This paper proposes a multi-objective approach for Cellular Automata (CA) calibration. The method exploits the available temporal sequences of spatial data in order to produce CAs which are non-dominated (i.e. Pareto optimal) with respect to multiple objectives representing the disagreement between the simulated and real dynamics. A preliminary application, based on a parallel multi-objective Genetic Algorithm, showed that the proposed approach can provide significant insights about potentialities and limits of a CA model.

Evaluating cellular automata models by evolutionary multiobjective calibration

D'AMBROSIO, Donato;DI GREGORIO, Salvatore;RONGO, Rocco;Spataro W;
2008-01-01

Abstract

This paper proposes a multi-objective approach for Cellular Automata (CA) calibration. The method exploits the available temporal sequences of spatial data in order to produce CAs which are non-dominated (i.e. Pareto optimal) with respect to multiple objectives representing the disagreement between the simulated and real dynamics. A preliminary application, based on a parallel multi-objective Genetic Algorithm, showed that the proposed approach can provide significant insights about potentialities and limits of a CA model.
2008
3540799915
Calibration; Cellular Automata modelling; Multiobjective optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/174083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact