We propose a generalization of the well-known Magic Sets technique to Datalog programs with (possibly unstratified) negation under stable model semantics. Our technique produces a new program whose evaluation is generally more efficient (due to a smaller instantiation), while preserving soundness under cautious reasoning. Importantly, if the original program is consistent, then full query-equivalence is guaranteed for both brave and cautious reasoning, which turn out to be sound and complete. In order to formally prove the correctness of our Magic Sets transformation, we introduce a novel notion of modularity for Datalog under the stable model semantics, which is relevant per se. We prove that a module can be evaluated independently from the rest of the program, while preserving soundness under cautious reasoning. For consistent programs, both soundness and completeness are guaranteed for brave reasoning and cautious reasoning as well. Our Magic Sets optimization constitutes an effective method for enhancing the performance of data-integration systems in which query-answering is carried out by means of cautious reasoning over Datalog programs. In fact, preliminary results of experiments in the EU project INFOMIX, show that Magic Sets are fundamental for the scalability of the system.

Magic Sets and their Application to Data Integration

FABER, WOLFGANG;GRECO, Gianluigi;LEONE, Nicola
2005-01-01

Abstract

We propose a generalization of the well-known Magic Sets technique to Datalog programs with (possibly unstratified) negation under stable model semantics. Our technique produces a new program whose evaluation is generally more efficient (due to a smaller instantiation), while preserving soundness under cautious reasoning. Importantly, if the original program is consistent, then full query-equivalence is guaranteed for both brave and cautious reasoning, which turn out to be sound and complete. In order to formally prove the correctness of our Magic Sets transformation, we introduce a novel notion of modularity for Datalog under the stable model semantics, which is relevant per se. We prove that a module can be evaluated independently from the rest of the program, while preserving soundness under cautious reasoning. For consistent programs, both soundness and completeness are guaranteed for brave reasoning and cautious reasoning as well. Our Magic Sets optimization constitutes an effective method for enhancing the performance of data-integration systems in which query-answering is carried out by means of cautious reasoning over Datalog programs. In fact, preliminary results of experiments in the EU project INFOMIX, show that Magic Sets are fundamental for the scalability of the system.
2005
3-540-24288-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/151249
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 11
social impact