Two proper polynomial maps $f_1, \,f_2 \colon \mC^n \lr \mC^n$ are said to be \emph{equivalent} if there exist $\Phi_1,\, \Phi_2 \in \textrm{Aut}(\mC^n)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. In this article we investigate proper polynomial maps of topological degree $d \geq 2$ up to equivalence. In particular we describe some of our recent results in the case $n=2$ and we partially extend them in higher dimension.

Proper polynomial self-maps of the affine space: state of the art and new results

POLIZZI, Francesco
2011-01-01

Abstract

Two proper polynomial maps $f_1, \,f_2 \colon \mC^n \lr \mC^n$ are said to be \emph{equivalent} if there exist $\Phi_1,\, \Phi_2 \in \textrm{Aut}(\mC^n)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. In this article we investigate proper polynomial maps of topological degree $d \geq 2$ up to equivalence. In particular we describe some of our recent results in the case $n=2$ and we partially extend them in higher dimension.
2011
Proper polynomial map; Affine space
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/177537
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact