Homogeneous unstructured data (HUD) are collections of unstructured documents that share common properties, such as similar layout, common file format, or common domain of values. Building on such properties, it would be desirable to automatically process HUD to access the main information through a semantic layer – typically an ontology – called semantic view. Hence, we propose an ontology-based approach for extracting semantically rich information from HUD, by integrating and extending recent technologies and results from the fields of classical information extraction, table recognition, ontologies, text annotation, and logic programming. Moreover, we design and implement a system, named KnowRex, that has been successfully applied to curriculum vitae in the Europass style to offer a semantic view of them, and be able, for example, to select those which exhibit required skills.

Semantic Views of Homogeneous Unstructured Data

LEONE, Nicola;MANNA, MARCO
2015-01-01

Abstract

Homogeneous unstructured data (HUD) are collections of unstructured documents that share common properties, such as similar layout, common file format, or common domain of values. Building on such properties, it would be desirable to automatically process HUD to access the main information through a semantic layer – typically an ontology – called semantic view. Hence, we propose an ontology-based approach for extracting semantically rich information from HUD, by integrating and extending recent technologies and results from the fields of classical information extraction, table recognition, ontologies, text annotation, and logic programming. Moreover, we design and implement a system, named KnowRex, that has been successfully applied to curriculum vitae in the Europass style to offer a semantic view of them, and be able, for example, to select those which exhibit required skills.
2015
978-3-319-22001-7
Unstructured data Ontologies Semantic information extraction Table recognition Semantic views
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/171000
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact