Roundabouts performance can affect urban transport systems in terms of environmental and operational impacts, safety and efficiency. The development of roundabout traffic management and control systems can be carried out through road traffic micro-simulation models which are computer models where the movements of individual vehicles travelling around road networks are determined by using simple car following, lane changing and gap acceptance rules. Unfortunately, despite the great diffusion of these tools, appropriate methods are still needed in order to validate and calibrate these models. In general, the calibration process can be defined in this way: the process of comparing model parameters with real-world data to ensure that the model realistically represents the traffic environment. The objective is to minimize the discrepancy between model results and measurements or observations. The aim of this paper is the presentation of a first comparative approach between observed performances and performances obtained by the use of a popular micro-simulation software, in particular urban intersections such as roundabouts. In particular an experimental investigation is designed and carried out in order to acquire some vehicular parameters for a roundabout placed in a urban contest of southern Italy. The calibration process is carried out by an analysis of variance of the kinematic parameters of a n-tuple of roundabout scenarios. This calibration procedure has permitted to derive some important conclusions about the choice of the most significant input parameters for the output results of each simulation scenario. Outcomes of this study are expected to benefit both practitioners and researchers.

TRANSPORT AND TRAFFIC MANAGEMENT BY MICRO SIMULATION MODELS: OPERATIONAL USE AND PERFORMANCE OF ROUNDABOUTS

VAIANA, Rosolino;
2012-01-01

Abstract

Roundabouts performance can affect urban transport systems in terms of environmental and operational impacts, safety and efficiency. The development of roundabout traffic management and control systems can be carried out through road traffic micro-simulation models which are computer models where the movements of individual vehicles travelling around road networks are determined by using simple car following, lane changing and gap acceptance rules. Unfortunately, despite the great diffusion of these tools, appropriate methods are still needed in order to validate and calibrate these models. In general, the calibration process can be defined in this way: the process of comparing model parameters with real-world data to ensure that the model realistically represents the traffic environment. The objective is to minimize the discrepancy between model results and measurements or observations. The aim of this paper is the presentation of a first comparative approach between observed performances and performances obtained by the use of a popular micro-simulation software, in particular urban intersections such as roundabouts. In particular an experimental investigation is designed and carried out in order to acquire some vehicular parameters for a roundabout placed in a urban contest of southern Italy. The calibration process is carried out by an analysis of variance of the kinematic parameters of a n-tuple of roundabout scenarios. This calibration procedure has permitted to derive some important conclusions about the choice of the most significant input parameters for the output results of each simulation scenario. Outcomes of this study are expected to benefit both practitioners and researchers.
2012
978-1-84564-580-9
Roundabout; Simulation models; Calibration procedure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/165439
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact