Rank association is a fundamental tool for expressing dependence in cases in which data are arranged in order. Measures of rank correlation have been accumulated in several contexts for more than a century and we were able to cite more than thirty of these coefficients, from simple ones to relatively complicated definitions invoking one or more systems of weights. However, only a few of these can actually be considered to be admissible substitutes for Pearson’s correlation. The main drawback with the vast majority of coefficients is their “resistance-tochange” which appears to be of limited value for the purposes of rank comparisons that are intrinsically robust. In this article, a new nonparametric correlation coefficient is defined that is based on the principle of maximization of a ratio of two ranks. In comparing it with existing rank correlations, it was found to have extremely high sensitivity to permutation patterns. We have illustrated the potential improvement that our index can provide in economic contexts by comparing published results with those obtained through the use of this new index. The success that we have had suggests that our index may have important applications wherever the discriminatory power of the rank correlation coefficient should be particularly strong.

An Exhaustive Coefficient of Rank Correlation

Tarsitano A;LOMBARDO, Rosetta
2011

Abstract

Rank association is a fundamental tool for expressing dependence in cases in which data are arranged in order. Measures of rank correlation have been accumulated in several contexts for more than a century and we were able to cite more than thirty of these coefficients, from simple ones to relatively complicated definitions invoking one or more systems of weights. However, only a few of these can actually be considered to be admissible substitutes for Pearson’s correlation. The main drawback with the vast majority of coefficients is their “resistance-tochange” which appears to be of limited value for the purposes of rank comparisons that are intrinsically robust. In this article, a new nonparametric correlation coefficient is defined that is based on the principle of maximization of a ratio of two ranks. In comparing it with existing rank correlations, it was found to have extremely high sensitivity to permutation patterns. We have illustrated the potential improvement that our index can provide in economic contexts by comparing published results with those obtained through the use of this new index. The success that we have had suggests that our index may have important applications wherever the discriminatory power of the rank correlation coefficient should be particularly strong.
Ordinal data; Economic applications
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/180667
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact