volve more features to achieve better biometrics.

• High Throughput: Due to the limited experimental dataset, the abil-
ity of the proposed approach could not be evaluated to harness
high-throughput data in practical scenarios, such as tertiary hospitals.
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Fig. 5. Two-round search in multimodal feature space.

Fig. 6. Comparison of four ECG features.

Fig. 7. Comparison between the proposed pattern recognition and LDA-based approaches.

6. Conclusions

To improve the accuracy and efficiency of ECG-based authentication,
this paper proposed a parallel approach that incorporates multiple fea-
tures for smart healthcare systems. Specifically, fiducial- and non-fidu-
cial-based features, i.e., PQRST, spectral and morphological features, are
comprehensively considered for ECG recognition. Assisted by a paral-
lel computing framework, the recognition is divided into the following
two processing methods: searching local optima in each feature space
and searching global optima. Through adequate experiments, the per-
formance of the proposed scheme is verified, and the results indicate
that the accuracy and efficiency are considerable compared with those
of other conventional approaches.

However, the experimental results also illustrate that the proposed
authentication is susceptible to the effects of cardiac disease. There-
fore, our future work will focus on improving the robustness of the
ECG-based authentication for cardiac patients.

6
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Table 1
Processing at node 1.

PQRST FTT Morphology

Recognition
Result

Mahalanobis
Distance

Recognition
Result

Mahalanobis
Distance

Recognition
Result

Mahalanobis
Distance

Subspace
1

1 1711.58 1 15.52 1 500.51

Subspace
2

7 1931.19 9 75.89 8 330.23

Subspace
3

16 0.00 16 0.00 16 184.83

Subspace
4

24 908.71 19 19.21 19 244.57

Subspace
5

43 1351.42 34 33.26 42 471.96

Subspace
6

54 1380.87 53 19.54 53 267.18

Subspace
7

63 1617.44 71 31.42 72 362.31

Subspace
8

85 2173.29 85 38.17 83 380.38

References

A.F. Abate, M. Nappi, S. Ricciardi, I-am: implicitly authenticate me person authentication
on mobile devices through ear shape and arm gesture, IEEE Trans. Syst. Man Cybern.:
Systems.

Arteaga-Falconi, J.S., Al Osman, H., El Saddik, A., 2016. Ecg authentication for mobile de-
vices. IEEE Trans. Instrument. Measure. 65 (3), 591–600.

Banerjee, S., Mitra, M., 2014. Application of cross wavelet transform for ecg pattern analy-
sis and classification. IEEE Trans. Instrument. Measure. 63 (2), 326–333.

Bansal, N., Verma, A., Kaur, I., Sharma, D., 2017. Multimodal biometrics by fusion for
security using genetic algorithm. In: 2017 4th International Conference on Signal
Processing, Computing and Control (ISPCC). pp. 159–162. https://doi.org/10.1109/
ISPCC.2017.8269668.

Barra, S., Casanova, A., Fraschini, M., Nappi, M., 2017. Fusion of physiological measures
for multimodal biometric systems. Multimed. Tool. Appl. 76 (4), 4835–4847. https://
doi.org/10.1007/s11042-016-3796-1.

Bo, C., Zhang, L., Li, X.-Y., Huang, Q., Wang, Y., 2013. Silentsense: silent user identifi-
cation via touch and movement behavioral biometrics. In: Proceedings of the 19th
Annual International Conference on Mobile Computing & Networking. ACM, pp.
187–190.

Dantcheva, A., Elia, P., Ross, A., 2016. What else does your biometric data reveal? a sur-
vey on soft biometrics. IEEE Trans. Inf. Forensics Secur. 11 (3), 441–467.

Fratini, A., Sansone, M., Bifulco, P., Cesarelli, M., 2015. Individual identification via elec-
trocardiogram analysis. Biomed. Eng. Online 14 (1), 78.

Gowda, H.D.S., Kumar, G.H., Imran, M., 2017. Combination of physiological and behav-
ioral modalities based on score level fusion. In: 2017 Second International Conference
on Electrical, Computer and Communication Technologies (ICECCT). pp. 1–5. https://
doi.org/10.1109/ICECCT.2017.8117815.

Gravina, R., Fortino, G., 2016. Automatic methods for the detection of accelerative cardiac
defense response. IEEE Trans. Affect. Comput. 7 (3), 286–298.

Huang, K., Zhang, L.-Q., 2014. Semisupervised sparse multilinear discriminant analy-
sis. J. Comput. Sci. Technol. 29 (6), 1058–1071. https://doi.org/10.1007/
s11390-014-1490-1.

Kang, S.J., Lee, S.Y., Cho, H.I., Park, H., 2016. Ecg authentication system design based
on signal analysis in mobile and wearable devices. IEEE Signal Process. Lett. 23 (6),
805–808.

Kumari, P., Vaish, A., 2015. Brainwave based user identification system: a pilot study in
robotics environment. Robot. Autonom. Syst. 65, 15–23.

Laplante, N., Laplante, P.A., Voas, J., 2016. Caring: an undiscovered” super-ility” of smart
healthcare. IEEE Softw. 33 (6), 16–19.

Li, X., Niu, J., Karuppiah, M., Kumari, S., Wu, F., 2016. Secure and efficient two-factor
user authentication scheme with user anonymity for network based e-health care ap-
plications. J. Med. Syst. 40 (12), 268.

Manning, B., 2017. Extreme gradient boosting and behavioral biometrics. In: AAAI. pp.
4969–4970.

Martinovic, I., Rasmussen, K., Roeschlin, M., Tsudik, G., 2017. Authentication using
pulse-response biometrics. Commun. ACM 60 (2), 108–115.

Peng, G., Zhou, G., Nguyen, D.T., Qi, X., Yang, Q., Wang, S., 2017. Continuous authenti-
cation with touch behavioral biometrics and voice on wearable glasses. IEEE Trans.
Human-Mach. Syst. 47 (3), 404–416. https://doi.org/10.1109/THMS.2016.2623562.

J.R. Pinto, J.S. Cardoso, A. Lourenco, C. Carreiras, Towards a continuous biometric system
based on ecg signals acquired on the steering wheel, Sensors 17(10).

Ravanshad, N., Rezaee-Dehsorkh, H., Lotfi, R., Lian, Y., 2014. A level-crossing based
qrs-detection algorithm for wearable ecg sensors. IEEE J. Biomed. Health Inf. 18 (1),
183–192.

Satija, U., Ramkumar, B., Manikandan, M.S., 2017. Real-time signal quality-aware ecg
telemetry system for iot-based health care monitoring. IEEE Internet Things J. 4 (3),
815–823.

Sidek, K.A., Mai, V., Khalil, I., 2014. Data mining in mobile ecg based biometric identifi-
cation. J. Netw. Comput. Appl. 44, 83–91.

Sultana, M., Paul, P.P., Gavrilova, M.L., 2017. Social behavioral information fusion in mul-
timodal biometrics. IEEE Trans. Syst. Man Cybern.: Syst. PP 99, 1–12. https://doi.org/
10.1109/TSMC.2017.2690321.

Unar, J., Seng, W.C., Abbasi, A., 2014. A review of biometric technology along with trends
and prospects. Pattern Recogn. 47 (8), 2673–2688.

Varatharajan, R., Manogaran, G., Priyan, M., 2017. A big data classification approach us-
ing lda with an enhanced svm method for ecg signals in cloud computing. Multimed.
Tool. Appl. 1–21.

Xie, H.B., Zhou, P., Guo, T., Sivakumar, B., Zhang, X., Dokos, S., 2016. Multiscale two-di-
rectional two-dimensional principal component analysis and its application to high-di-
mensional biomedical signal classification. IEEE (Inst. Electr. Electron. Eng.) Trans.
Biomed. Eng. 63 (7), 1416–1425. https://doi.org/10.1109/TBME.2015.2436375.

Zaghouani, E.K., Benzina, A., Attia, R., 2017. Ecg based authentication for e-health-
care systems: towards a secured ecg features transmission. In: Wireless Communica-
tions and Mobile Computing Conference (IWCMC), 2017 13th International. IEEE, pp.
1777–1783.

Zebboudj, S., Cherifi, F., Mohammedi, M., Omar, M., 2017. Secure and efficient ecg-based
authentication scheme for medical body area sensor networks. Smart Health 3, 75–84.

Zeinali, M., Shafiee, M., 2016. A new levinson–durbin based 2-d ar model parameter esti-
mation method. Multidimens. Syst. Signal Process. 27 (2), 341–357.

Q. Zhang, D. Zhou, X. Zeng, Heartid: a multiresolution convolutional neural network for
ecg-based biometric human identification in smart health applications, IEEE Access.

7


	
	


