Ordinary least squares is an optimal procedure in many senses when the stochastic component has a Gaussian distribution or when linear estimates are required (Gauss-Markov Theorem). Nevertheless, departures from normality are quite plausible in many situations. In this paper, we propose an iterative proce- dure for estimating the regression coefficients modelling the residual term by a five-parameter version of the generalized lambda distribution. Distributional and regression parameters are estimated in a unique procedure and the effectiveness of the technique is analyzed on real and simulated data.

Distributional least squares based on the generalized lambda distribution

PERRI, PIER FRANCESCO;TARSITANO A.
2008-01-01

Abstract

Ordinary least squares is an optimal procedure in many senses when the stochastic component has a Gaussian distribution or when linear estimates are required (Gauss-Markov Theorem). Nevertheless, departures from normality are quite plausible in many situations. In this paper, we propose an iterative proce- dure for estimating the regression coefficients modelling the residual term by a five-parameter version of the generalized lambda distribution. Distributional and regression parameters are estimated in a unique procedure and the effectiveness of the technique is analyzed on real and simulated data.
2008
978-3-7908-2083-6
quantile function; controlled random search; error distribution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/176480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact