New location-aware smartphones applications making use of positioning information, are recently gaining an increasing diffusion although the same accuracy provided by those classical solutions, based on the well known GPS technology, is progressively reached by adopting new or revised less power-hungry communication technologies. Starting from this general framework and taking into account the novel green communication paradigm, the paper a cost-effective and energy-efficient localization architecture based on the improvement of classical cell-tower schemes coupled with a dynamic fingerprinting update phase in order to face the natural changes in the radio environments. The proposed system architecture has been implemented and tested in a real scenario to measure the performances in terms of accuracy and energy saving that will make it preferable to the traditional GPS-based systems in the next future. The obtained results show the effectiveness of the considered approach that makes possible to estimate the current position of a mobile user with a very small error (≈ 20m) also achieving an energy consumption reduction of about 38% respect to the classical GPS solutions.

Energy-efficient and accurate fingerprinting-based localization system for smartphones

ALOI, Gianluca;Caliciuri G;
2013-01-01

Abstract

New location-aware smartphones applications making use of positioning information, are recently gaining an increasing diffusion although the same accuracy provided by those classical solutions, based on the well known GPS technology, is progressively reached by adopting new or revised less power-hungry communication technologies. Starting from this general framework and taking into account the novel green communication paradigm, the paper a cost-effective and energy-efficient localization architecture based on the improvement of classical cell-tower schemes coupled with a dynamic fingerprinting update phase in order to face the natural changes in the radio environments. The proposed system architecture has been implemented and tested in a real scenario to measure the performances in terms of accuracy and energy saving that will make it preferable to the traditional GPS-based systems in the next future. The obtained results show the effectiveness of the considered approach that makes possible to estimate the current position of a mobile user with a very small error (≈ 20m) also achieving an energy consumption reduction of about 38% respect to the classical GPS solutions.
2013
978-147990354-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/171799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact