Abstract{We consider the boundary value problem:8<:x(m)(t) = f(t; x(t)); a · t · b; m > 1x(a) = ¯0¢x(k) ´ x(k)(b) ¡ x(k)(a) = ¯k+1; k = 0; :::;m ¡ 2where x(t) = (x(t); x0(t); ::::; x(m¡1)(t)), ¯i 2 R;i = 0; :::;m ¡ 1, and f is continuous at least in theinterior of the domain of interest. We prove the ex-istence and uniqueness of the solution under certainconditions.

Abstract{We consider the boundary value problem:8<:x(m)(t) = f(t; x(t)); a · t · b; m > 1x(a) = ¯0¢x(k) ´ x(k)(b) ¡ x(k)(a) = ¯k+1; k = 0; :::;m ¡ 2where x(t) = (x(t); x0(t); ::::; x(m¡1)(t)), ¯i 2 R;i = 0; :::;m ¡ 1, and f is continuous at least in theinterior of the domain of interest. We prove the ex-istence and uniqueness of the solution under certainconditions.

### No Classic Boundary Conditions

#### Abstract

Abstract{We consider the boundary value problem:8<:x(m)(t) = f(t; x(t)); a · t · b; m > 1x(a) = ¯0¢x(k) ´ x(k)(b) ¡ x(k)(a) = ¯k+1; k = 0; :::;m ¡ 2where x(t) = (x(t); x0(t); ::::; x(m¡1)(t)), ¯i 2 R;i = 0; :::;m ¡ 1, and f is continuous at least in theinterior of the domain of interest. We prove the ex-istence and uniqueness of the solution under certainconditions.
##### Scheda breve Scheda completa Scheda completa (DC)
2007
978-988-98671-2-6
Abstract{We consider the boundary value problem:8<:x(m)(t) = f(t; x(t)); a · t · b; m > 1x(a) = ¯0¢x(k) ´ x(k)(b) ¡ x(k)(a) = ¯k+1; k = 0; :::;m ¡ 2where x(t) = (x(t); x0(t); ::::; x(m¡1)(t)), ¯i 2 R;i = 0; :::;m ¡ 1, and f is continuous at least in theinterior of the domain of interest. We prove the ex-istence and uniqueness of the solution under certainconditions.
Bernoulli polynomials,; Green's function,; Di®erential Equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/20.500.11770/169325`
##### Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

• ND
• ND
• 2