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Abstract

We investigate a specific version of the Green Vehicle Routing Problem, in which we

assume the availability of a mixed vehicle fleet composed of electrical and conventional

(internal combustion engine) vehicles. These are typically light- and medium-duty

vehicles. We allow partial battery recharging at any of the available stations. In

addition, we use a comprehensive energy consumption model which can take into

account speed, acceleration, deceleration, load cargo and gradients. We propose a

matheuristic embedded within a large neighborhood search scheme. In a numerical

study we evaluate the performance of the proposed approach.

Keywords: logistics; green vehicle routing; mixed fleet; matheuristic; hybrid large

neighborhood search.

1 Introduction

The planning and management of freight logistics systems have traditionally aimed at

improving transportation efficiency in terms of cost, time and profit. More recently, we

have witnessed a growing interest in the environmental aspects of transportation, such

as pollution, noise and congestion. In this context, developing environmentally-friendly

and efficient transport and distribution systems, in order to ensure the best trade-off

between cost minimization and negative environmental externalities reduction, represents

an important challenge.
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We study the problem of managing electric vehicles (EVs) and conventional vehicles

with the aim of reducing the costs derived from the routing and the recharging operations.

We propose an energy consumption model in which several realistic aspects are considered

and where acceleration and deceleration are taken into account. The idea of considering

the energy produced by the braking system was suggested in the context of the electrical

vehicle traveling salesman problem by Bay and Limbourg [3] at an Odysseus Conference

in 2015. Here we extend for the first time this idea to a vehicle routing problem with

a mixed fleet, composed of electrical and conventional diesel vehicles having different

capacities. We also consider the possibility of partially recharging the EVs at any available

recharging station. Combining these elements distinguished our problem from the previous

contributions and offers an increased degree of realism.

We propose a mathematical formulation and we design and implement a matheuris-

tic, which combines the resolution of the proposed model, embedded within the large

neighborhood search scheme.

1.1 State of the art

Here, we briefly review the most interesting scientific contributions in green logistics. For

a complete survey the reader is referred to Lin et al. [21]. We can distinguish between

two important categories of problems: Pollution Routing Problems (PRPs) and Green

Vehicle Routing Problems (GVRPs). The former problems aim at minimizing pollution,

in particular carbon emissions. The latter make use of alternative fuel vehicles (AFVs) and

alternative fuel stations (AFSs), and the main objective is to minimize energy consumption

in transportation.

PRP. Bektas and Laporte [4] introduced and modeled the PRP. In this problem the

amount of pollution is evaluated by an energy-based model, which takes into account of

load, among other factors. They explicitly considered the effect of CO2 emissions, showed

the difficulty of solving the PRP to optimality, and mentioned the possibility of several

extensions. They proposed a non-linear mixed integer programming formulation to math-

ematically represent the problem, whose objective is to minimize the cost of greenhouse

gas (GHG) emissions, the operational costs of drivers and fuel consumption. This work

was extended by Demir et al. [6] who considered several vehicle speeds and proposed and

tested an Adaptive Large Neighbourhood Search (ALNS) algorithm. Jabali et al. [15]

focused on the Time-Dependent VRP. They presented a model that considers travel time,

fuel and CO2 emissions costs, and proposed a tabu search procedure to solve the problem.

Franceschetti et al. [11] studied the Time-Dependent PRP, a PRP extension that takes

traffic congestion into account. The authors proposed an integer linear programming for-
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mulation and considered a special case called the departure time and speed optimization

problem. Tajik et al. [30] investigated the time window pickup-delivery PRP. In this PRP

variant, pickup and delivery operations are considered and vehicle speed is stochastic.

The authors solved a mixed integer linear programming model (MILP) and introduced a

robust variant. Koç et al. [17] studied a scientific extension that considers a heterogeneous

vehicle fleet. Table 1 summarizes the main contributions on the PRP.

Table 1: Summary of the PRP contributions in the scientific literature
PRP

Time Time Pickup and Uncertain Heterogeneous

Reference Algorithm windows dependent delivery data fleet

Bektaş and Laporte (2011)
√

Demir et al. (2012) Heuristic
√

Jabali et al. (2012) Heuristic
√

Franceschetti et al. (2013)
√ √

Tajik et al. (2014)
√ √ √

Koç et al. (2014) Heuristic
√ √

G-VRP. One of the first articles on the G-VRP is that of Kara et al. [16]. In this work

the authors consider a capacitated VRP and propose a linear integer formulation in order

to reduce energy consumption. Gonçalves et al. [13] investigated the VRP with pickups

and deliveries. They analyzed three different scenarios. The first one is an application of

the VRP with pickups and deliveries with a conventional fleet; in the second one the fleet

is composed of conventional vehicles and electrical uncapacitated vehicles; in the last one

they considered only capacitated EVs. The authors proposed a MILP model and applied

a p-median algorithm in order to decompose the original set of customers. The problem

was then solved on each cluster.

Erdoğan and Miller-Hooks [8] presented a MILP formulation for the G-VRP. Moreover,

they proposed several techniques in order to compute a solution that minimizes the total

distance traveled, while incorporating stops for the refuelling of AFVs at AFSs. Vehicles

are assumed to be uncapacitated and time window constraints are not taken into account.

Customer time windows, demands and capacity constraints were considered by Schnei-

der et al. [26] who focused on the Electrical VRP with time windows (VRPTW) with

Recharging Stations (E-VRPTW). Recharging vehicles at any of the available stations is

allowed, but the batteries are always fully recharged. These authors presented a MILP

formulation and proposed a hierarchical objective function of the E-VRPTW. The first

objective is the minimization of the number of vehicles; the second one is the minimization

of the total traveled distance. Their approach is a metaheuristic that combines variable
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neighbourhood search (VNS) and tabu search. Felipe et al. [9] described the G-VRP

with Multiple Technologies and Partial Recharge. Partial battery recharges and overnight

depot charging are allowed. The recharging operations can be performed with different

technologies, each of them having a different recharging time and cost. They proposed a

constructive algorithm based on a greedy generation method, a deterministic local search

and a simulated annealing.

Ćirović et al. [5] investigated the G-VRP with a heterogeneous fleet composed of

environmental friendly and unfriendly vehicles. However, when defining a route, friendly

and unfriendly vehicles are considered separately. The authors used a neuro-fuzzy model

to formulate the problem under study. Goeke and Schneider [12] considered a mixed fleet

of conventional vehicles and EVs. The authors formulated the E-VRP with time windows

and mixed fleet, in which the EVs can be charged at the available charging stations (CSs).

Charging times vary according to the battery level when the EV arrives at the CS and

charging is always done up to maximum battery capacity. They proposed a comprehensive

energy consumption model which considers speed, vehicle mass and gradient. Desaulniers

et al. [7] presented four variants of the E-VRPTW. In the first one, batteries must be

fully charged and at most one recharge per route is allowed; in the second one multiple

recharges are allowed, in the third one only one partial battery recharging per route is

allowed, in the last one multiple and partial battery recharges are allowed. The authors

developed two branch-and-price-and-cut algorithms for these problems. Hiermann et al.

[14] introduced the electric fleet size and mix vehicle routing problem with time windows

and recharging stations. They considered a heterogeneous fleet of EVs in which each

vehicle is characterized by its fixed cost, battery and load capacity, energy consumption

and charging rate. Each vehicle can be fully charged at a CS.

Koç and Karaoglan [18] developed a simulated annealing heuristic based on an exact

solution approach to solve the G-VRP introduced by Erdoğan and Miller-Hooks [8]. In

their formulation, the authors used new decision variables in order to allow multiple visits

to the CSs without augmenting the networks with dummy nodes. Based on this work,

Leggieri and Haouari [19], proposed a new formulation for the E-VRPTW. In order to

assess the effectiveness of their approach, the authors solved their model with CPLEX

and compared the results with those obtained by the branch-and-cut algorithm of Koç

and Karaoglan [18].

Since the installation and operation costs of the network highly impact company’s

strategies, several authors introduced decisions about location and technology of CSs in

the E-VRPs. Thus Yang and Sun [32] considered the electric vehicles battery swap stations

location routing problem whose aim is to determine the locations of battery swap stations,

as well as the routing plan of EVs. Li-ying and Yuan-bin [20] focused on the EV multiple

charging station location-routing problem with time windows. Schiffer and Walther [24]
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introduced the electric location routing problem with time windows and partial recharging

in which the EVs can be charged at any node in the network. Schiffer and Walther

[25] introduced the location-routing problem with intra-route facilities which focuses on

determining the location of facilities for intermediate stops. The facilities are not depots

and do not necessarily coincide with customers. Intra-route facilities allow for intermediate

stops on a route in order to keep the vehicle operational. Paz et al. [23] defined the multi-

depot electric vehicle location-routing problem with time windows and a homogeneous

fleet of EVs. They considered the possibility of recharging the EV at the CSs or to swap

the battery at a battery swap station. The goal is to determine the number and location

of CSs and depots, as well as the number of EVs and their routes. Recently, Macrina et al.

[22] proposed a local search heuristic for a green mixed fleet (EVs and internal combustion

commercial vehicles (ICCVs)) vehicle routing problem with partial battery recharging and

time windows. The authors showed how time windows features and partial recharges of

battery instead of full recharges may influence solution quality.

The mathematical formulation proposed in our paper can be viewed as an extension

of the model presented by Erdoğan and Miller-Hooks [8], which is the first routing model

that considers recharging stations. However significant modifications have been introduced

in order to represent the specific characteristics of the problem under study. Schneider

et al. [26] and Felipe et al. [9] have already extended the model presented in [8]. In

the first contribution only complete recharges are allowed, while in the second one the

batteries can be partially recharged with different technologies. However, in both papers,

it is assumed that the fleet is exclusively composed of EVs. Here we extend the model in

order to also handle conventional vehicles. Gonçalves et al. [13] and Goeke and Schneider

[12] considered a mixed fleet. However, in both contributions, the batteries must be

fully recharged. In addition, in the first of these papers, it is assumed that the EVs are

uncapacitated. Goeke and Schneider [12] proposed a comprehensive energy consumption

model. However, they did not consider the effects of the acceleration phase and of the

braking process on the energy consumption. Ćirović et al. [5] considered a fleet exclusively

made up of conventional or electrical vehicles. In the problem studied in our paper, we

simultaneously take these two possibilities into account. Table 2 summarizes the main

contributions on the G-VRP.

1.2 Aim and organization of this paper

From this literature review, it is clear that scarce attention has been devoted to the use

of a mixed vehicle fleet. Most studies assume the energy consumption proportional to

traveled distance, and consider partial battery recharging when a fleet is composed of only

AFVs. Nobody has combined the four features considered in our paper, namely mixed
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fleet, partial battery recharging, time windows and comprehensive energy consumption

model with braking energy generation. In particular, we model a comprehensive energy

consumption function which can take into account speed, acceleration, deceleration, loaded

cargo and road gradients. We consider the effects of the acceleration and braking phases

on energy consumption, as well as other realistic features related to the life span of the

battery. Indeed, full recharges can damage the battery and the last 10% of recharge

requires considerable time. Hence we also need to constrain the state of charge of the

battery.

The remainder of this paper is structured as follows. In Section 2, we highlight the

main characteristics of the problem under study and describe the mathematical model

developed for its representation. In particular we use two energy consumption models for

the conventional and electric vehicles described in Sections 2.1 and 2.2, respectively. In

Section 3 we describe the algorithm we have developed to solve the problem. In Section

4 we present the computational experiments and the numerical results. In Section 5 we

summarize the conclusions.

2 The energy-efficient green mixed fleet vehicle routing prob-

lem with partial battery recharging and time windows

We formulate our problem as follows. Let N be the set of customers, and let R be the

set of recharging stations. We will also need copies of recharging stations to account for

multiple visits at the same stations. Thus, let R′ be the set of all stations and their copies,

i.e., R ⊂ R′. Let V = R∪N and V ′ = R′ ∪N . The problem will be defined on the graph

G(V ′, A), where A is the set of arcs.

The depot 0 is a particular element belonging to the set R′, that is the recharging

station where vehicle routes start and its dummy copy 0′ is the node where the routes

end. Each customer i ∈ N has a demand qi (in kg) and a service time si (in hours). All

customers must be visited by a single vehicle. Each node i ∈ V ′ has a time window [ei, li],

where ei and li represent the earliest and latest times at which service may start at node

i, respectively. For each arc (i, j) ∈ A, dij denotes the distance from i to j [km], while tij
the travel time from i to j [hours]. We impose a limit T on the maximum total duration

of a route [hours], that is, the end of the time window associated with the depot node is

set equal to T .

A heterogeneous fleet of vehicles, composed of nE EVs and nC ICCVs, is available. The

two types of vehicles (electrical and conventional) are characterized by different capacities,

denoted as QEmax and QCmax [kg] for the electrical and conventional vehicles, respectively,

and different curb weight denoted by wE and wC respectively. Furthermore, for each
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electrical vehicle let BE denote the maximum battery capacity [kWh], while for each con-

ventional vehicle BC is the fuel tank maximum capacity [L]. The recharging cost [e/kWh]

is equal to ω.

Each recharging station i ∈ R′ has a charging mode, which can be slow, moderate

or fast, and is therefore characterized by a recharging speed ρi [kWh per hour]. Partial

battery recharging is allowed at any recharging station.

2.1 The fuel consumption for the conventional vehicles

We develop an energy consumption model following the ideas presented in [4].

Let u be the transported amount of cargo [kg], we calculate the mechanical power,

that is, the power at the wheels, as follows:

pM (u) = [(a(t) + gsinθ + gCrcosθ)(u+ w) + (0.5CdAρ)v(t)2]v(t), [kW ] (1)

where a(t) = dv(t)/dt represents the acceleration [m/s2] and takes negative values when

the vehicle decelerates, while g denotes the gravitational constant (9.81 m/s2). The angle

of the road is θ, here assumed to be zero, Cr is the coefficient of rolling resistance, Cd is the

drag coefficient, A is the frontal surface Area [m2], ρ is the air density [kg/m3)], w denotes

the curb weight of the vehicle [kg], and v(t) is the speed [m/s]. As in [4] we suppose

that the engine power demand associated with running engine losses and the operation of

vehicle accessories such as air conditioning, are zero. Thus pM (u) can be viewed as the

second-by-second engine power output.

We use the emission model of Barth et al. [2] and Barth and Boriboonsomsin [1],

applied to the PRP by Bektas and Laporte [4], Demir et. al [6], Koç et. al [17] to estimate

fuel consumption, in order to convert the mechanical power into fuel consumption.

Since this consumption model does not use the deceleration, recently Suzuki and Lan

(2018) [29] extended it, by including negative values of acceleration to study the fuel

consumption of trucks in congested areas. They ensured that the fuel use rate cannot be

lower than that of engine idling, to avoid the unreal case of negative fuel burn during the

deceleration phase.

Let v(t) be the vehicle speed traversing an arc of length d. We can calculate the fuel

consumption [L] on this arc as

F (v(t)) = (ξ/κΨ)(kNeDe + pM (u)/ηeηdt)d/v(t), [L] (2)

where ξ is the fuel-to-air mass ratio, k is the engine friction factor [kJ/rev/L], Ne is

the engine speed [rev/s], De is the engine displacement [L], ηe and ηdt are the efficiency

parameters for diesel engines and the drive train efficiency respectively, while κ is the
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heating value of a typical diesel fuel [kJ/g], and Ψ is a conversion factor from [g/s] to

[L/s].

In order to represent the relationship between distance and travel time, we follow the

idea presented in [31]. In this work the authors study the vehicle motion and performance

in urban passenger transportation and they propose a model based on several cases that

can occur by varying the acceleration during a trip. In the spirit of what proposed in [31],

we suppose that each arc is composed of three phases (h = 1, 2, 3) associated with different

values of acceleration a and speed levels v. We consider a first phase, the “acceleration

phase”, in which the value of a is positive, the second one is the “constant speed phase”

where the value of a is zero and the speed is constant, finally, the third phase is the

“deceleration phase” in which the value of a is negative.

Let vmax be the maximum speed reachable, and tij depends on whether a vehicle can

reach its maximum speed. Let dcij be the distance required for a vehicle to reach vmax,

also called critical distance. We can distinguish two main cases: in the first one dij < dcij ,

in the second one dij ≥ dcij (see figure 1).

Case 1 (figure 1(a)). In Figure 1(a), since dij < dcij , the travel time for the arc and

the distance dij will be marked by a prime (′), as well as the maximum speed as v′, where

v′ < vmax. In this case we have only two states, i.e., the acceleration and deceleration

phases associated with the indices h = 1 and h = 3, respectively .

Case 2 (figure 1(b)). If dij ≥ dcij , the vehicles reaches vmax and maintains this speed

until it decelerates. Thus, we have the three phases on arc (i, j).

In our three-phase model, we define a start time tijh and a speed v(tijh), associated

with each phase and arc (i, j). In particular, tijh represents the time at which the vehicle

enters state h on arc (i, j), and v(tijh) is the speed of the vehicle at the beginning of state

h.

Then, starting from (1) we can write the mechanical power consumed to traverse the

part of arc (i, j) associated to the phase h as

pMijh(ui) = [(a(tijh) + gsinθ + gCrcosθ)(ui + w) + (0.5CdAρ)v(tijh)2]v(tijh). [kW ] (3)

Hence, the mechanical power consumed to travel on the arc (i, j) is calculated as

pMij (ui) =
∑

h=1,2,3

pMijh(ui). [kW ] (4)

Using (2) and denoting the time necessary to travel the distance dh, related to the phase

h, as t̄h, we write the fuel consumption as

fij(ui) =
∑

h=1,2,3

(ξ/κΨ)(kNeDe + pMijh(ui)/ηeηdt)t̄h. [L] (5)

9



(a) Case 1: vmax is not reached

(b) Case 2: vmax is reached

Figure 1: Two cases of travel regimes on the arc (i, j)

As mentioned before, to avoid the estimation of negative fuel burn during deceleration

phase, we consider only the case of extremely gentle deceleration and we guarantee that

the fuel use rate is not lower than that of engine idling.

2.2 The energy consumption for the electric vehicles

To define the energy consumption for the EVs, we have adapted the model of Fiori et.

al. [10], which is a simple EV energy model that computes the instantaneous energy
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consumption and braking energy regeneration for the EVs using a second-by-second vehicle

speed, acceleration and roadway grade as input variables. We calculate the power of an

electric motor starting from the mechanical power defined in (1), and considering η the

energy efficiency from battery-to-wheels. When the vehicle is in traction mode, the energy

flows from the motor to the wheels and the power of electric motor is higher than the power

at the wheels, thus the power at the wheels is assumed to be positive. In contrast, when

the energy flows from wheels to the motor, the power at the electric motor is lower than

the power at the wheels and the latter is assumed to be negative. Thus, η is given by η+ in

motor mode, i.e., the energy is positive and represents the discharged electric energy, and

by η− in recuperating mode, i.e., the energy is negative and represents the recuperated

electric energy. It is possible to calculate the energy consumption pE(u), for an arc of

length d, starting from equation (1) as

pE(u) = (pM (u)/η)t, [kWh] (6)

where t is the time necessary to travel the distance d, and

η =

{
η+ ≤ 1, if pE(u) is positive, and 0 ≤ pM (u) ≤ 100 kW

η− ≥ 1, if pE(u) is negative, and −100 ≤ pM (u) ≤ 0 kW
. (7)

Using our three-phase model to define the mechanical power pMijh(uj) in (3), it is possible

to calculate the energy consumption pEijh(uj) [KW] necessary to travel the distance dh
related to phase h of the arc (i, j). We denote the travel time as t̄h:

pEijh(ui) = ([(a(tijh)+gsinθ+gCrcosθ)(ui+w)+(0.5CdAρ)v(tijh)2]v(tijh)/η)t̄h, [kWh]. (8)

It is worth observing that η = η+ when h = 1, 2 and η = η− when h = 3. Therefore, the

energy pEij [KW] consumed to travel on the arc (i, j) is defined as

pEij(ui) =
∑

h=1,2,3

pEijh(ui). [kWh] (9)

2.3 The mathematical model

In order to model the problem we define the decision variables as follows:

xEij =

{
1, the electrical vehicle travels from i to j

0, otherwise
(i, j) ∈ A

xCij =

{
1, the conventional vehicle travels from i to j

0, otherwise
(i, j) ∈ A

11



uCi amount of load left in the conventional vehicle after visiting node i [kg], i ∈ V ′
uEi amount of load left in the electric vehicle after visiting node i [kg], i ∈ V ′
zEj amount of energy available when arriving at node j [kWh], j ∈ V ′

zCj amount of fuel available when arriving at node j [L], j ∈ V ′

zdepotEi0′ amount of energy available when arriving at depot 0′ from node i [kWh], i ∈ V ′

zdepotCi0′ amount of fuel available when arriving at depot 0′ from node i [L], i ∈ V ′
gij amount of energy recharged by the electrical vehicle at the node i for travelling to j
[kWh], i ∈ R, j ∈ V ′
pEijh(uEi ) amount of energy necessary to travel from i to j transporting the cargo (uEi ) ;

i, j ∈ V ′, h = 1, 2, 3
τj arrival time of the vehicle to the node j [h], j ∈ V ′

The Mixed Integer Linear Program that models our problem is as follows:

Minimize
∑
i∈R′

∑
j∈V ′

ωg
i gij + ωe

∑
i∈V ′\{0′}

(BE − zdepotE
i0′ ) + ωf

∑
(i,j)∈A

fij(u
C
i ) +

∑
(i,j)∈A

cdij(x
E
ij + xCij) (10)

subject to ∑
j∈V′

(xEij + xCij) = 1, i ∈ N (11)

∑
j∈V′

xEij ≤ 1, i ∈ R′ (12)

∑
j∈V′\{0}

xEij −
∑

j∈V′\{0′}
xEji = 0, i ∈ V ′ (13)

∑
j∈V\{0}

xCij −
∑

j∈V\{0′}
xCji = 0, i ∈ V (14)

∑
j∈V′

xE0j ≤ nE (15)

∑
j∈V

xC0j ≤ nC (16)

τj ≥ τi + (tij + si)x
E
ij −M(1− xEij), i ∈ N , j ∈ V ′ (17)

τj ≥ τi + (tij + si)x
C
ij −M(1− xCij), i ∈ V, j ∈ V (18)

τj ≥ τi + tijx
E
ij +

1

ρi
gij −M(1− xEij), i ∈ R′, j ∈ V ′ (19)

ej ≤ τj ≤ lj , j ∈ V ′ (20)

uEj ≥ uEi + qjx
E
ij −QE

max(1− xEij), i ∈ V ′\
{
0, 0′

}
, j ∈ V ′\ {0} (21)

uCj ≥ uCi + qjx
C
ij −QC

max(1− xCij), i ∈ V\
{
0, 0′

}
, j ∈ V\ {0} (22)

uC0′ ≤ Q
C
max (23)

uE0′ ≤ Q
E
max (24)

uC0 = 0 (25)

uE0 = 0 (26)

zEj ≤ zEi −
∑

h=1,2,3

pEijh (u
E
i ) +BE(1− xEij), i, j ∈ V ′\

{
0, 0′

}
(27)

zEj ≤ zEi + gij −
∑

h=1,2,3

pEijh (u
E
i ) +BE(1− xEij), i ∈ R′, j ∈ V ′\

{
0, 0′

}
(28)

zE0 = 0.9B (29)
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zdepotE
i0′ ≤ zEi −

∑
h=1,2,3

pEi0′
h
(uEi )) +BE(1− xEi0′ ), i ∈ V ′\

{
0, 0′

}
(30)

zdepotE
i0′ ≤ zEi + gi0′ −

∑
h=1,2,3

pEi0′
h
(uEi ) +BE(1− xEi0′ ), i ∈ R′ (31)

0 ≤ zdepotE
i0′ ≤ 0.9BExEi0′ , i ∈ V ′\{0′} (32)

0.1B ≤ zEj ≤ 0.9BE , j ∈ V ′\{0} (33)

gij ≤ 0.9B − zEi +BE(1− xEij), i ∈ R′, j ∈ V ′ (34)

pEijh (u
E
i ) ≥ (35)

([(a(tijh ) + gsinθ + gCrcosθ)(uj + w) + (0.5CdAρ)v(tijh )
2]v(tijh )t̄h/η

+)

−BE(1− xEij), i, j ∈ V ′, h = 1, 2

pEijh (u
E
i ) ≥ (36)

([(a(tijh ) + gsinθ + gCrcosθ)(uj + w) + (0.5CdAρ)v(tijh )
2]v(tijh )t̄h/η

−)

−BE(1− xEij), i, j ∈ V ′, h = 3

zCj ≤ zCi − fij(uCi ) +BC(1− xCij), i, j ∈ V \
{
0′
}

(37)

0 ≤ zCj ≤ BC , j ∈ V \{0} (38)

zC0 = BC (39)

zdepotC
i0′ ≤ zCi − fi0′ (uCi ) +BC(1− xCi0′ ), i ∈ V \

{
0′
}

(40)

0 ≤ zdepotC
i0′ ≤ 0.9BCxCi0′ , i ∈ V \

{
0′
}

(41)

xEij , x
C
ij ∈ {0, 1}, i ∈ V ′, j ∈ V ′;uEi , uCi , τi ≥ 0, i ∈ V ′,

gij ≥ 0, i ∈ R′, j ∈ V ′. (42)

Objective. The objective function is the sum of four terms. The first one, that is∑
i∈R′

∑
j∈V ′ ω

g
i gij , is the cost of the energy recharged during the route. In particular ωgi is

the unit cost of recharge [e/kW] at station i and it depends of the available technology at

station i. The second one (ωe
∑

i∈V ′\{0′}(B
E−zdepotEi0′ )) is the cost of the energy recharged

to the depot, the unit cost of energy is ωe [e/L]. The third one, that is ωf
∑

(i,j)∈A fij(u
C
i )

is the fuel cost, with ωf the unit cost of fuel [e/L]. The last one,
∑

(i,j)∈A cdij(x
E
ij + xCij)

is the travel cost, where c is the cost [e/km] which depends on the traveled distance.

VRP constraints. The constraints (11) ensure that each customer is visited exactly

once, whereas conditions (12) impose that each recharging station can be visited at most

once. Constraints (13) and (14) are the flow conservations constraints, whereas conditions

(15) and (16) ensures that the total number of used vehicles (electrical and conventional,

respectively) is less than the available ones.

Time windows constraints. Constraints (17)–(19) define the variables τ , which

represent the arrival time at node j, where j can be a customer served by either a classical

or an electrical vehicle, or it can be a recharge station. Time windows constraints are

represented by conditions (20).

Capacity constraints. Conditions (21)–(26) represent the capacity constraints, for
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the electrical and the conventional vehicles.

Electrical energy constraints. Constraints (27) and (28) define the variables zE

ensuring that the capacity of the electric vehicles battery is not exceeded, in particular

after visiting a customer and a recharge station, respectively. Constraint (29) ensures

that the vehicle is fully charged at the starting node, considering that the full charge can

damage the battery, while constraints (30) and (31) define the amount of energy available

when the vehicles arrive at ending node. Contraints (32) and (33) define the state of

charge of battery, since we consider that recharging the last 10% of battery requires long

times, we allow a complete discharge only to the depot. Constraints (34) are used to

represent the partial battery recharging. Constraints (35) and (36) linearize the energy

consumption as described in Section 2.2.

Classical fuel tank constraints. Constraints (37) set the fuel level equal to the

maximum fuel tank capacity reduced by the fuel necessary to traverse the arc, constraints

(38) and (39) restrict the fuel level, while constraints (40) and (41) define the available

amount of fuel and restrict the fuel level for the ending node respectively.

Finally, conditions (42) define the domains of variables.

3 A matheuristic algorithm

We have developed a matheuristic to solve our problem. In particular, we propose a hybrid

version of large neighborhood search (HLNS) algorithm introduced by Shaw [27], which

iteratively removes and inserts customers from the routes in the solution. We generated

an initial feasible solution Γcurrent by solving the proposed model with CPLEX. We fixed

a limit t̄ on the execution time, to find an initial feasible solution. We randomly applied

removal and insertion operators, which remove and insert customers and CSs, obtaining

the solutions Γremove and Γinsert respectively.

The procedure was repeated with the best solution found Γbest or an accepted current

solution whose cost is minor than cost (Γbest) υ where υ is a tolerance input parameter,

until the stopping criteria (i.e. a maximum number of iterations kmax) was met.

3.1 Removal and Insertion operators

We now describe our removal and insertion operators. Removal operators remove ζ cus-

tomers and then place them in a removal list. The value of ζ is selected from an interval

[ζ−, ζ+], where ζ− and ζ+ are input parameters. Insertion operators insert ζ customers in

the destroyed solution by following several rules. We introduce a temporary tabu status

which forbids the insertion of customers in routes which have been recently removed from

routes, as well as the removal of customers which have been recently inserted in routes.
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Algorithm 1 . Hybrid large neighborhood search (HLNS)

Generate the initial solution Γcurrent

Γcurrent → Γbest

while k < kmax do

Apply a removal operator to Γcurrent and obtain Γremove

Apply a insertion operator to Γremove and obtain Γinsert

Γinsert → Γtemporary

if cost(Γtemporary) < cost(Γbest) then

Γtemporary → Γbest

Γtemporary → Γcurrent

k = 0

else if cost(Γtemporary) < cost(Γbest) υ) then

Γtemporary → Γcurrent

k ← k + 1

else

k ← k + 1

end if

end while

return best solution Γcurrent

3.1.1 Removal operators

Our HLNS uses the following four destroy operators:

1. Random removal: iteratively removes ζ customers from a solution.

2. Worst distance removal: iteratively removes the unfavorable customers. The

operator sorts all the customers in descending order of cost, where the cost is the

sum of distances of the customer from the preceding and succeeding nodes in the

route.

3. Worst time removal: similar to the worst distance removal, the operator sorts all

the customers in descending order of cost, where cost for a node i is calculated as

|τi − ei|.

4. Route removal: this operator randomly selects a route and remove it from the

solution.

3.1.2 Insertion operators

We use four insertion operators.
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• Greedy customers insertion: iteratively determines the best feasible insertion

position for a customer by calculating the insertion cost between two nodes in the

route.

• Greedy customers and CS insertion: iteratively determines the best insertion

position for a customer, which satisfies time windows and capacity constraints, by

calculating the insertion cost between two nodes in the route. If the battery capacity

constraint is violated, a CS is inserted in the best feasible position before visiting

the customers.

• Greedy new route insertion: this operator initializes a new route, electric or

conventional by evaluating the insertion cost of a customer between the starting and

ending nodes.

• GRASP insertion: this operator sorts customers in a list of size L in ascending or-

der of insertion cost. Then it selects the next customer to be inserted among the best

feasible rGRASP insertions, where rGRASP is a random number in [0, rGRASPL/2].

4 Computational study

This section presents the results of our computational experiments. Our instances are

inspired from the scientific literature (see [28] and [26]). We solved the model with CPLEX

12.5, by imposing a time limit of three hours. The HLNS was implemented in Java. All

computations were performed on an Intel 2.60 GHz processor and 16 GB of RAM. Tables

3 summarizes the parameter setting used for our computational results.

The remainder of this section is organized as follows. In Section 4.1 we describe the

generation of the instances. In Section 4.2 we investigate how considering acceleration and

deceleration in the consumption energy model may influence the evaluation of the energy

spent. In Section 4.3 we present our computational results to assess the behaviour of the

HLNS algorithm.

4.1 Generation of instances

For each E-VRPTW instance, with customer locations defined by Cartesian coordinates

(ai,bi), we generate the charging station in the square (mini {ai}, mini {bi}) and upper

right hand corner (maxi {ai}, maxi {bi}) by solving a location problem.

We stress that the problem addressed refers to the routing of conventional and electric

vehicles with fixed recharging station positions. Hence we have to define a meaningful

displacement of the recharging stations.
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Table 3: Setting of conventional and electrical vehicles parameters
Notation Description Value

g Gravitational constant [m/s2] 9.81

θ Road angle 0

Cr Coefficient of rolling resistance 0.01

Cd Drag coefficient 0.7

A Frontal surface Area [m2] 3.912

ρ Air density [kg/m3] 1.225

w Curb weight (kg/m3] 6350

v Speed [m/s] 13.88

ξ Fuel-to-air mass ratio 1

k Engine friction factor [kJ/rev/L] 0.2

Ne Engine speed [rev/s] 33

De Engine displacement [L] 5

ηe Efficiency parameter for diesel engines 0.9

ηdt Drive train efficiency 0.4

κ Heating value of a typical diesel fuel [kJ/g] 44

Ψ Conversion factor [g/L] 737

BC Fuel tank maximum capacity [kg]) 3650

BE Maximum battery capacity [kWh] 80

ρ Recharging speed [W/min] 0.0083

ωgi Unit cost of recharge at station i [e/kW] 0.4

η+ Energy efficiency in motor mode [12] 0.76

η− Energy efficiency in recuperating mode [12] 1.27

ωe Unit cost of energy [e/kW] 0.17

ωf Unit cost of fuel (e/L) 1.3

c Driver wage [e/km] 0.195
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Let N be the set of customers defined in Section 2 and let Y be the set of candidate

charging stations. We define the decision variables as follows:

yj =

{
1, charging station j is activated

0, otherwise
j ∈ Y

xij =

{
1, customer i is served by j

0, otherwise
i ∈ N , j ∈ Y.

Thus we formulate and solve the following problem:

Minimize cp
∑
i∈N

∑
j∈Y

pijxij + cf
∑
j∈Y

yj (43)

subject to pijxij ≤ BEyj , i ∈ N , j ∈ Y (44)

pijxij ≥ 1, i ∈ N (45)∑
j∈Y

yj ≥ H (46)

xij ∈ {0, 1} i ∈ N , j ∈ Y (47)

yj ∈ {0, 1} j ∈ Y, (48)

where H is a minimum number of charging stations that we want to activate. We calculate

pij as described in Section 2.2. The objective function (43) minimize the cost of the energy

consumed, where cp is the unitary cost of energy [e/kWh], and cf [e] is the activation

cost for the charging station. Constraints (44) are the battery constraints, constraints

(45) guarantee that all the customers are served, and constraints (46) state that at least

H charging stations are activated. We fix a configuration by considering a partially laden

vehicle in recuperating mode which travel on the arc with a constant speed. With this

configuration, we ensure that each customer may be reached by using at least one charging

station at minimum cost.

Once the location problem has been solved, since it is well known that the acceleration

influences travel time and energy consumption (see Vuchic [31]), we have considered non-

negative values for the acceleration and deceleration rates. To guarantee the comfort and

safety of the rider and the integrity of the goods, we have fixed the values of acceleration

in the range [1.0, 1.8] [m/s2], and the value of deceleration in the range [2.0, 3.0] [m/s2],

arbitrarily on each arc, as suggested by Vuchic [31].
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4.2 Effects of acceleration and deceleration on energy consumption

We have studied the impact of acceleration and deceleration, in particular during the de-

parture and braking phases. Acceleration is a key factor in the determination of energy

consumption for both ICCVs and EVs and allows the estimation of the regenerated elec-

trical energy during the braking phase. Our experiments consist of solving to optimality a

set of small-size instances, by considering the following three energy consumption models:

the model in which the energy consumption is assumed to be proportional to the traveled

distance, the energy consumption model proposed in Goeke and Schneider [12], where the

acceleration and braking processes are not taken into account and the one proposed in

this paper.

The solutions are compared in terms of the energy consumed, by considering only

feasible configurations. Since the proportional model may underestimate the energy con-

sumption, some configurations generated using this model may be infeasible for our model.

More specifically, constraints (27) and (28) and (30)–(36) of the MILP model presented

in Section 2.3 are not satisfied.

We first consider the optimal solutions obtained by solving the MILP proposed in Sec-

tion 2.3. Table 4 presents the results. For each instance, we report its name, the energy

consumed by using the linear function model (Model A), and that used by considering

the energy consumption models. In particular, Model B neglects the acceleration while

Model C considers acceleration and braking phases. We also report the percentage errors

in consumed energy (∆A and ∆B) calculated as (PEC− PEA)/PEC and (PEC− PEB)/PEC , re-

spectively, where PEC is the energy consumption evaluated by using model C and PEA and

PEB represents the energy consumptions for Models A and B, respectively.

Table 4 clearly shows that the energy consumption values calculated by using the

proportional consumption model are gravely underestimated. Indeed, the percentage error

is on average about 70%. This uncorrected evaluation of energy has a great impact on

costs and feasibility of the solutions. It follows that the estimate of energy, given by the

proportional consumption model, does not capture the real behavior of the EVs.

Of interest is also the comparison between Model B and Model C: on average the

percentage error is about 4%.

In order to investigate in more detail the effect of considering the acceleration and

braking phases in the energy consumption evaluation, we have calculated, using Model B

and Model C, the energy consumed on each arc on a toy instance with two customers,

shown in Figure 2. We have considered the three-phase model introduced in Section 2.2

and for each phase we have evaluated the acceleration values (see Figure 2). Obviously,

since Model B does not take acceleration and deceleration into account, and assumes a

constant speed on each arc, the energy consumption is always positive. Looking at the
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Table 4: Comparison of energy consumption models
Energy consumption [Wh] Energy percentage error

Test Model A Model B Model C ∆A ∆B

MF C101 5 1941.46 6229.49 6461.55 69.95% 3.59%

MF C103 5 1689.20 5509.56 5732.92 70.54% 3.90%

MF C206 5 1934.91 6915.41 7167.37 73.00% 3.52%

MF C208 5 1503.42 5671.83 5902.16 74.53% 3.90%

MF R104 5 1624.30 5014.72 5234.77 68.97% 4.20%

MF R105 5 1652.19 5080.53 5310.81 68.89% 4.34%

MF R202 5 1424.18 4761.13 4998.70 71.51% 4.75%

MF R203 5 2069.09 6647.20 6886.05 69.95% 3.47%

MF RC105 5 2439.28 7420.92 7638.12 68.06% 2.84%

MF RC108 5 2547.13 7750.07 7972.58 68.05% 2.79%

MF RC204 5 1962.84 6445.58 6676.76 70.60% 3.46%

MF RC208 5 1882.31 6083.58 6302.34 70.13% 3.47%

tables in Figure 2, the difference in the energy consumption evaluation obtained with

Model C is related to the acceleration and braking phases, i.e., when the value of ah is

not zero. On the one hand the amount of energy needed in the acceleration phase, is on

average six times higher than the energy evaluated by assuming a constant speed. On the

other hand, when we consider the braking phase, the energy values are negative because

of the regenerating braking system.

4.3 Assessment of the HLNS

In order to assess the performance of our proposed HLNS, we first solve the problem

using CPLEX, and we then compare the results with those obtained with the HLNS. We

evaluate the performance of the proposed heuristic along two dimensions: solution quality

and computational effort. We use the parameter setting presented in Table 5.

Table 5: Parameters setting for instances with 10 and 15 customers
10 customers 15 customers

kmax 5 10

t̄ [seconds] [10,20] [10,50]

nC 1 2

nE 1 2

Tables 6 and 7 summarizes the results obtained on the instances with 10 and 15
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Figure 2: Toy instance solution using Model B and Model C

customers, respectively. The first column shows the name of the instance, the second

column gcost represents the percentage gap in cost defined as gcost = (cH − cM )/cM , where

cH is the cost provided by the heuristic and cM is the cost obtained solving the model. In

the third column we report the speedup value, i.e., the ratio between the computational

time required by CPLEX and that of the heuristic. CPLEX finds an optimal solution only

on the 10-customer instances. The results presented in Tables 6 and 7 clearly demonstrate

the advantage, in terms of efficiency, of the proposed matheuristic. Overall, the algorithm

is less time consuming than CPLEX.
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The HLNS is on average about 26.51 and 222.90 times faster than CPLEX for instances

with 10 and 15 customers, respectively. It is worth observing that our matheuristic is also

effective. Indeed, the gap on the cost for this class of instances is on average less than

3%. In particular, for those instances with 10 customers, the HLNS finds an optimal

solution in three cases and the average on the cost gap is 1.06%. For the 15-customers

instances, our matheuristic outperforms CPLEX. If finds the best solution for one instance

(MF R20215), and the average gap on the cost is 4.8%.

Table 6: Computational results for instances with 10 customers
Test g cost Speedup

MF C101 10 0.13% 31.08

MF C104 10 0.03% 25.98

MF C202 10 0.00% 67.91

MF C205 10 0.00% 1.85

MF R102 10 0.32% 43.32

MF R103 10 0.11% 17.71

MF R201 10 0.50% 45.60

MF R203 10 0.00% 5.51

MF RC102 10 4.31% 19.33

MF RC108 10 2.26% 20.25

MF RC201 10 3.13% 28.28

MF RC205 10 1.90% 11.23

Average 1.06% 26.51
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Table 7: Computational results for instances with 15 customers
Test g cost Speedup

MF C103 15 4.83% 221.60

MF C106 15 7.67% 222.92

MF C202 15 7.94% 223.10

MF C208 15 0.00% 222.85

MF R102 15 2.04% 223.54

MF R105 15 8.01% 223.18

MF R202 15 -2.53% 222.99

MF R209 15 5.02% 222.74

MF RC103 15 7.98% 223.10

MF RC108 15 7.88% 223.16

MF RC202 15 0.07% 223.21

MF RC204 15 8.69% 222.79

Average 4.80% 222.90

Now we present the computational results on instances with 20, 25, 30 and 35 cus-

tomers. We use the parameter setting presented in Table 8.

Table 8: Parameters setting for medium-sized instances
20 25 30 35

kmax 10 10 10 10

t̄ [seconds] [10,50] [50,100] [50,100] [50,100]

nC 4 5 5 5

nE 4 5 5 5

Table 9 summarizes the results obtained for medium-size instances with 20, 25 and

30 customers. The first column displays the name of the instance, the second one the

computational time [ms], the third one the total cost, the fourth and fifth columns show

the number of conventional and electrical vehicles respectively. We also report, in the

last line of each class of instances, the average for all statistics. Overall, the HLNS finds

feasible solutions within a reasonable amount of time. Indeed, it solves instances with 20,

25 and 30 customers in about two minutes.

Since CPLEX is unable to find an initial solution for instances belonging to the class R

and RC with up to 30 customers, Table 10 summarizes the results obtained for medium-size

instances with 35 customers for instances belonging to the clustered class C. On average,

our matheuristic solves this class of instances in about four minutes.
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Table 9: Computational results for instances with 20,25 and 30 customers
Test Time Objective # ICCV # EV

MF C101 20 50432 228.81 3 0

MF C102 20 51307 216.88 2 1

MF R101 20 50267 291.09 2 1

MF R102 20 55266 308.65 3 0

MF RC101 20 57568 388.39 3 2

MF RC102 20 55326 387.44 3 2

Average 50495 303.54 2.67 1.00

MF C101 25 50495 258.08 4 0

MF C102 25 50326 251.56 4 0

MF R101 25 50364 357.99 3 0

MF R102 25 50348 393.80 3 0

MF RC101 25 50469 568.24 4 1

MF RC102 25 50360 602.47 5 1

Average 50394 405.36 3.83 0.33

MF C101 30 60780 325.31 4 1

MF C102 30 60500 349.43 5 0

MF R101 30 60606 570.39 4 3

MF R102 30 60626 435.22 3 3

MF RC101 30 60551 625.07 2 5

MF RC102 30 60591 581.12 2 2

Average 60609 481.08 3.33 2.33

Table 10: Computational results for instances with 35 customers
Test Time Objective # ICCV # EV

MF C101 35 100830 494.19 5 1

MF C102 35 100743 508.30 4 3

MF C103 35 100896 427.56 5 1

MF C104 35 100785 393.85 2 4

MF C105 35 100726 491.05 5 1

Average 100796 462.99 4.2 2
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5 Conclusions

We have investigated a new green vehicle routing problem variant. We have considered a

mixed fleet composed of electrical and conventional vehicles, with time windows associated

with each customer and partial battery recharging. We have proposed a comprehensive

energy consumption model which can take into account several real-life parameters. In

particular we have introduced new features related to the acceleration and braking phases,

by incorporating the effect of the braking regenerating system in the model. We have de-

fined a mixed integer program whose aim is to route the fleet of vehicles in order to serve

all the customers satisfying the time window constraints, minimizing the transportation

and the recharging costs. To highlight the importance of the proposed energy consump-

tion model, we have shown that models in which energy consumption is proportional to

distance and that do not consider the acceleration and deceleration may underestimate the

energy spent, and hence yield infeasible solutions. However, a more conservative energy

consumption model could reject some potential less expensive feasible routes. We have

also developed a matheuristic based on large neighborhood search. In order to test the

model and to assess the performance of our proposed heuristic, we have solved the model

with CPLEX for small instances. Overall, the matheuristic is less time consuming than

CPLEX. We have also shown that our HLNS can solve medium-size instances within a

reasonable amount of time.
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