We consider the deformation spaces of some singular product-quotient surfaces $X=(C_1 \times C_2)/G$, where the curves $C_i$ have genus 3 and the group $G$ is isomorphic to $\mathbb{Z}_4$. As a by-product, we give a new construction of Todorov surfaces with $p_g=1$, $q=0$ and $2\le K^2\le 8$ by using $\mathbb{Q}$-Gorenstein smoothings.

Deformations of product-quotient surfaces and reconstruction of Todorov surfaces via Q-Gorenstein smoothing

POLIZZI, Francesco
2015-01-01

Abstract

We consider the deformation spaces of some singular product-quotient surfaces $X=(C_1 \times C_2)/G$, where the curves $C_i$ have genus 3 and the group $G$ is isomorphic to $\mathbb{Z}_4$. As a by-product, we give a new construction of Todorov surfaces with $p_g=1$, $q=0$ and $2\le K^2\le 8$ by using $\mathbb{Q}$-Gorenstein smoothings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/167260
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact